王怡云 石麗敏 謝俊霞
[摘要]目的 探討不同月齡α-突觸核蛋白A53T轉(zhuǎn)基因小鼠黑質(zhì)區(qū)Kv4.3 A型鉀通道的表達(dá)變化。方法選取不同月齡A53T轉(zhuǎn)基因小鼠和同窩野生型(WT)對照小鼠,采用蛋白免疫印跡(Western blot)方法檢測小鼠黑質(zhì)區(qū)Kv4.3以及酪氨酸羥化酶(TH)蛋白的表達(dá)。結(jié)果 3月齡的A53T轉(zhuǎn)基因小鼠Kv4.3及TH蛋白的表達(dá)與WT小鼠比較差異無顯著性(P>0.05),15月齡的A53T轉(zhuǎn)基因小鼠Kv4.3蛋白表達(dá)較WT小鼠升高(t=3.202,P<0.01),TH蛋白表達(dá)較WT小鼠降低(t=2.475,P<0.05)。結(jié)論 黑質(zhì)區(qū)Kv4.3 A型鉀通道隨著帕金森?。≒D)病情的進(jìn)展發(fā)生改變,可能參與了PD的發(fā)病過程。
[關(guān)鍵詞]鉀通道,電壓門控;黑質(zhì);α突觸核蛋白;小鼠,轉(zhuǎn)基因
[中圖分類號]R338.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號]2096-5532(2021)02-0163-04
[ABSTRACT]Objective To investigate the change in the expression of Kv4.3 A-type potassium channels in transgenic mice with different ages in months expressing A53T human α-synuclein.?Methods A53T transgenic mice with different ages in months and wild-type (WT) littermates were selected, and Western blot was used to measure the protein expression of Kv4.3 and tyrosine hydroxylase (TH) in the substantia nigra of mice.?Results There were no significant differences in the protein expression of Kv4.3 and TH between the A53T transgenic mice aged 3 months and WT mice (P>0.05). Compared with WT mice, the A53T transgenic mice aged 15 months had significantly higher protein expression of Kv4.3 (t=3.202,P<0.01) and significantly lower protein expression of TH (t=2.475,P<0.05).?Conclusion Kv4.3 A-type potassium channels in the substantia nigra change with the progression of Parkinsons disease (PD) and may be involved in the pathogenesis of PD.
[KEY WORDS]potassium channels, voltage-gated; substantia nigra; alpha-synuclein; mice, transgenic
帕金森?。≒D)是全球第二大神經(jīng)退行性疾病,其病理特征為中腦黑質(zhì)(SN)區(qū)多巴胺(DA)能神經(jīng)元選擇性死亡,殘存的DA能神經(jīng)元出現(xiàn)以α-突觸核蛋白(α-syn)為主要成分的路易小體[1-3]。PD主要的臨床癥狀有靜止性震顫、運(yùn)動遲緩、肌強(qiáng)直、姿勢反射障礙等[4-6]。但到目前為止,PD病因及發(fā)病機(jī)制尚不明確,可能與遺傳、環(huán)境、鐵沉積、氧化應(yīng)激、線粒體功能障礙等原因有關(guān)[7-11]。
鉀通道是目前發(fā)現(xiàn)的亞型最多、功能最復(fù)雜、分布最廣的一類離子通道,幾乎存在于所有生物體中[12]。
近年來有文獻(xiàn)報道,鉀通道的異常表達(dá)可能對PD有一定的調(diào)控作用[13]。A型鉀通道是電壓依賴型鉀通道的一個重要分支,在調(diào)控DA能神經(jīng)元的動作電位、放電模式和放電頻率上具有重要的作用[14]。A型鉀通道共有5種亞型,有研究表明,Kv4.3 A型鉀通道在SN區(qū)DA能神經(jīng)元上廣泛表達(dá)[15]。有研究對PD病人殘存的DA能神經(jīng)元進(jìn)行PCR分析,發(fā)現(xiàn)Kv4.3 mRNA表達(dá)明顯升高[16],而阻斷A型鉀通道可以改善PD病人[17]以及PD大鼠模型[18]的運(yùn)動功能障礙。然而,在PD疾病進(jìn)展過程中A型鉀通道的表達(dá)變化目前尚不清楚。本實驗在攜帶人A53T突變型α-syn的轉(zhuǎn)基因小鼠(α-Syn A53T+/+小鼠)上,應(yīng)用蛋白免疫印跡方法檢測了不同月齡的α-Syn A53T+/+小鼠以及同窩野生型(WT)小鼠SN區(qū)Kv4.3和酪氨酸羥化酶(TH)蛋白的表達(dá)水平,探究在PD的進(jìn)展過程中A型鉀通道的變化,為PD提供潛在的治療靶點(diǎn)。
