国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

畜禽舍移動(dòng)式智能監(jiān)測(cè)平臺(tái)研制

2021-06-30 07:33:42龍長(zhǎng)江譚鶴群覃光勝黃彭志
關(guān)鍵詞:豬舍畜禽傳感器

龍長(zhǎng)江,譚鶴群,朱 明,辛 瑞,覃光勝,黃彭志

畜禽舍移動(dòng)式智能監(jiān)測(cè)平臺(tái)研制

龍長(zhǎng)江1,2,譚鶴群1,2※,朱 明1,2,辛 瑞1,覃光勝1,黃彭志1

(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070; 2. 農(nóng)業(yè)農(nóng)業(yè)部長(zhǎng)江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

畜禽養(yǎng)殖場(chǎng)內(nèi)溫度、濕度及各種氣體構(gòu)成畜禽生長(zhǎng)的外圍環(huán)境,直接影響畜禽日常行為和生長(zhǎng)速度及免疫狀態(tài)。對(duì)這些畜禽養(yǎng)殖場(chǎng)內(nèi)進(jìn)行檢測(cè)并監(jiān)控畜禽健康狀態(tài)及尋找二者間的聯(lián)系,對(duì)優(yōu)化養(yǎng)殖環(huán)境,發(fā)展健康養(yǎng)殖具有重要意義。該研究以STM32單片機(jī)為控制核心,在固定點(diǎn)傳感器外設(shè)置移動(dòng)式智能監(jiān)測(cè)平臺(tái),通過(guò)無(wú)線定位系統(tǒng)UWB(Ultra Wide Band)和集成傳感器對(duì)畜禽養(yǎng)殖場(chǎng)內(nèi)環(huán)境進(jìn)行監(jiān)測(cè),利用帶圖傳功能攝像頭和紅外測(cè)溫裝置實(shí)時(shí)監(jiān)控畜禽狀態(tài)。傳感器獲取信息后將數(shù)據(jù)以UART、IIC或模擬量輸出方式傳遞給STM32,STM32處理數(shù)據(jù)后通過(guò)物聯(lián)網(wǎng)WIFI模塊上傳至阿里云IoT(The Internet of Things)物聯(lián)網(wǎng)平臺(tái),用戶登錄網(wǎng)頁(yè)頁(yè)面即可對(duì)數(shù)據(jù)進(jìn)行遠(yuǎn)程訪問(wèn),并對(duì)畜禽狀態(tài)進(jìn)行實(shí)時(shí)監(jiān)控。實(shí)測(cè)結(jié)果表明,智能檢測(cè)平臺(tái)檢測(cè)數(shù)據(jù)與豬場(chǎng)內(nèi)布置的傳感器檢測(cè)結(jié)果相近,二者偏差小于10%,在無(wú)遮擋情況下布置無(wú)線定位系統(tǒng),定位誤差接近10 cm級(jí)。系統(tǒng)檢測(cè)數(shù)據(jù)可信,數(shù)據(jù)傳輸正常,可持續(xù)長(zhǎng)時(shí)間穩(wěn)定運(yùn)行。機(jī)動(dòng)平臺(tái)還開(kāi)發(fā)了搬運(yùn)功能,單次運(yùn)送能力為200 kg左右。移動(dòng)式智能監(jiān)測(cè)平臺(tái)為畜禽養(yǎng)殖場(chǎng)內(nèi)實(shí)現(xiàn)全范圍環(huán)境監(jiān)控提供了設(shè)備基礎(chǔ)。

溫度;濕度;傳感器;智能監(jiān)測(cè);畜禽養(yǎng)殖;阿里云

0 引 言

工廠化畜禽養(yǎng)殖已成現(xiàn)代養(yǎng)殖主流,養(yǎng)殖環(huán)境中的溫度、濕度、CO2、H2S和NH3等氣體含量以及顆粒懸浮物濃度等環(huán)境因子直接影響畜禽的日常行為和生長(zhǎng)速度及免疫狀態(tài)[1-2]。當(dāng)環(huán)境因子異常時(shí),畜禽行為可顯著改變,并可導(dǎo)致生長(zhǎng)異常,發(fā)育停滯甚至疫病肆虐等嚴(yán)重后果[3],養(yǎng)殖場(chǎng)附近居民身體健康亦會(huì)受到影響[4-5]。對(duì)養(yǎng)殖區(qū)域內(nèi)環(huán)境因子和畜禽狀態(tài)進(jìn)行監(jiān)控是現(xiàn)代化養(yǎng)殖業(yè)的基本要求。

歐美國(guó)家在20世紀(jì)80年代即對(duì)畜禽舍環(huán)境和污物排放進(jìn)行了嚴(yán)格的法律規(guī)定,因此對(duì)環(huán)境因子的智能化檢測(cè)研究和應(yīng)用處于領(lǐng)先地位。Ni等[6]通過(guò)布置傳感器連續(xù)采集畜禽舍內(nèi)氣體含量,研究了有害氣體與家畜的體質(zhì)量增長(zhǎng)間的定量關(guān)系。Pan等[7]在豬場(chǎng)中應(yīng)用無(wú)線傳感器網(wǎng)絡(luò)研究豬的生理狀況與有害氣體濃度關(guān)系,大大減少了病豬的死亡率。Lysenko等[8]研究了傳感器在畜禽舍內(nèi)的最優(yōu)布置問(wèn)題,利用多種智能算法優(yōu)化節(jié)點(diǎn)布置。利用多點(diǎn)合理布置傳感器可較為全面的研究畜禽舍內(nèi)環(huán)境因子分布狀態(tài)和變遷規(guī)律,分析環(huán)境因子和畜禽生長(zhǎng)及健康的相互關(guān)系,以此為依據(jù)可優(yōu)化畜禽舍結(jié)構(gòu),降低能耗,改善畜禽生活狀態(tài),提高飼養(yǎng)效率。

李保明等[9]對(duì)國(guó)內(nèi)規(guī)?;B(yǎng)雞場(chǎng)內(nèi)溫度控制穩(wěn)定性與通風(fēng)均勻性及裝備進(jìn)行了研究。汪開(kāi)英等[10-11]對(duì)國(guó)內(nèi)外畜禽場(chǎng)的各種有害氣體、PM、惡臭及顆粒物等主要空氣污染物的檢測(cè)方法與技術(shù)進(jìn)行介紹。介鄧飛等[12]對(duì)國(guó)內(nèi)外規(guī)?;笄蒺B(yǎng)殖主要污染氣體現(xiàn)場(chǎng)檢測(cè)方法和分析儀器研究現(xiàn)狀進(jìn)行了綜述,對(duì)國(guó)內(nèi)外畜禽養(yǎng)殖環(huán)境因子的現(xiàn)場(chǎng)檢測(cè)技術(shù)和控制進(jìn)行了總結(jié)和對(duì)比,對(duì)未來(lái)發(fā)展新型現(xiàn)場(chǎng)檢測(cè)儀器和控制方法提供了研究方向。鑒于畜禽舍內(nèi)環(huán)境具備一定腐蝕性,化學(xué)傳感器壽命較低,何瑩[13]設(shè)計(jì)了基于吸收光譜的氨排放源在線檢測(cè)裝置,但該裝置檢測(cè)結(jié)果易受粉塵和風(fēng)速等外界因素的干擾。譚鶴群等[14]利用封閉光程采氣室采用可調(diào)諧吸收光譜檢測(cè)畜禽舍氨氣濃度,該裝置避免了電化學(xué)傳感器壽命短的缺點(diǎn),且穩(wěn)定性好,抗干擾能力強(qiáng),可用于長(zhǎng)期監(jiān)控。

