国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于X-ray μCT技術(shù)的玉米籽粒結(jié)構(gòu)特征的粒位效應(yīng)分析

2021-06-30 07:34:16銀學(xué)波侯俊峰王克如李少昆謝瑞芝
關(guān)鍵詞:胚乳空腔粉質(zhì)

銀學(xué)波,明 博,侯俊峰,王克如,李少昆,謝瑞芝

基于X-rayCT技術(shù)的玉米籽粒結(jié)構(gòu)特征的粒位效應(yīng)分析

銀學(xué)波1,明 博1,侯俊峰2,王克如1,李少昆1,謝瑞芝1※

(1. 中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所/農(nóng)業(yè)農(nóng)村部作物生理生態(tài)重點(diǎn)實(shí)驗(yàn)室,北京 100081;2. 浙江省農(nóng)業(yè)科學(xué)院/玉米與特色旱糧研究所,東陽(yáng) 322100)

玉米籽粒因其在果穗上著生位置不同存在較大差異,明確籽粒結(jié)構(gòu)特征的粒位效應(yīng)為玉米的消費(fèi)、加工和播種質(zhì)量等玉米產(chǎn)量和品質(zhì)性狀的評(píng)價(jià)提供參考。該研究以3個(gè)不同籽粒類(lèi)型的玉米品種登海618(DH618)、KX3564和先玉335(XY335)為材料,利用X射線計(jì)算機(jī)斷層(X-ray micro-computed tomography,X-rayCT)技術(shù)掃描測(cè)試樣本,通過(guò)圖像濾波、閾值分割等圖像分析方法重建籽粒3維結(jié)構(gòu),獲取玉米果穗不同粒位籽粒的胚、胚乳、皮下空腔、胚空腔、硬質(zhì)胚乳、粉質(zhì)胚乳、胚乳空腔等結(jié)構(gòu)參數(shù)。數(shù)據(jù)分析表明,籽粒不同結(jié)構(gòu)指標(biāo)在果穗上呈現(xiàn)不同的變化規(guī)律,從基部到頂部(不考慮果穗兩端的極端籽粒),胚、胚乳及硬質(zhì)胚乳體積線性下降,各指標(biāo)在果穗上的變化范圍分別為15.82~33.36、180.15~296.50及87.13~166.00 mm3;胚乳空腔>皮下空腔>胚空腔,果穗中部籽粒的空腔較小且穩(wěn)定,3個(gè)品種表現(xiàn)一致;胚與胚乳的比值在粒位間基本穩(wěn)定,粉質(zhì)胚乳體積、硬質(zhì)胚乳與粉質(zhì)胚乳的比值從基部至頂部逐漸減小,但不同指標(biāo)的變化斜率存在差異。3個(gè)供試品種的籽粒結(jié)構(gòu)參數(shù)不同:DH618果穗不同部位籽粒胚與胚乳的比值大于KX3564和XY335,XY335籽粒硬質(zhì)胚乳與粉質(zhì)胚乳的比值大于DH618和KX3564。在籽粒空腔方面,KX3564皮下空腔的比例較高,而XY335胚乳空腔的比例較高。3個(gè)品種胚、胚乳、皮下空腔體積在玉米籽粒中的比例平均分別為9.27%、89.87%、0.86%。X-rayCT掃描技術(shù)為玉米籽粒性狀的研究提供新的方法與思路,明確果穗籽粒結(jié)構(gòu)的粒位效應(yīng)有利于全面地掌握玉米果穗上籽粒的性狀特征,為玉米的生產(chǎn)、加工及品種改良等提供借鑒。

作物;玉米;粒位效應(yīng);籽粒結(jié)構(gòu);X-rayCT

0 引 言

籽粒內(nèi)部結(jié)構(gòu)影響玉米的農(nóng)藝性狀、商品性狀、加工品質(zhì)以及其他應(yīng)用價(jià)值[1-2]。玉米是中國(guó)播種面積、總產(chǎn)量最高(國(guó)家統(tǒng)計(jì)局),玉米籽粒結(jié)構(gòu)的研究在種子生產(chǎn)、收獲、飼用及其他工業(yè)用途中具有廣泛的應(yīng)用空間。