1 材料與方法
1.1 實驗材料
1.1.1 實驗動物 所用A53T轉(zhuǎn)基因小鼠購自美國Jackson實驗室。α-Syn A53T+/-小鼠與α-Syn A53T+/-小鼠雜交得到下一代小鼠,通過基因組鑒定得到α-Syn A53T+/+小鼠、α-Syn A53T+/-小鼠及相對應(yīng)的同窩WT小鼠。本實驗選用3月齡和15月齡α-Syn A53T+/+小鼠和同窩WT小鼠作為研究對象,每組6只。小鼠飼養(yǎng)條件:室溫(21±2)℃,濕度(50±5)%,12 h晝夜循環(huán)光照,可自由飲水、取食。
1.1.2 實驗儀器及試劑 Kv4.3抗體購自中國Absin公司,TH抗體購自美國Millipore公司,β-actin抗體購自中國博奧森公司。山羊抗兔二抗購自中國Absin公司。分離膠緩沖液和濃縮膠緩沖液均購于康為公司,ECL發(fā)光液、PVDF膜購自美國Millipore公司,APS、TEMED、RIPA裂解液、BCA試劑盒、Loading buffer購自中國碧云天公司。電泳儀、電轉(zhuǎn)儀購自美國BioRad公司,凝膠成像系統(tǒng)購自美國UVP公司。
1.2 蛋白免疫印跡法檢測SN區(qū)TH和Kv4.3蛋白的表達(dá)
小鼠用100 g/L水合氯醛麻醉后快速斷頭取腦,完整地取出包括中腦SN區(qū)的腦組織,置于冰盒內(nèi),取出雙側(cè)SN區(qū)域,分別放入預(yù)冷的1.5 mL EP管中,準(zhǔn)確稱質(zhì)量。加入蛋白裂解液充分研磨后,于冰上靜置30 min,在4 ℃下以12 000 r/min離心20 min,將上清轉(zhuǎn)移至新的EP管中,應(yīng)用BCA法,測定波長562 nm處的吸光度值,根據(jù)標(biāo)準(zhǔn)品的吸光度繪制標(biāo)準(zhǔn)曲線,計算待測樣品的蛋白濃度。配制分離膠和濃縮膠,按照樣品上樣量準(zhǔn)確上樣,蛋白經(jīng)SDS-PAGE電泳后,濕轉(zhuǎn)到PVDF膜上,轉(zhuǎn)膜完成后,將目的條帶完整切下,用50 g/L的脫脂奶粉于室溫?fù)u床上封閉2 h;分別加入一抗Kv4.3(1∶1 000)、TH(1∶3 000)以及β-actin(1∶10 000),于4 ℃搖床上低速搖動孵育過夜。用TBST洗3次,每次10 min,加山羊抗兔(1∶10 000)的二抗在室溫下孵育1 h,用TBST洗3次,每次10 min。于ECL顯色試劑盒中取適量發(fā)光液均勻滴在PVDF膜上,室溫孵育1 min,用UVP凝膠成像系統(tǒng)拍攝圖片。在Image J圖像采集與分析軟件上對條帶進(jìn)行灰度值分析。用Kv4.3、TH蛋白與β-actin的比值作為目的蛋白相對表達(dá)水平。
1.3 統(tǒng)計學(xué)分析
應(yīng)用GraphPad Prism 6軟件進(jìn)行統(tǒng)計學(xué)分析。計量資料結(jié)果以x2±s表示,兩組間比較采用t檢驗。以P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié) 果
2.1 不同月齡α-Syn A53T+/+小鼠SN區(qū)Kv4.3蛋白表達(dá)比較
α-Syn A53T+/+組和WT組3月齡小鼠Kv4.3蛋白表達(dá)水平分別為0.965±0.040和0.844±0.084(n=6),差異無統(tǒng)計學(xué)意義(t=1.402,P>0.05)。α-Syn A53T+/+組和WT組15月齡小鼠Kv4.3蛋白表達(dá)水平分別為1.855±0.101和1.343±0.124(n=5),α-Syn A53T+/+組Kv4.3蛋白表達(dá)明顯上調(diào),差異具有統(tǒng)計學(xué)意義(t=3.202,P<0.05)。
2.2 不同月齡α-Syn A53T+/+小鼠SN區(qū)TH蛋白表達(dá)變化
α-Syn A53T+/+組和WT組3月齡小鼠TH蛋白表達(dá)水平分別為1.030±0.099和0.928±0.135(n=5),差異無統(tǒng)計學(xué)意義(t=0.612,P>0.05)。α-Syn A53T+/+組和WT組15月齡小鼠TH蛋白表達(dá)水平分別為1.586±0.1205和1.975±0.1008(n=6),α-Syn A53T+/+組TH表達(dá)明顯下調(diào),差異具有統(tǒng)計學(xué)意義(t=2.475,P<0.05)。