隨著國(guó)家對(duì)環(huán)保的日益重視,為減少溫室氣體排放,董紅敏等[15-16]對(duì)中國(guó)農(nóng)業(yè)源溫室氣體排放與減排技術(shù)進(jìn)行了綜述,并對(duì)育肥豬舍甲烷排放濃度和排放通量進(jìn)行了測(cè)試;高新星等[17]對(duì)規(guī)?;i場(chǎng)的甲烷排放通量進(jìn)行了測(cè)試分析;劉安芳等[18]對(duì)豬舍內(nèi)糞污廢棄物和有害氣體減排技術(shù)進(jìn)行了研究。以上文獻(xiàn)對(duì)畜禽舍的不同季節(jié)、不用時(shí)段的氨、甲烷等有害氣體的度變化范圍和排放通量進(jìn)行統(tǒng)計(jì),為后期在線檢測(cè)和減排技術(shù)開(kāi)發(fā)提供參考。

為探究畜禽舍內(nèi)溫度分布和流場(chǎng)規(guī)律,需要獲得畜禽舍內(nèi)多點(diǎn)的持續(xù)數(shù)據(jù)。計(jì)算流體動(dòng)力學(xué)(Computational Fluid Dynamics,CFD)技術(shù)被引入到當(dāng)前研究中。尚峰軍等[19]對(duì)蛋雞舍溫?zé)岘h(huán)境進(jìn)行仿真和評(píng)估,賀城等[20]對(duì)豬舍溫度場(chǎng)和氣流場(chǎng)進(jìn)行了仿真和對(duì)比分析。這些研究為優(yōu)化通風(fēng)設(shè)計(jì)方案提供了依據(jù),但仿真結(jié)果還需進(jìn)一步實(shí)際測(cè)試進(jìn)行驗(yàn)證。林加勇等[21]對(duì)公豬舍夏季溫度和流場(chǎng)進(jìn)行了仿真,并通過(guò)局部布點(diǎn)對(duì)仿真結(jié)果進(jìn)行了驗(yàn)證,相對(duì)誤差最大30.8%,如進(jìn)行全范圍檢測(cè),可接數(shù)據(jù)進(jìn)行分析,進(jìn)一步優(yōu)化仿真模型和設(shè)置,使仿真結(jié)果更貼近實(shí)測(cè)。由于互聯(lián)網(wǎng)和物聯(lián)網(wǎng)技術(shù)的發(fā)展,國(guó)內(nèi)開(kāi)始利用相應(yīng)技術(shù)布置傳感器長(zhǎng)時(shí)間自動(dòng)檢測(cè)畜禽舍內(nèi)環(huán)境因子并無(wú)線上傳數(shù)據(jù)以利于環(huán)境因子變化規(guī)律的研究[22-25],朱虹等[26]對(duì)生豬養(yǎng)殖場(chǎng)無(wú)線傳感器網(wǎng)絡(luò)路徑損耗構(gòu)建了模型并進(jìn)行了驗(yàn)證,高云等[27-29]對(duì)豬舍內(nèi)的氣流及環(huán)境參數(shù)變化進(jìn)行了仿真及無(wú)線傳感器網(wǎng)絡(luò)測(cè)試,杜文田等[30-31]研究了一種帶有云平臺(tái)的畜禽舍環(huán)境控制系統(tǒng),解決了目前檢測(cè)系統(tǒng)數(shù)據(jù)處理能力不足的問(wèn)題。但由于技術(shù)尚未完全成熟,數(shù)據(jù)傳輸?shù)姆€(wěn)定性和數(shù)據(jù)處理的實(shí)時(shí)性還有待提高。將監(jiān)測(cè)與控制方法結(jié)合,謝秋菊等[32]為優(yōu)化豬舍內(nèi)環(huán)境,設(shè)計(jì)了檢測(cè)調(diào)控系統(tǒng)和控制策略;王斌等[33]采用可編程控制器設(shè)計(jì)了豬舍生態(tài)環(huán)境監(jiān)測(cè)及控制系統(tǒng);李立峰等[34]應(yīng)用模糊控制策略設(shè)計(jì)了分娩母豬舍環(huán)境監(jiān)控系統(tǒng)。精細(xì)的控制策略需要準(zhǔn)確的模型,而構(gòu)建準(zhǔn)確的模型需要大量實(shí)時(shí)數(shù)據(jù),但大規(guī)模布置固定點(diǎn)傳感器費(fèi)成本高,靈活性欠缺。

研究畜禽舍內(nèi)環(huán)境因子的分布和擴(kuò)散規(guī)律需要仿真結(jié)果結(jié)合實(shí)際測(cè)試數(shù)據(jù)進(jìn)行對(duì)比。數(shù)據(jù)和規(guī)律的準(zhǔn)確性是畜禽舍結(jié)構(gòu)和節(jié)能降耗環(huán)境控制方法優(yōu)化的前提,因此獲取養(yǎng)殖區(qū)域全范圍內(nèi)的環(huán)境因子信息非常必要。過(guò)去研究多在某些點(diǎn)固定布置傳感器,全面監(jiān)測(cè)需要大量布點(diǎn),鑒于養(yǎng)殖場(chǎng)內(nèi)環(huán)境變化較為緩慢,如采用攜帶集成傳感器的移動(dòng)式智能化檢測(cè)平臺(tái)快速巡檢畜禽舍內(nèi)各區(qū)域環(huán)境,結(jié)合重要節(jié)點(diǎn)固定布置傳感器,可實(shí)現(xiàn)全區(qū)環(huán)境因子監(jiān)測(cè)并節(jié)省大量成本。本文結(jié)合傳統(tǒng)固定點(diǎn)傳感器的布局,設(shè)計(jì)了移動(dòng)式智能檢測(cè)平臺(tái),以實(shí)現(xiàn)畜禽舍內(nèi)外環(huán)境的全范圍檢測(cè)。

動(dòng)物生病時(shí),最常見(jiàn)特征為體溫或行為異常。為實(shí)現(xiàn)健康養(yǎng)殖,防止疫病傳播,還需要對(duì)畜禽狀態(tài)進(jìn)行監(jiān)控。為創(chuàng)造最佳養(yǎng)殖環(huán)境,研究環(huán)境和動(dòng)物行為及生長(zhǎng)速度之間的關(guān)系,也需要同時(shí)采集畜禽狀態(tài)和環(huán)境因子間的數(shù)據(jù)。本移動(dòng)式智能檢測(cè)平臺(tái)以四輪小車為載體,在折疊升降結(jié)構(gòu)上固定集成環(huán)境傳感器,實(shí)現(xiàn)養(yǎng)殖區(qū)域內(nèi)不同高度環(huán)境因子信息的檢測(cè),利用車體前端可轉(zhuǎn)向的紅外測(cè)溫裝置和視頻監(jiān)控裝置實(shí)現(xiàn)對(duì)畜禽狀態(tài)的監(jiān)控。