玉米籽粒主要由種皮、胚、胚乳3部分結(jié)構(gòu)組成,不同的結(jié)構(gòu)在籽粒中發(fā)揮著不同的作用。種皮約占籽粒質(zhì)量的6%~8%,主要由纖維素組成,保護(hù)籽粒免受非生物和生物脅迫,減少籽粒破損與蟲(chóng)霉率[3]。胚占籽粒總質(zhì)量的10%~15%,由胚芽、胚軸、胚根、子葉(盾片)所組成,是種子萌發(fā)所必需的組織,且含有籽粒中的大部分脂肪[4]。胚乳位于胚的周?chē)?,含有豐富的營(yíng)養(yǎng)物質(zhì),一般較胚發(fā)育早,供胚發(fā)育時(shí)所需要的養(yǎng)料。根據(jù)其中蛋白質(zhì)和淀粉緊實(shí)程度,胚乳又分為硬質(zhì)胚乳和粉質(zhì)胚乳,其組織結(jié)構(gòu)及理化特性的諸多差異影響籽粒的質(zhì)地,對(duì)玉米機(jī)械粒收收獲質(zhì)量和飼用玉米淀粉的消化率等有重要的影響[5-6]。在籽粒結(jié)構(gòu)測(cè)定方面,傳統(tǒng)方法是將籽粒浸泡20~36 h,刀片分割出籽粒胚、硬質(zhì)胚乳、粉質(zhì)胚乳等結(jié)構(gòu),烘干稱(chēng)干質(zhì)量,人工手動(dòng)分割不準(zhǔn)確且測(cè)量特征少[7]。后期應(yīng)用的機(jī)器視覺(jué)技術(shù)雖然解決了人為因素干擾,但均是在獲取籽粒2維圖像信息的基礎(chǔ)上分割胚部與非胚部的邊界[8-9]。X-rayCT掃描技術(shù)可在不改變籽粒形態(tài)的和內(nèi)部結(jié)構(gòu)的情況下,提取籽粒胚、胚乳、空腔、孔隙度、籽粒飽滿(mǎn)度等更精細(xì)特征的籽粒結(jié)構(gòu)信息[10]。本團(tuán)隊(duì)前期工作就發(fā)現(xiàn),籽粒密度和皮下空腔體積等對(duì)玉米機(jī)械收獲時(shí)籽粒耐破碎性有顯著影響[11]。

因在果穗上的著生位置不同玉米籽粒大小和粒形存在較大差異[12]。相對(duì)果穗中下部,果穗上部籽粒灌漿充實(shí)度差,籽粒質(zhì)量偏低[13]。張麗等[14]研究發(fā)現(xiàn),不同粒位玉米籽粒容重也表現(xiàn)為下部籽粒>上部籽粒>中部籽粒。王曉燕等[15]發(fā)現(xiàn),果穗不同粒位胚乳細(xì)胞數(shù)表現(xiàn)為中部>下部>上部。禾谷類(lèi)作物籽粒在果穗不同部位存在差異的現(xiàn)象稱(chēng)之為粒位效應(yīng),并且在大穗型作物中尤為突出[16-18]。目前,關(guān)于粒位效應(yīng)的研究主要集中在籽粒表型和籽粒生理生化特征等方面,未見(jiàn)在玉米果穗不同部位籽粒內(nèi)部結(jié)構(gòu)上的關(guān)注。因此,本研究以不同籽粒類(lèi)型的玉米品種為研究對(duì)象,利用X-rayCT掃描這一新興的技術(shù)手段,分析玉米果穗不同部位籽粒結(jié)構(gòu)的變化規(guī)律,旨在探明果穗不同部位、不同類(lèi)型籽粒內(nèi)部結(jié)構(gòu)的差異,為玉米果穗不同粒位籽粒發(fā)育、不同功用品種篩選以及玉米籽粒加工、貯藏等相關(guān)性狀評(píng)價(jià)提供幫助。

1 材料與方法

1.1 供試樣品

本研究以登海618(DH618)、KX3564、先玉335(XY335)3個(gè)不同籽粒類(lèi)型的玉米品種為試驗(yàn)材料(表1)。2018年于新疆奇臺(tái)(89°46′01″E,43°50′41″N)種植,種植密度和水肥管理均參照當(dāng)?shù)卮筇锷a(chǎn)。每個(gè)品種選取生長(zhǎng)正常均勻一致的3個(gè)果穗,每個(gè)果穗選取一行,從果穗基部到頂部每隔3粒選取一個(gè)籽粒(圖1a),由于果穗近基部和頂籽粒變異較大,在果穗兩端增加取樣量,每個(gè)果穗平均12個(gè)籽粒,3個(gè)品種共計(jì)104個(gè)樣本,用于X-rayCT掃描。玉米果穗手工脫粒,85℃烘干至恒定質(zhì)量,根據(jù)籽粒鮮質(zhì)量和干質(zhì)量計(jì)算籽粒含水率:籽粒含水率=(鮮質(zhì)量?干質(zhì)量)/鮮質(zhì)量×100%。籽粒含水率經(jīng)國(guó)標(biāo)130 ℃烘干方法校正[19]。