3 討 論
近年來的研究顯示,PD的發(fā)病可能與鉀離子通道功能異常有關(guān),以鉀離子通道為靶點(diǎn)來治療PD也成為一個重要的研究方向[19]。鉀離子通道廣泛存在于神經(jīng)元、心肌細(xì)胞、骨骼肌細(xì)胞、紅細(xì)胞、平滑肌細(xì)胞和淋巴細(xì)胞等多種細(xì)胞中[20-21]。A型鉀通道是一種電壓依賴型鉀通道,又稱瞬時外向型鉀通道,在SN區(qū)DA能神經(jīng)元上有廣泛的表達(dá),可影響神經(jīng)元的自發(fā)放電[22-24]。該通道介導(dǎo)的電流具有瞬時出現(xiàn)、快速激活、快速失活等特點(diǎn)[25-26]。A型鉀通道由Kv4基因家族形成的α亞基和KChip基因家族形成的輔助β亞基共同組成,其中在SN區(qū)DA能神經(jīng)元上主要表達(dá)的是Kv4.3/KChip3.1[27-29]。然而,在PD的SN區(qū)DA能神經(jīng)元退行性變過程中,A型鉀通道究竟發(fā)揮了何種作用尚不清楚。
本實驗選取α-Syn A53T+/+小鼠作為動物模型,該模型可用來研究PD發(fā)病過程中運(yùn)動及非運(yùn)動行為的改變[30]。本文研究結(jié)果顯示,3月齡的A53T轉(zhuǎn)基因小鼠SN區(qū)Kv4.3及TH蛋白的表達(dá)水平尚未發(fā)生明顯變化,提示3月齡的A53T轉(zhuǎn)基因小鼠SN區(qū)并無損傷,A型鉀通道也尚未發(fā)生變化。有文獻(xiàn)報道,3月齡A53T轉(zhuǎn)基因小鼠運(yùn)動協(xié)調(diào)能力無明顯障礙,但認(rèn)知功能出現(xiàn)一定程度的下降[31]。另有研究表明,A53T轉(zhuǎn)基因小鼠在8月齡時才出現(xiàn)明顯的總體運(yùn)動功能障礙,表現(xiàn)為毛發(fā)梳理減少、移動減少,在12月齡時表現(xiàn)出步幅的縮短和速度的減慢[32-33]。本研究在15月齡的A53T轉(zhuǎn)基因小鼠SN區(qū)檢測到,Kv4.3蛋白的表達(dá)顯著升高,TH蛋白的表達(dá)顯著降低,說明SN區(qū)的DA能神經(jīng)元出現(xiàn)了一定程度的損傷,A型鉀通道的表達(dá)也出現(xiàn)了異常,該結(jié)果與以往研究PD病人存活的SN區(qū)DA能神經(jīng)元中Kv4.3 mRNA的表達(dá)顯著增加相吻合[16]。
鉀離子通道的表達(dá)及功能異常通過多種機(jī)制影響SN、紋狀體的功能,從而在PD的發(fā)病中發(fā)揮重要作用。例如,近期已有研究結(jié)果顯示,鈣激活型鉀通道KCa3.1在1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導(dǎo)的PD小鼠模型SN區(qū)表達(dá)顯著增加,基因敲除或用通道阻斷劑藥理干預(yù)能有效拮抗MPTP誘導(dǎo)的SN區(qū)DA能神經(jīng)元損傷及紋狀體DA含量下降,減輕小膠質(zhì)細(xì)胞增生所導(dǎo)致的炎癥反應(yīng)[34]。ATP敏感性鉀通道(KATP)的SUR1亞單位在PD小鼠模型SN區(qū)的表達(dá)也顯著增高[35],激活KATP可以導(dǎo)致DA能細(xì)胞內(nèi)鐵含量增加,損傷線粒體功能并增加細(xì)胞氧化應(yīng)激[36]。本實驗首次證明,在15月齡的A53T轉(zhuǎn)基因小鼠SN區(qū)A型鉀通道Kv4.3蛋白表達(dá)增加。A型鉀通道是調(diào)節(jié)SN區(qū)DA能神經(jīng)元興奮性的關(guān)鍵因素,可影響突觸傳遞和神經(jīng)遞質(zhì)釋放。我們的前期研究已經(jīng)觀察到,A型鉀通道阻斷劑4-氨基吡啶可以抑制A型鉀通道電流,增加SN區(qū)DA能神經(jīng)元自發(fā)放電頻率[37];腹腔注射4-氨基吡啶能顯著縮短MPTP誘導(dǎo)的PD小鼠模型爬桿實驗中轉(zhuǎn)頭和爬桿的時間,改善PD小鼠的運(yùn)動障礙[38]。因此,我們推測,在PD的進(jìn)展過程中,A型鉀通道的表達(dá)及功能發(fā)生改變,影響SN區(qū)神經(jīng)元的興奮性,進(jìn)而改變了紋狀體DA的釋放,從而影響機(jī)體的運(yùn)動功能。本實驗結(jié)果為闡明A型鉀通道參與PD發(fā)病提供了初步的實驗證據(jù)。
[參考文獻(xiàn)]
[1]GOEDERT M. NEURODEGENERATION. Alzheimers and Parkinsons diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein[J]. Science (New York, N Y), 2015,349(6248):1255555.
[2]ZARRANZ J J, ALEGRE J, GMEZ-ESTEBAN J C, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia[J]. Annals of Neurology, 2004,55(2):164-173.