1 移動(dòng)式智能檢測(cè)平臺(tái)系統(tǒng)功能設(shè)計(jì)

根據(jù)畜禽養(yǎng)殖場(chǎng)對(duì)環(huán)境和對(duì)畜禽自身狀態(tài)的監(jiān)控要求,針對(duì)畜禽養(yǎng)殖環(huán)境中對(duì)畜禽健康影響較大的溫濕度、CO2、H2S和NH3等氣體含量及粉塵濃度在全區(qū)域內(nèi)進(jìn)行機(jī)動(dòng)檢測(cè),并可對(duì)畜禽狀態(tài)進(jìn)行實(shí)時(shí)監(jiān)控。檢測(cè)數(shù)據(jù)實(shí)時(shí)上傳至阿里云IoT平臺(tái),用戶通過(guò)網(wǎng)頁(yè)遠(yuǎn)程訪問(wèn)數(shù)據(jù)。為充分利用小車機(jī)動(dòng)功能,在不檢測(cè)時(shí)將檢測(cè)模塊收縮折疊,安裝帶斜面的上蓋板后,可搬運(yùn)重物或畜禽。

車體高設(shè)計(jì)為0.2 m,檢測(cè)模塊最低高度貼近地面,通過(guò)伸縮折疊調(diào)整,最大測(cè)試高度1 m,收縮折疊部件最大長(zhǎng)度為0.8 m,折疊范圍0°~90°??紤]到試驗(yàn)豬舍內(nèi)走道寬度1.2 m,小車可原地掉頭,因此長(zhǎng)度需小于過(guò)道寬度大于收縮桿長(zhǎng)度(收縮時(shí)實(shí)際為0.5m),預(yù)留空間給監(jiān)控設(shè)備,整車長(zhǎng)度設(shè)計(jì)為0.7 m;長(zhǎng)寬比約為1:2,寬度設(shè)計(jì)為0.4 m。小車凈質(zhì)量約50 kg,運(yùn)輸?shù)纳i體質(zhì)量約為50~150 kg,加上安全裕量,最大總重設(shè)計(jì)為250 kg。豬舍長(zhǎng)度60 m,為保證不同測(cè)試點(diǎn)時(shí)間盡可能接近,要求小車能快速到達(dá)豬舍兩端,結(jié)合電機(jī)功率考慮,小車速度設(shè)計(jì)為0~3 m/s,滿載時(shí)考慮到運(yùn)輸工件和飼料的平穩(wěn)性,加速度為0.2 m/s2,根據(jù)滿載和空載的質(zhì)量比,對(duì)應(yīng)空載加速度為1 m/s2,滿載速度為0.6 m/s。上蓋板尺寸略大于車體,系統(tǒng)總體設(shè)計(jì)參數(shù)如表1所示。

表1 系統(tǒng)設(shè)計(jì)參數(shù)

環(huán)境因子檢測(cè)傳感器利用PCB技術(shù)制作集成為一個(gè)模塊,整體安裝于可通過(guò)折疊升降調(diào)節(jié)高度的運(yùn)動(dòng)部件上,整個(gè)電路板及其上各傳感器可獨(dú)立拆卸、安裝,方便維護(hù)和更換。車體前端安裝帶圖傳模塊的攝像頭和遠(yuǎn)程紅外測(cè)溫系統(tǒng)以方便對(duì)畜禽狀態(tài)進(jìn)行監(jiān)控。圖像數(shù)據(jù)通過(guò)遙控器內(nèi)帶SD卡暫存后轉(zhuǎn)移至電腦,其余檢測(cè)數(shù)據(jù)通過(guò)UART、IIC或模擬量輸出等方式傳遞給主控STM32芯片,芯片對(duì)數(shù)據(jù)進(jìn)行處理后通過(guò)WIFI模塊上傳至阿里云IoT平臺(tái)。用戶通過(guò)遙控器操控移動(dòng)式智能監(jiān)控平臺(tái)移動(dòng)及調(diào)節(jié)可折疊升降機(jī)構(gòu)改變檢測(cè)模塊的高度,實(shí)現(xiàn)對(duì)畜禽舍內(nèi)全范圍環(huán)境因子數(shù)據(jù)實(shí)時(shí)采集和對(duì)畜禽狀態(tài)進(jìn)行監(jiān)控。系統(tǒng)總體設(shè)計(jì)方案如圖1所示。

2 移動(dòng)式智能監(jiān)測(cè)平臺(tái)軟硬件設(shè)計(jì)

由于養(yǎng)殖場(chǎng)內(nèi)部為平整硬化路面,移動(dòng)平臺(tái)采用輪式結(jié)構(gòu)以節(jié)能并簡(jiǎn)化設(shè)計(jì)??紤]防水防腐要求,車體傳動(dòng)部件和驅(qū)動(dòng)模塊整體置于平臺(tái)內(nèi)部,上覆鋁合金板,鋼板以螺絲固定在平臺(tái)上,連接處以玻璃膠填縫處理,需要獨(dú)立運(yùn)動(dòng)的檢測(cè)監(jiān)控模塊安裝在鋁板上(如圖2a所示)。為方便養(yǎng)殖場(chǎng)內(nèi)搬運(yùn)畜禽和物料,傳感器折疊后,車體上部可附加不銹鋼蓋板,蓋板上設(shè)置一荷載1 361 kg的12V電動(dòng)絞盤和斜面以方便拖拽搬運(yùn)對(duì)象,系統(tǒng)整體外觀如圖2b所示。

a. 結(jié)構(gòu)簡(jiǎn)圖

a. Schematic diagram

b. 裝置實(shí)物圖

b. Physical picture

圖2 移動(dòng)式智能監(jiān)測(cè)平臺(tái)

Fig.2 Mobile intelligent monitoring platform

車體由40 mm×40 mm鋁型材和面板搭建而成,采用電機(jī)驅(qū)動(dòng),利用鏈輪系統(tǒng)傳動(dòng),轉(zhuǎn)向使用差速機(jī)構(gòu)實(shí)現(xiàn)。車輪直徑15 cm,在硬質(zhì)路面摩擦系數(shù)0.010~0.015情況下,根據(jù)車體最大負(fù)荷250 kg及加速度0.2 m/s2的要求,選用JM-039型大扭矩永磁蝸輪蝸桿減速直流電機(jī),其額定電壓12 V,功率80~120 W,額定電流10 A,輸出扭矩0~40 N·m,滿足系統(tǒng)動(dòng)力指標(biāo)要求。