表1 玉米品種來(lái)源和特征特性

注:籽粒品質(zhì)參數(shù)來(lái)自中國(guó)玉米品種系譜數(shù)據(jù)庫(kù)。

Note: The grain quality parameters were obtained from database of Chinese maize variety genealogy.

1.2 X-ray μCT掃描技術(shù)

X-rayCT掃描儀型號(hào)為SkyScan 1172(Bruker公司生產(chǎn))(圖1b)。X-rayCT掃描后每個(gè)籽??色@取900多張不同灰度的籽粒2維掃描圖像(---),其與籽粒物理分割的籽粒結(jié)構(gòu)相對(duì)應(yīng),X-rayCT掃描精度較高(圖2),X-rayCT掃描技術(shù)原理及具體操作見(jiàn)文獻(xiàn)[10-11]。

注:從果穗基部至頂部每隔3粒選取一個(gè)試驗(yàn)樣本,果穗兩端增加取樣量。方框內(nèi)籽粒為X-rayCT掃描樣本,數(shù)字為籽粒在果穗上所在粒位。

Note: A test sample is taken from the base to the top of the ear every 3 grains, increased the sample amount at both ends of ear. The grains in the box are the scanned samples by X-rayCT, and the numbers on the grains are their kernel positions on the ear.

圖1 試驗(yàn)樣本與X-rayCT掃描系統(tǒng)

Fig.1 Test samples and X-ray computed tomography system

1.皮下空腔 2.胚空腔 3.胚 4.硬質(zhì)胚乳 5.粉質(zhì)胚乳 6.胚乳空腔

1.Subcutaneous cavity 2.Embryo cavity 3.Embryo 4.Hard endosperm 5.Soft endosperm 6.Endosperm cavity

注:籽粒發(fā)育過(guò)程中由于種皮的程序性死亡,種皮與胚乳難以分割,本研究中胚乳是胚乳和種皮的總和。

Note: The endosperm is the sum of the endosperm and the seed coat, which are difficult to separate due to the programmed death of the seed coat during graindevelopment.

圖2 籽粒物理切片和X-rayCT掃描圖像

Fig.2 Physical slice and the image of X-rayCT scan

由于籽粒內(nèi)部結(jié)構(gòu)密度和成分存在差異,表現(xiàn)對(duì)X射線的吸收率不同,因而可實(shí)現(xiàn)籽粒內(nèi)部結(jié)構(gòu)參數(shù)的獲取。根據(jù)籽粒的結(jié)構(gòu)組成,將籽粒分為胚、胚乳、皮下空腔3大主要結(jié)構(gòu)。根據(jù)籽粒內(nèi)孔隙的分布位置,將籽粒內(nèi)空腔定義為3類(lèi):存在于胚內(nèi)的為胚空腔,存在于胚乳內(nèi)的為胚乳空腔,皮下空腔是存在于胚乳外種皮內(nèi)的一種孔隙。

1.3 圖像處理與數(shù)據(jù)分析

圖像預(yù)處理步驟包括濾波或平滑和光束硬化校正,使用交互式閾值分割算法將樣品信息、背景信息、樣品內(nèi)部不同特征區(qū)域劃分出來(lái),每一張2維切片由不同的體素?cái)?shù)組成(灰度值0~256)。然后通過(guò)圖像處理軟件(CT-Analyser和CT Scan NRecon)對(duì)籽粒大量的2維圖像重構(gòu)、分割與渲染(圖3),不同內(nèi)部結(jié)構(gòu)渲成不同的顏色,把籽粒內(nèi)部結(jié)構(gòu)剝離出來(lái),從而實(shí)現(xiàn)籽粒內(nèi)部結(jié)構(gòu)的可視化,并重建三維籽粒和內(nèi)部空腔等結(jié)構(gòu)(圖4)。

采用Microsoft Excel 2010進(jìn)行數(shù)據(jù)整理;SPSS 19.0進(jìn)行方差分析;GraphPad Prism 5作圖。由于果穗兩端籽粒結(jié)構(gòu)變異較大,線性擬合時(shí)果穗兩端籽粒未計(jì)算在內(nèi)。

注:編號(hào)所指結(jié)構(gòu)與圖2一致。

Note: The structure referred to by the number is the same as Fig. 2.