[3]MULLIN S, SCHAPIRA A H. Pathogenic mechanisms of neurodegeneration in Parkinson disease[J]. Neurologic Clinics, 2015,33(1):1-17.
[4]ASCHERIO A, SCHWARZSCHILD M A. The epidemiology of Parkinsons disease: risk factors and prevention[J]. The Lancet Neurology, 2016,15(12):1257-1272.
[5]SUMMA S, TOSI J, TAFFONI F, et al. Assessing bradykinesia in Parkinsons disease using gyroscope signals[C]//2017 International Conference on Rehabilitation Robotics (ICORR). London, UK: IEEE, 2017:1556-1561.
[6]HELMICH R C, HALLETT M, DEUSCHL G, et al. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits[J]? Brain: a Journal of Neurology, 2012,135(Pt 11):3206-3226.
[7]PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J]. Nature Reviews Neuroscience, 2017,18(4):251-259.
[8]ISOBE C, ABE T, TERAYAMA Y. Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinsons di-sease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process[J]. Neuroscience Letters, 2010,469(1):159-163.
[9]MAITI P, MANNA J, DUNBAR G L. Current understanding of the molecular mechanisms in Parkinsons disease: targets for potential treatments[J]. Translational Neurodegeneration, 2017,6:28.
[10]ZENG X S, GENG W S, JIA J J, et al. Cellular and molecular basis of neurodegeneration in Parkinson disease[J]. Frontiers in Aging Neuroscience, 2018,10:109.
[11]CHARTIER-HARLIN M C, KACHERGUS J, ROUMIER C, et al. Alpha-synuclein locus duplication as a cause of fami-lial Parkinsons disease[J]. Lancet (London, England), 2004,364(9440):1167-1169.
[12]SHIEH C C, COGHLAN M, SULLIVAN J P, et al. Potas-sium channels: molecular defects, diseases, and therapeutic opportunities[J]. Pharmacological reviews, 2000,52(4):557-594.
[13]KUMAR P, KUMAR D, JHA S K, et al. Ion channels inneurological disorders[J]. Advances in Protein Chemistry and Structural Biology, 2016,103:97-136.
[14]SEGEV D, KORNGREEN A. Kinetics of two voltage-gated K+ conductances in substantia nigra dopaminergic neurons[J]. Brain Research, 2007,1173:27-35.
[15]CHEN X Y, XUE B, WANG J, et al. Potassium channels: a potential therapeutic target for Parkinsons disease[J]. Neuroscience Bulletin, 2018,34(2):341-348.