檢測(cè)模塊高度調(diào)節(jié)子系統(tǒng)采用可折疊升降機(jī)構(gòu),由電動(dòng)分度盤1在90°內(nèi)轉(zhuǎn)動(dòng)以實(shí)現(xiàn)折疊,步進(jìn)電機(jī)推桿器驅(qū)動(dòng)安裝傳感器的集成模塊移動(dòng)實(shí)現(xiàn)升降。兩電機(jī)通過(guò)PWM波以計(jì)步方式精確控制折疊角度和升降距離,距地高度通過(guò)兩者聯(lián)合控制。電動(dòng)分度盤1、2型號(hào)均為HST100ZT,臺(tái)面尺寸直徑100 mm,傳動(dòng)比180:1,可360°旋轉(zhuǎn),無(wú)細(xì)分時(shí)分辨率為0.18°,承重45 kg。步進(jìn)電機(jī)推桿器采用龍翔步進(jìn)50,其行程50 cm,推力250 N,速度12 mm/s。

環(huán)境因子檢測(cè)子系統(tǒng)包含濕度、溫度、二氧化碳、硫化氫、氨氣及顆粒懸浮物等信息。選用傳感器主要參數(shù)如表2所示。

表2 各指標(biāo)監(jiān)測(cè)傳感器參數(shù)

為方便監(jiān)控禽畜狀態(tài),需采集體溫和圖像2種信息。體溫采用GY-906-DI紅外測(cè)溫傳感器,測(cè)量距離0.5 m以內(nèi),測(cè)溫范圍?40~125 ℃,在0~50 ℃溫度范圍內(nèi)測(cè)量精度±0.5 ℃。圖像監(jiān)控系統(tǒng)采用Sony-FPV700TVL航拍小攝像頭,其像素52萬(wàn),F(xiàn)PV圖傳系統(tǒng)發(fā)射功率僅600 mW,信號(hào)傳輸距離可達(dá)5 km。2種傳感器固定安裝在位于車體前端的電動(dòng)旋轉(zhuǎn)分度盤2的舵機(jī)末端,控制系統(tǒng)可遙控電動(dòng)分度盤2左右旋轉(zhuǎn)及舵機(jī)進(jìn)行俯仰角度調(diào)整。舵機(jī)采用LDX-218大扭矩舵機(jī),可180°旋轉(zhuǎn),速度1.6s/60°,扭矩15 kg/cm。

平臺(tái)采用32位微控制器系列單片機(jī)STM32F103ZET6作為主控制器,使用云卓H16遙控器。主控制器接收遙控器信號(hào)輸出6路PWM波,2路控制車體左右電機(jī)運(yùn)動(dòng)實(shí)現(xiàn)平臺(tái)整體移動(dòng)和轉(zhuǎn)向,2路驅(qū)動(dòng)折疊升降機(jī)構(gòu)電機(jī),實(shí)現(xiàn)檢測(cè)模塊高度控制,2路控制監(jiān)控系統(tǒng)分度盤旋轉(zhuǎn)和舵機(jī)俯仰。

平臺(tái)利用無(wú)線定位系統(tǒng)(UWB)進(jìn)行厘米級(jí)精確定位,定位標(biāo)簽通過(guò)串口將位置數(shù)據(jù)發(fā)送給主控制器。為防止小車在行進(jìn)過(guò)程中觸碰障礙物,在車體前端左右設(shè)置了兩個(gè)超聲波避障傳感器,自動(dòng)避障規(guī)則為一側(cè)有障礙信號(hào)時(shí)向另一邊轉(zhuǎn)彎,兩側(cè)均有障礙時(shí)后退,若連續(xù)退讓3次后仍無(wú)法避開(kāi)障礙,則暫停運(yùn)動(dòng)并報(bào)警,依靠車體前端監(jiān)控?cái)z像頭提供視頻信息等待操作人員進(jìn)行遙控操作。

CO2及溫、濕度傳感器采用IIC通信;NH3、PM2.5及PM10傳感器統(tǒng)一波特率后使用74LS151實(shí)現(xiàn)共用一個(gè)串口通訊;H2S通過(guò)模擬A/D接口采集。主控芯片獲取數(shù)據(jù)后,采用Savitzky-Golay濾波算法進(jìn)行處理,此算法可在濾波時(shí)保留信號(hào)的細(xì)節(jié)特征,后使用USART1串口將數(shù)據(jù)通過(guò)WIFI模塊上傳至阿里云IoT物聯(lián)網(wǎng)平臺(tái)。

視頻通過(guò)攝像頭所帶圖傳模塊經(jīng)2.4G無(wú)線網(wǎng)傳輸?shù)皆谱縃16遙控器接收端進(jìn)行顯示并暫存于SD卡中,后期轉(zhuǎn)存至電腦。養(yǎng)殖場(chǎng)內(nèi)畜禽圖像可通過(guò)電腦端推流軟件對(duì)外直播,實(shí)現(xiàn)遠(yuǎn)程觀看。

3 數(shù)據(jù)接口及網(wǎng)頁(yè)設(shè)計(jì)

網(wǎng)頁(yè)界面按功能系統(tǒng)分為用戶信息模塊、定位模塊,環(huán)境因子檢測(cè)模塊、健康狀態(tài)監(jiān)控模塊及系統(tǒng)運(yùn)動(dòng)控制模塊。用戶信息模塊用于用戶的注冊(cè)和登錄以及確定不同級(jí)別用戶的使用權(quán)限,用戶注冊(cè)時(shí)綁定1組或多組巡檢設(shè)備的ID,登錄后可查看所有已綁定設(shè)備的數(shù)據(jù)集;定位模塊用于移動(dòng)平臺(tái)位置監(jiān)控及軌跡顯示,給出巡檢車在養(yǎng)殖場(chǎng)內(nèi)實(shí)時(shí)運(yùn)行的三維坐標(biāo);環(huán)境因子檢測(cè)模塊用于實(shí)現(xiàn)檢測(cè)平臺(tái)與客戶端的數(shù)據(jù)通訊、圖表繪制及超值報(bào)警功能,環(huán)境因子數(shù)據(jù)信息由單片機(jī)實(shí)時(shí)采集后存儲(chǔ)到云數(shù)據(jù)庫(kù),隨時(shí)調(diào)取,分溫濕度曲線、氣體濃度曲線、定位信息等3個(gè)主頁(yè)面進(jìn)行顯示;健康狀態(tài)監(jiān)控模塊提供養(yǎng)殖場(chǎng)內(nèi)畜禽的實(shí)時(shí)圖像,通過(guò)查看畜禽表面圖像判斷其健康狀況;系統(tǒng)運(yùn)動(dòng)模塊提供控制接口,用戶可在網(wǎng)頁(yè)端操控巡檢平臺(tái)行進(jìn)的方向和速度。

4 移動(dòng)智能監(jiān)測(cè)平臺(tái)性能測(cè)試

4.1 試驗(yàn)方法

試驗(yàn)于2020年10月10日至2021年3月20在華中農(nóng)業(yè)大學(xué)種豬場(chǎng)進(jìn)行。豬舍長(zhǎng)60 m,寬12 m,過(guò)道寬度1.2 m左右,單側(cè)11個(gè)豬欄,圍欄高0.8 m,小門寬0.6 m,現(xiàn)有約50頭種豬,采用人工控制通風(fēng)和清糞。