圖3 籽粒內(nèi)部結(jié)構(gòu)的分割

Fig.3 Segmentation of the internal structure of the grain

注:編號(hào)所指結(jié)構(gòu)與圖2一致。

Note: The structure referred to by the number is the same as Fig. 2.

圖4 籽粒三維重建

Fig.4 Three-dimensional reconstruction of grain

2 結(jié)果與分析

2.1 胚與胚空腔體積

玉米果穗兩端粒位籽粒變異較大,若不考慮果穗兩端1~5個(gè)籽粒(下同),從果穗基部至頂部,隨著粒位的增加,胚體積逐漸減小,果穗頂端籽粒胚體積最小,3個(gè)品種規(guī)律一致。3個(gè)品種果穗不同粒位籽粒胚體積范圍為15.82~33.36 mm3,其中,DH618籽粒胚體積較大,果穗不同部位籽粒胚體積均大于其他2個(gè)品種,平均較KX3564和XY335分別大23.40%、25.13%(圖5a)。從圖5b可以看出,胚中胚空腔的比例較小且穩(wěn)定,比較不同類(lèi)型玉米的均值,胚空腔的比例在品種間存在差異,由大到小依次為KX3564、XY335和DH618,3個(gè)品種平均胚空腔在胚中的比例分別為6.49%、5.52%、4.07%。

2.2 胚乳與胚乳空腔體積

從果穗基部到頂部,胚乳、硬質(zhì)胚乳體積逐漸減小(圖6a, 6b),3個(gè)品種表現(xiàn)一致。在不考慮果穗兩端的極端籽粒時(shí),不同品種果穗中部胚乳體積的變化范圍為180.15~296.50 mm3,其中DH618果穗不同部位胚乳體積均大于其他2個(gè)品種。不同品種果穗不同部位籽粒硬質(zhì)胚乳體積差異較小,硬質(zhì)胚乳胚乳體積的變化范圍為87.13~166.00 mm3。粉質(zhì)胚乳體積在3個(gè)品種的果穗基部差異較?。▓D6c),隨著粒位的增加,品種間差異增大,粉質(zhì)胚乳體積范圍為80.64~130.50 mm3,且不同品種硬質(zhì)胚乳大于粉質(zhì)胚乳體積。胚乳中胚乳空腔的比例在果穗中部較小且不同粒位間較穩(wěn)定(圖6d),但品種間存在明顯的差異,XY335胚乳空腔的比例較大,平均為2.87%,DH618和KX3564胚乳空腔的比例無(wú)差異,均為1.89%。

注:胚乳體積為硬質(zhì)胚乳和粉質(zhì)胚乳體積總和。

Note: Endosperm volume is the sum of hard endosperm and soft endosperm volume.

圖6 玉米果穗不同粒位籽粒胚乳、硬質(zhì)胚乳、粉質(zhì)胚乳體積和胚乳空腔在胚乳中的比例

Fig.6 The endosperm volume, hard endosperm volume and soft endosperm volume and the proportion of endosperm cavities in the endosperm in different positions of ear

2.3 籽粒的皮下空腔體積與皮下空腔在籽粒中的比例

玉米基部籽粒皮下空腔較大(圖7a),3個(gè)品種存在較大差異。KX3564基部籽粒皮下空腔體積最大值可達(dá)6.97 mm3,頂部最小值也為2.28 mm3。不考慮果穗兩端籽粒,KX3564皮下空腔體積變化范圍為2.28~4.52 mm3,而XY335、DH618的籽粒中皮下空腔范圍分別是0.89~2.06、0.69~1.80 mm3。約從果穗基部第10粒開(kāi)始,皮下空腔體積基本保持穩(wěn)定,KX3564皮下空腔體積平均為2.92 mm3,相比于DH618和XY335分別大66.58%、52.08%。而從籽粒中皮下空腔的比例看(圖7b),果穗兩端籽粒中皮下空腔的比例大于果穗中部籽粒。KX3564籽粒中皮下空腔的比例在3個(gè)品種中最大。