[16]DRAGICEVIC E, SCHIEMANN J, LISS B. Dopamine midbrain neurons in health and Parkinsons disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels[J]. Neuroscience, 2015,284:798-814.
[17]LUCA C C, SINGER C. 4-aminopyridine improves freezing of gait in Parkinsons disease[J]. Journal of Neurology, 2013,260(10):2662-2664.
[18]TAHERIAN R, ARAB AHMADI M. 4-aminopyridine decreases MPTP-induced behavioral disturbances in animal model of Parkinsons disease[J]. International Clinical Neuroscience Journal, 2016,2(4):142-146.
[19]LAWSON K, MCKAY N G. Modulation of potassium channels as a therapeutic approach[J]. Current Pharmaceutical Design, 2006,12(4):459-470.
[20]MATHIE A, WOOLTORTON J R, WATKINS C S.Voltage-activated potassium channels in mammalian neurons and their block by novel pharmacological agents[J]. General pharmacology, 1998,30(1):13-24.
[21]SARKAR S, NGUYEN H M, MALOVIC E, et al. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinsons disease[J]. The Journal of Clinical Investigation, 2020,130(8):4195-212.
[22]SMIRNOV S V, AARONSON P I. Ca(2+)-activated and voltage-gated K+ currents in smooth muscle cells isolated from human mesenteric arteries[J]. The Journal of Physiology, 1992,457:431-454.
[23]DUDA J, PTSCHKE C, LISS B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinsons disease[J]. Journal of Neurochemistry, 2016,139(Suppl 1):156-178.
[24]HUANG H Y, LIAO C W, CHEN P H, et al. Transient expression of A-type K channel alpha subunits Kv4.2 and Kv4.3 in rat spinal neurons during development[J]. The European Journal of Neuroscience, 2006,23(5):1142-1150.
[25]SHAH N H, AIZENMAN E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tole-rance, and neurodegeneration[J]. Translational Stroke Research, 2014,5(1):38-58.
[26]LISS B, FRANZ O, SEWING S, et al. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription[J]. The EMBO Journal, 2001,20(20):5715-5724.
[27]DUFOUR M A, WOODHOUSE A, GOAILLARD J M. So-matodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development[J]. Journal of Neuroscience Research, 2014,92(8):981-999.
[28]ZEMEL B M, RITTER D M, COVARRUBIAS M, et al. A-type KV channels in dorsal root ganglion neurons: diversity, function, and dysfunction[J]. Frontiers in Molecular Neuroscience, 2018,11:253.
[29]GIASSON B I, DUDA J E, QUINN S M, et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein[J]. Neuron, 2002,34(4):521-533.
[30]徐玉鈺,馬澤剛. 3月齡α-突觸核蛋白A53T轉(zhuǎn)基因小鼠認(rèn)知功能的改變[J]. 青島大學(xué)學(xué)報(醫(yī)學(xué)版), 2018,54(2):202-205.
[31]PAUMIER K L, SUKOFF RIZZO S J, BERGER Z, et al. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinsons disease[J]. PLoS One, 2013,8(8):e70274.
[32]STOLZE H, KUHTZ-BUSCHBECK J P, DRCKE H, et al. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinsons disease[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2001,70(3):289-297.
[33]LU J, DOU F F, YU Z H. The potassium channel KCa3.1 represents a valid pharmacological target for microgliosis-induced neuronal impairment in a mouse model of Parkinsons disease[J]. Journal of Neuroinflammation, 2019,16(1):273.
[34]LISS B, HAECKEL O, WILDMANN J, et al. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons[J]. Nature Neuroscience, 2005,8(12):1742-1751.
[35]DU X X, XU H M, SHI L M, et al. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro[J]. Scientific Reports, 2016,6:33674.
[36]WHICHER J R, MACKINNON R. Structure of the voltage-gated K(+) channel Eag1 reveals an alternative voltage sen-sing mechanism[J]. Science, 2016,353(6300):664-669.
[37]XUE B, LI C, CHANG X L, et al. Ghrelin reduces A-type potassium currents in dopaminergic nigral neurons via the PLC/PKCδ pathway[J]. Neuroscience Bulletin, 2020,36(8):947-950.
[38]賈璐,石麗敏,謝俊霞. 4-AP對MPTP誘導(dǎo)PD模型小鼠運(yùn)動行為影響[J]. 青島大學(xué)學(xué)報(醫(yī)學(xué)版), 2019,55(1):44-46.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(醫(yī)學(xué)版)2021年2期