由于豬舍尺寸限制,UWB定位基站無(wú)法布置為最優(yōu)的等邊三角形,故設(shè)為直角三角形形式。為避免墻角反射干擾和圍欄遮擋,定位基站0置于距離門內(nèi)側(cè)0.5 m、高1.0 m的窗臺(tái)上,作為坐標(biāo)原點(diǎn);以過(guò)道方向軸,基站1位于軸30 m處窗臺(tái)上;以垂直過(guò)道方向?yàn)檩S,基站2位于圍欄內(nèi)坐標(biāo)2.4 m處。所有基站高度均為1 m,與升降桿上集成傳感器最高高度一致,以使定位時(shí)圍欄內(nèi)、外定位標(biāo)簽均不受遮擋并與基站在同一水平面上。

為檢驗(yàn)平臺(tái)數(shù)據(jù)是否準(zhǔn)確,以養(yǎng)豬場(chǎng)內(nèi)固定設(shè)置的山東精訊暢通電子科技有限公司傳感器數(shù)據(jù)為參照。其中RS485型高精度工業(yè)級(jí)CO2傳感器量程為(0~10 000)×10-6,分辨率50×10-6,精度±5%,響應(yīng)時(shí)間<60s;RS485型NH3傳感器量程為(0~100)×10-6,分辨率1×10-6,響應(yīng)時(shí)間≤15 s;RS485型H2S傳感器量程為(0~100)×10-6,分辨率1×10-6,精度±3%(25 ℃),響應(yīng)時(shí)間≤15 s;RS485型S20溫濕度傳感器的溫度檢測(cè)范圍?40~80 ℃,溫度分辨率0.1 ℃,精度0.3 ℃,濕度檢測(cè)范圍0~100%RH,分辨率0.1%RH,測(cè)量精度±7%(25 ℃),響應(yīng)時(shí)間≤15 s。

現(xiàn)場(chǎng)測(cè)試圖如3所示。

4.2 數(shù)據(jù)處理

采用Matlab2017進(jìn)行數(shù)據(jù)分析及制圖。

4.3 定位功能測(cè)試結(jié)果與分析

2020年12月10日,移動(dòng)檢測(cè)平臺(tái)在3個(gè)不同位置點(diǎn)上進(jìn)行平面定位偏差測(cè)試。點(diǎn)1位于圍欄內(nèi),偏向軸。點(diǎn)2位于過(guò)道上,偏向軸,點(diǎn)3位于圍欄內(nèi),距離、軸接近等距,各點(diǎn)具體坐標(biāo)如表3所示。每個(gè)點(diǎn)連續(xù)測(cè)量50次。3點(diǎn)的測(cè)量誤差分布如圖4所示。

表3 定位試驗(yàn)測(cè)試數(shù)據(jù)表

無(wú)線電波受到障礙物反射和折射時(shí),會(huì)產(chǎn)生多路徑效應(yīng),導(dǎo)致信號(hào)特性變化,信噪比下降。定位精度還與基站的布置方式及移動(dòng)平臺(tái)的與基站和標(biāo)簽的相對(duì)位置有關(guān)。由于豬場(chǎng)內(nèi)由環(huán)境復(fù)雜,信號(hào)受到墻體、圍欄及支柱的反射,定位誤差比空曠區(qū)域大。由表3測(cè)試結(jié)果可知,由于基站無(wú)法采用最優(yōu)布置方式,加上環(huán)境復(fù)雜,定位誤差在10 cm級(jí),比技術(shù)手冊(cè)上給定的5 cm級(jí)大。當(dāng)標(biāo)簽與各基站間距離差異較大時(shí),如監(jiān)測(cè)點(diǎn)1、2,測(cè)量誤差相對(duì)較大,平均位置偏差為127 mm;當(dāng)標(biāo)簽與基站的距離均相近時(shí),如監(jiān)測(cè)點(diǎn)3,測(cè)量誤差相對(duì)較小,平均位置偏差為115 mm。試驗(yàn)中還發(fā)現(xiàn)基站不能放置于角落,基站與定位標(biāo)簽間不可有遮擋物,否則誤差會(huì)急劇增大。

2021年3月10日環(huán)境因子數(shù)據(jù)監(jiān)測(cè)結(jié)果如圖5所示,監(jiān)測(cè)顯示頁(yè)面如圖6所示。為方便對(duì)比,測(cè)試時(shí)將小車放置在養(yǎng)豬場(chǎng)內(nèi)原來(lái)固定設(shè)置的山東精訊暢通電子科技有限公司傳感器旁邊。自動(dòng)發(fā)送數(shù)據(jù)的時(shí)間間隔均為10 s,后臺(tái)數(shù)據(jù)為1 min內(nèi)數(shù)據(jù)取平均后顯示。登錄網(wǎng)頁(yè)頁(yè)面,瀏覽智能監(jiān)控平臺(tái)上傳的信息。結(jié)果表明,由于兩者位置接近,智能監(jiān)測(cè)平臺(tái)傳感器檢測(cè)結(jié)果與豬場(chǎng)內(nèi)原傳感器檢測(cè)結(jié)果相近,溫度、相對(duì)濕度、CO2測(cè)量值差異不到5%;由于H2S濃度低于2種傳感器檢測(cè)下限,均為0;NH3濃度在固定點(diǎn)傳感器無(wú)波動(dòng),智能移動(dòng)平臺(tái)監(jiān)測(cè)結(jié)果波動(dòng)幅值達(dá)10%,二者偏差小于10%可能與固定點(diǎn)傳感器慣性較大及二者布置位置差異有關(guān);移動(dòng)平臺(tái)粉塵傳感器檢測(cè)到飼喂時(shí)粉塵濃度明顯增長(zhǎng),PM2.5濃度達(dá)PM10的3倍以上,可能與飼料粒度有關(guān)。由于傳感器特性不同,智能監(jiān)測(cè)平臺(tái)的傳感器靈敏度較高,慣性較小,數(shù)據(jù)波動(dòng)較為頻繁,但二者數(shù)據(jù)總體變化趨勢(shì)相同,可認(rèn)為智能檢測(cè)平臺(tái)的檢測(cè)數(shù)據(jù)可信,并能進(jìn)行持續(xù)檢測(cè)及穩(wěn)定上傳數(shù)據(jù),實(shí)現(xiàn)對(duì)畜禽舍內(nèi)的環(huán)境因子進(jìn)行遠(yuǎn)程監(jiān)測(cè)。

在不監(jiān)測(cè)時(shí)折疊收起檢測(cè)裝置,加上蓋板后利用蓋板上的電動(dòng)絞盤將重物通過(guò)斜面拖拽上平板,捆扎后進(jìn)行運(yùn)輸。測(cè)試表明,系統(tǒng)在滿載250 kg時(shí)仍可正常運(yùn)行,單次運(yùn)送能力達(dá)200 kg。

5 結(jié) 論

本文設(shè)計(jì)了一種可畜禽養(yǎng)殖場(chǎng)所使用的移動(dòng)式智能檢測(cè)平臺(tái)。檢測(cè)系統(tǒng)在重要位置固定布置傳感器外,其他位置利用移動(dòng)平臺(tái)攜帶可調(diào)節(jié)高度的集成傳感器機(jī)動(dòng)進(jìn)行環(huán)境因子自動(dòng)檢測(cè),并可利用圖像傳感器和遠(yuǎn)程紅外測(cè)溫裝置對(duì)特定對(duì)象的健康和行為狀態(tài)實(shí)施監(jiān)測(cè)。監(jiān)測(cè)數(shù)據(jù)通過(guò)WIFI模塊實(shí)現(xiàn)檢測(cè)模組與阿里云IoT平臺(tái)的通信,從而實(shí)現(xiàn)與互聯(lián)網(wǎng)用戶端的交互。實(shí)測(cè)結(jié)果表明,智能檢測(cè)平臺(tái)檢測(cè)數(shù)據(jù)與原豬場(chǎng)內(nèi)布置的傳感器檢測(cè)結(jié)果相近,溫度、濕度、CO2測(cè)量值差異不到5%;由于H2S濃度低于2種傳感器檢測(cè)下限,均為0;NH3濃度的固定點(diǎn)傳感器監(jiān)測(cè)結(jié)果無(wú)波動(dòng),智能移動(dòng)平臺(tái)監(jiān)測(cè)結(jié)果波動(dòng)幅值接近10%,可能與固定點(diǎn)傳感器慣性較大及二者布置位置差異有關(guān);移動(dòng)平臺(tái)粉塵傳感器檢測(cè)到飼喂時(shí)粉塵濃度明顯增長(zhǎng), PM2.5濃度達(dá)PM10的3倍以上,可能與飼料粒度有關(guān)。無(wú)線定位系統(tǒng)誤差接近10 cm級(jí),系統(tǒng)可持續(xù)運(yùn)行,檢測(cè)數(shù)據(jù)可信,傳輸功能穩(wěn)定。利用該移動(dòng)式智能檢測(cè)平臺(tái)可對(duì)室內(nèi)、室外的環(huán)境因子進(jìn)行全區(qū)域監(jiān)測(cè),可利用獲得的大數(shù)據(jù)分析環(huán)境因子與動(dòng)物行為和生長(zhǎng)速度之間的關(guān)系,為健康養(yǎng)殖提供基礎(chǔ)信息。

移動(dòng)式智能檢測(cè)平臺(tái)可在遠(yuǎn)程遙控下運(yùn)行,如結(jié)合衛(wèi)星定位技術(shù)及激光雷達(dá)建圖技術(shù),移動(dòng)平臺(tái)可在室內(nèi)室外實(shí)現(xiàn)自主巡航和定時(shí)自動(dòng)檢測(cè)。系統(tǒng)還可進(jìn)一步拓展傳感器種類,通過(guò)PCB 板上預(yù)留接口,增加光照及風(fēng)速等其他傳感器,利用74LS151實(shí)現(xiàn)一個(gè)串口同時(shí)與多個(gè)傳感器的分時(shí)通訊。如機(jī)動(dòng)平臺(tái)舍棄搬運(yùn)功能,車體舍棄上蓋板,總負(fù)載可由250 kg減少到50 kg,選用小電機(jī),車體寬度和功率可進(jìn)一步減小。

[1] Seo I H, Lee I B, Moon O K, et al. Modeling of internal environmental conditions in a full-scale commercial pighouse containing animals[J]. Biosystems Engineering, 2012, 111: 91-106.

[2] 高中霞. 基于無(wú)線傳感器網(wǎng)絡(luò)畜禽舍環(huán)境監(jiān)測(cè)系統(tǒng)[D]. 吉林:吉林農(nóng)業(yè)大學(xué),2012.

Gao Zhongxia. Study on Monitoring System of Poultry House Environmental Based on Wireless Sensor Network[D]. Jilin: Jilin Agricultural University, 2012. (in Chinese with English abstract)

[3] 劉鴻濤,鄭進(jìn)碧. 農(nóng)村散養(yǎng)雞的無(wú)公害生產(chǎn)技術(shù)探討[J]. 中國(guó)禽業(yè)導(dǎo)刊,2004,21(22):34-34.

Liu Hongtao, Zheng Jingbi. Discussion on nuisanceless production technology of free-range chicken in rural area[J]. Guide to China Poultry, 2004, 21(22): 34-34. (in Chinese with English abstract)

[4] 郭軍蕊,劉國(guó)華,楊斌,等. 畜禽養(yǎng)殖場(chǎng)除臭技術(shù)研究進(jìn)展[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2013,25(8):1708-1714.

Guo Junrui, Liu Guohua, Yang Bing, et al. Deodorization technology of livestock and poultry farming[J]. Chinese Journal of Animal Nutrition, 2013, 25(8): 1708-1714. (in Chinese with English abstract)

[5] 戴鵬遠(yuǎn),沈丹,唐倩,等. 畜禽養(yǎng)殖場(chǎng)顆粒物污染特征及其危害呼吸道健康的研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(16):3214-3225.

Dai Pengyuan, Shen Dan, Tang Qian, et al. Research progress on characteristics of particulate matter in livestock houses and its harmful effects on respiratory tract health of livestock and poultry[J]. Scientia Agricultura Sinica, 2018, 51(16): 3214-3225. (in Chinese with English abstract)

[6] Ni J Q, Hendriks J, Vinckier C, et al. Development and validation of a dynamic mathematical model of ammonia release in pig house[J]. Environment International, 2000, 26(1): 105-115.

[7] Pan L L, Yang S X. A new intelligent electronic nose system for measuring and analyzing livestock and poultry farm odours[J]. Environ Monit Assess, 2007, 135(1/2/3): 399-408.

[8] Lysenko A I, Chumachenko S N, Valuiskyi S V. Technology for environmental monitoring using wireless sensor networks[C] 24th International Crimean Conference “Microwave & Telecommunication Technology”, IEEE, 2014.

[9] 李保明,王陽(yáng),鄭煒超,等. 中國(guó)規(guī)?;B(yǎng)雞環(huán)境控制關(guān)鍵技術(shù)與設(shè)施設(shè)備研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(16):212-221.

Li Baoming, Wang Yang, Zheng Weichao, et al. Research progress in environmental control key technologies, facilities and equipment for laying hen production in China[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2020, 36(16): 212-221. (in Chinese with English abstract)

[10] 汪開(kāi)英,吳捷剛,趙曉洋. 畜禽場(chǎng)空氣污染物檢測(cè)技術(shù)綜述[J]. 中國(guó)農(nóng)業(yè)科學(xué),2019,52(8):1458-1474.

Wang Kaiying, Wu Jiegang, Zhao Xiaoyang. Review of measurement technologies for air pollutants at livestock and poultry farms[J]. Scientia Agricultura Sinica, 2019, 52(8): 1458-1474. (in Chinese with English abstract)

[11] 汪開(kāi)英,吳捷剛,梅威達(dá),等. 畜舍顆粒物減排技術(shù)研究現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(18):204-212.

Wang Kaiying, Wu Jiegang, Mei Weida, et al. Research status on particulate reduction technology in livestock houses[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2020, 36(18): 204-212. (in Chinese with English abstract)

[12] 介鄧飛,泮進(jìn)明,應(yīng)義斌. 規(guī)?;笄蒺B(yǎng)殖污染氣體現(xiàn)場(chǎng)檢測(cè)方法與儀器研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):236-246.

Jie Dengfei, Pan Jinming, Ying Yibin. Advances in methods and instruments for determining concentration of gaseous air pollutants in large-scaled livestock farms[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2015, 31(1): 236-246. (in Chinese with English abstract)

[13] 何瑩. 基于激光吸收光譜的主要人為氨排放源在線檢測(cè)技術(shù)與應(yīng)用研究[D]. 合肥:中國(guó)科學(xué)技術(shù)大學(xué),2017.

He Ying. Study on On-Line Detection Technology and Application of Main Anthropogenic Ammonia Emissions Based on Laser Absorption Spectroscopy[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese with English abstract)

[14] 譚鶴群,李鑫安,艾正茂. 基于可調(diào)諧吸收光譜的畜禽舍氨氣濃度檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(13):186-194.

Tan Hequn, Li Xin’an, Ai Zhengmao. Detection of ammonia concentration in livestock poultry houses based on tunable diode laser absorption spectroscopy[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2020, 36(13): 186-194. (in Chinese with English abstract)

[15] 董紅敏,李玉娥,陶秀萍,等. 中國(guó)農(nóng)業(yè)源溫室氣體排放與減排技術(shù)對(duì)策[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):269-273.

Dong Hongmin, Li Yu’e, Tao Xiuping, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2008, 24(10): 269-273. (in Chinese with English abstract)

[16] 董紅敏,朱志平,陶秀萍,等. 育肥豬舍甲烷排放濃度和排放通量的測(cè)試與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(1):123-128.

Dong Hongmin, Zhu Zhiping, Tao Xiuping, et al. Measurement and analysis of methane concentration andflux emitted from finishing pig house[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2006, 22(1): 123-128. (in Chinese with English abstract)

[17] 高新星,趙立欣. 規(guī)?;i場(chǎng)甲烷排放通量測(cè)量與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(增刊):248-252.

Gao Xinxing, Zhao Lixin. Measurement and analysis of methane flux emitted from animal manure lagoon of livestock farm[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2006, 22(Supp.): 248-252. (in Chinese with English abstract)

[18] 劉安芳,阮蓉丹,李廳廳,等. 豬舍內(nèi)糞污廢棄物和有害氣體減量化工程技術(shù)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(15):200-210.

Liu Anfang, Ruan Rongdan, Li Tingting, et al. Research progress of in-house reduce engineering technology for piggery manure wastes and poisonous gas[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2019, 35(15): 200-210. (in Chinese with English abstract)

[19] 尚峰軍,趙潔. 采用CFD技術(shù)分析和評(píng)估蛋雞舍溫?zé)岘h(huán)境質(zhì)量[J]. 中國(guó)家禽,2021,43(2):61-68.

Shang Fengjun, Zhao Jie. Using CFD technology to analyze and evaluate the quality of the warm environment of layer house[J]. Chinese Poultry, 2021, 43(2): 61-68. (in Chinese with English abstract)

[20] 賀城,牛智有,齊德生. 豬舍溫度場(chǎng)和氣流場(chǎng)的CFD 模擬比較分析[J]. 湖北農(nóng)業(yè)科學(xué),2010,49(1):134-136.

He Cheng, Niu Zhiyou, Qi Desheng. CFD simulation and comparative analysis about air temperature and airflow in the piggery[J]. Hubei Agricultural Sciences, 2010, 49(1): 134-136. (in Chinese with English Abstract).

[21] 林加勇,劉繼軍,孟慶利,等. 公豬舍夏季溫度和流場(chǎng)數(shù)值CFD模擬及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):207-212.

Lin Jiayong, Liu Jijun, Meng Qingli, et al. Numerical CFD simulation and verification of summer indoor temperature and airflow field in boar building[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2016, 32(23): 207-212. (in Chinese with English abstract)

[22] 吳武豪. 基于物聯(lián)網(wǎng)的豬舍環(huán)境監(jiān)控系統(tǒng)研究[D]. 杭州:浙江大學(xué),2014.

Wu Wuhao. A Study on Piggery Environment Monitoring and Control System Based on Internet of Things[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract)

[23] 李惠敏,連京華,孫凱,等. 家禽環(huán)境自動(dòng)化控制技術(shù)研究進(jìn)展[J]. 中國(guó)家禽,2013,35(14):41-44.

Li Huiming, Lian Jinghua, Sun Kai, et al. Research progress of poultry environmental automation control technology[J]. China Poultry, 2013, 35(14): 41-44. (in Chinese with English abstract)

[24] 左現(xiàn)剛,孔德川,周逸,等. 基于ARM控制器的豬舍有害氣體無(wú)線檢測(cè)控制系統(tǒng)[J]. 江蘇農(nóng)業(yè)科學(xué),2016,448:440-443.

Zuo Xiangang, Kong Dechuan, Zhou Yi, et al. Wireless detection and control system of harmful gas in pig house based on ARM controller[J]. Jiangsu Agricultural Science, 2016, 448: 440-443. (in Chinese with English abstract)

[25] 潘榮德. 一種家禽養(yǎng)殖無(wú)線傳感器網(wǎng)絡(luò)監(jiān)測(cè)系統(tǒng):CN201710453917.0[P]. 2020-04-07.

[26] 朱虹,李爽,鄭麗敏,等. 生豬養(yǎng)殖場(chǎng)無(wú)線傳感器網(wǎng)絡(luò)路徑損耗模型的建立與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):205-212.

Zhu Hong, Li Shuang, Zheng Limin, et al. Modeling and validation on path loss of WSN in pig breeding farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2017, 33(2): 205-212. (in Chinese with English abstract)

[27] 高云,刁亞萍,林長(zhǎng)光,等. 機(jī)械通風(fēng)樓房豬舍熱環(huán)境及有害氣體監(jiān)測(cè)與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):239-247.

Gao Yun, Diao Yaping, Lin Changguang, et al. Monitoring and analysis of thermal environment and harmful gases in mechanically ventilated multistory pig buildings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 239-247. (in Chinese with English abstract)

[28] 高云,陳震撼,王瑜,等. 多環(huán)境參數(shù)控制的豬養(yǎng)殖箱設(shè)計(jì)及箱內(nèi)氣流場(chǎng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):203-212.

Gao Yun, Chen Zhenhan, Wang Yu, et al. Design for pig breeding chamber under multiple environment variable control and analysis of internal flow field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 203-212. (in Chinese with English abstract)

[29] 高云,魯斯迪,廖慧敏,等. 基于無(wú)線傳感器網(wǎng)絡(luò)的豬舍環(huán)境監(jiān)測(cè)研究進(jìn)展[J]. 中國(guó)豬業(yè),2019,14(6):67-74.

Gao Yun, Lu Sidi, Liao Huimin, et al. Research progress on environmental monitoring of pig house based on wireless sensor network[J]. China Swine Industry, 2019, 14(6): 67-74. (in Chinese with English abstract)

[30] 杜文田. 帶有云平臺(tái)的畜禽舍環(huán)境控制系統(tǒng)及控制方法:CN108803736A[P]. 2018-11-13.

[31] 曾志雄,余喬?hào)|,易子騏,等. 基于WSN的集中通風(fēng)式分娩豬舍環(huán)境參數(shù)時(shí)空分布特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(12):204-211.

Zeng Zhixiong, Yu Qiaodong, Yi Ziqi, et al. Spatiotemporal distribution characteristics of environmental parameters of centralized ventilation delivery sows based on WSN Development of mobile intelligent monitoring platform for livestock and poultry house[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(12): 204-211. (in Chinese with English abstract)

[32] 謝秋菊,蘇中濱,Ni Ji-Qin,等. 密閉式豬舍多環(huán)境因子調(diào)控系統(tǒng)設(shè)計(jì)及調(diào)控策略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):163-170.

Xie Qiuju, Su Zhongbin, Ni Ji-Qin, et al. Control system design and control strategy of multiple environmental factors in confined swine building[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 163-170. (in Chinese with English abstract)

[33] 王斌,劉雪梅,張國(guó)強(qiáng),等. 豬舍生態(tài)環(huán)境監(jiān)測(cè)和清潔控制系統(tǒng)的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):55-62.

Wang Bin, Liu Xuemei, Zhang Guoqiang, et al. Design of control system for pig farm cleaning and ecological environment monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 55-62. (in Chinese with English abstract)

[34] 李立峰,武佩,麻碩士,等. 基于組態(tài)軟件和模糊控制的分娩母豬舍環(huán)境監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(6):231-236.

Li Lifen, Wu Pei, Ma Shuoshi, et al. Monitoring and controlling system for delivery sow house environment based on configuration software and fuzzy control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 231-236. (in Chinese with English abstract)

Development of mobile intelligent monitoring platform for livestock and poultry house

Long Changjiang1,2, Tan Hequn1,2※, Zhu Ming1,2, Xin Rui1, Qin Guangsheng1, Huang Pengzhi1

(1.,430070,; 2.,,430070,)

Environmental factors including temperature, humidity, and gas atmosphere directly determine the daily performance, growth rate, and immune status of livestock and poultry in a farm. It is highly urgent to detect the factors for real-time monitoring the health state of livestock and poultry, particularly the relationship between environmental factors and health state. Therefore, a healthy aquaculture pattern can be developed to optimize the breeding environment. In this study, a mobile intelligent monitoring platform was established to detect the key environmental factors within the whole area. An integrated sensor system was installed in the fixed important points. A four-wheel trolley with sprocket wheels was used to drive the platform. The motor and transmission components were installed inside the car body in the need of waterproof and anti-corrosion. The upper side of the car was sealed with a cover plate, and only the integrated sensor system installed on a foldable telescopic mechanism that needs to be exposed was fixed on the plate. Height adjusting of an integrated sensor system was performed via changing the folding angle and telescopic length of a foldable telescopic mechanism. The sensors were assembled separately and disassembled conveniently, in order to facilitate repair and maintenance, and even the integrated sensor system was replaced as a whole. AnSTM32 microcontroller was used as the master control unit in the system. A PCB-integrated sensor system was selected to detect the temperature, humidity, CO2, H2S, NH3,and dust concentration in the environment. Three standard conditions were set for the detection. Specifically, when the livestock or poultry felt uncomfortable, their behavior appeared too quiet or too irritable. When the livestock or poultry was sick, their body temperature was abnormal. When an infection occurred, the surface of the skin was ulcerated. A camera with a high-speed image transmission and a remote infrared temperature measurement device was used to monitor the livestock and poultry, where the abnormal state of their body temperature was observed in time, and the infection was found at an early stage. Two monitor sensors were installed on an electromechanical actuator, which was fixed on an electromechanical indexing plate in the front of the mobile platform. The actuator was used to adjust the pitch angle, whereas, the indexing plate was used to change the horizontal angle. An Ultra-Wide Band (UWB) wireless system was also selected to accurately locate the position of the mobile platform. All the data was sent to the STM32 microcontroller in UART, IIC, or analog output mode. The STM32 microcontroller processed the data with the Savitzky-Golay filtering, and then uploaded the data to the Ali Cloud IoT platform through a WIFI module. The users can login to the web page to remotely access the data, and thereby monitor the status of livestock and poultry in real time. The experimental results show that the detection data of a mobile intelligent detection platform was similar to that of the sensors in the former pig farm, where the difference between them was less than 10%. The positioning error was close to the 10 cm level, when the base stations were located at the optimal position. The monitoring data were reliable, and the mobile intelligent monitoring platform ran stably for a long time. The mobile platform can also serve as a carrier to transport about 200 kg of heavy objects. For instance, materials and livestock can be transported by the platform, when installing an upper cover plate with a winch and inclined plane on the surface. The proposed mobile intelligent monitoring platform can provide a hardware foundation for whole-scale environmental monitoring of livestock and poultry farms.

temperature; humidity; sensors; intelligent monitoring; livestock and poultry breeding; Ali cloud

2020-11-19

2021-03-30

“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0500702)

龍長(zhǎng)江,博士,副教授,研究方向?yàn)樽詣?dòng)控制和無(wú)損檢測(cè)。 Email:lcjflow@163.com

譚鶴群,博士,教授,研究方向?yàn)檗r(nóng)產(chǎn)品加工機(jī)械與畜牧機(jī)械。Email:thq@mail.hzau.edu.cn

10.11975/j.issn.1002-6819.2021.07.009

TP23; TP242.3; S817.3

A

1002-6819(2021)-07-0068-08

龍長(zhǎng)江,譚鶴群,朱明,等. 畜禽舍移動(dòng)式智能監(jiān)測(cè)平臺(tái)研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):68-75. doi:10.11975/j.issn.1002-6819.2021.07.068 http://www.tcsae.org

Long Changjiang, Tan Hequn, Zhu Ming, et al. Development of mobile intelligent monitoring platform for livestock and poultry house[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 68-75. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.068 http://www.tcsae.org

猜你喜歡
豬舍畜禽傳感器
康奈爾大學(xué)制造出可拉伸傳感器
畜禽夏季喂野菜 防病快長(zhǎng)真不賴
菌株出馬讓畜禽污染物變廢為寶
夏季養(yǎng)畜禽 驅(qū)蚊有妙招
母豬懷孕后如何控制豬舍環(huán)境
簡(jiǎn)述傳感器在物聯(lián)網(wǎng)中的應(yīng)用
電子制作(2019年22期)2020-01-14 03:16:52
冬季豬舍有啥講究
“傳感器新聞”會(huì)帶來(lái)什么
跟蹤導(dǎo)練(三)2
多胚蛋白酶 高效養(yǎng)畜禽
禹城市| 礼泉县| 磐安县| 连江县| 淳安县| 恭城| 广东省| 佛学| 桦川县| 当雄县| 高淳县| 阳朔县| 西和县| 河北省| 民权县| 石首市| 临桂县| 德保县| 巫溪县| 青川县| 洛阳市| 万年县| 深圳市| 桦甸市| 昌黎县| 蒲江县| 阿城市| 达州市| 泗阳县| 呈贡县| 包头市| 白河县| 长宁区| 那坡县| 米泉市| 沭阳县| 金华市| 乌审旗| 时尚| 高陵县| 会东县|