2.4 品種間結(jié)構(gòu)差異比較

不同玉米品種胚、胚乳及皮下空腔在籽粒中體積占比存在一定的差異(圖8)。DH618、KX3564和XY3353個(gè)品種果穗不同部位胚在籽粒中的比例分別為9.11%~11.39%、8.01%~9.37%、8.12%~9.83%,胚乳占比分別為88.16%~90.19%、88.54%~90.50%、89.41%~91.32%,皮下空腔占比分別為0.22%~0.96%、0.87%~2.82%、0.38%~1.46%。3個(gè)品種平均胚、胚乳、皮下空腔在籽粒中的比例分別為9.27%、89.87%、0.86%。其中,DH618籽粒中胚的比例顯著大于KX3564和XY335(<0.05),約占籽粒體積的10.42%,而其胚乳在籽粒中的比例在3個(gè)品種中最小。從圖9a可以看出,DH618籽粒胚與胚乳比值在果穗不同部位大于KX3564和XY335,不同粒位籽粒胚與胚乳的比值平均為0.12,而KX3564和XY335的比值基本相同,約為0.10。同時(shí)胚與胚乳的比值在果穗基部與頂部籽粒中差異較小,基本不受粒位的影響。籽粒硬質(zhì)胚乳和粉質(zhì)胚乳的比值在果穗不同部位和品種間均存在明顯差異(圖9b),靠近果穗基部不同品種籽粒硬質(zhì)胚乳與粉質(zhì)胚乳的比值差異較小,隨著粒位的增加,品種間差異增大;比較不同品種籽粒硬質(zhì)與粉質(zhì)胚乳的比值的均值,XY335平均為1.34,大于DH618和KX3564。

注:不同字母表示同一結(jié)構(gòu)指標(biāo)品種間在<0.05水平差異顯著。

Note: Different letters represent significant differences among varieties of the same structural indicators at<0.05 level.

圖8 果穗不同粒位胚、胚乳、皮下空腔在籽粒中的比例

Fig.8 Proportion of embryo, endosperm and subcutaneous cavity of grain in different positions of ear

3 討 論

相較于以往手工測(cè)量、機(jī)器視覺(jué)等籽粒結(jié)構(gòu)特征參數(shù)的常規(guī)獲取方式,本試驗(yàn)利用X-rayCT技術(shù),高分辨率且無(wú)損狀態(tài)下掃描玉米果穗不同部位的籽粒,具有可視化并定量分析的特點(diǎn),獲取了籽粒胚、胚乳、皮下空腔、胚空腔、硬質(zhì)胚乳、粉質(zhì)胚乳、胚乳空腔等結(jié)構(gòu)指標(biāo),特別是籽??涨唤Y(jié)構(gòu),解決了傳統(tǒng)方法無(wú)法對(duì)籽粒內(nèi)部結(jié)構(gòu)精確測(cè)定的問(wèn)題。

本研究結(jié)果表明,果穗不同部位籽粒結(jié)構(gòu)存在差異:在不考慮果穗兩端的極端籽粒時(shí),籽粒各結(jié)構(gòu)指標(biāo)在果穗上均呈一定的規(guī)律性變化:胚、胚乳及硬質(zhì)胚乳體積線性下降;皮下空腔、胚空腔及胚乳空腔在果穗中部保持穩(wěn)定,且明顯低于果穗兩端籽粒,3個(gè)品種表現(xiàn)一致;粉質(zhì)胚乳體積、胚與胚乳比值、硬質(zhì)胚乳與粉質(zhì)胚乳比值在果穗上的變化規(guī)律存在品種間差異。前人對(duì)果穗粒位間差異的研究主要集中在籽粒表型與理化指標(biāo)等方面[12-14],發(fā)現(xiàn)果穗基部與頂部的籽粒往往表現(xiàn)出籽粒質(zhì)量、形態(tài)、體積、密度、內(nèi)部淀粉粒體積分布的差異[20],但胚、胚乳、空腔等籽粒結(jié)構(gòu)特征在果穗上的分布規(guī)律未見(jiàn)報(bào)道。關(guān)于粒位間差異的原因,前人認(rèn)為可能是由于籽粒在果穗上位置不同,導(dǎo)致不同籽粒發(fā)育順序、物質(zhì)積累量及同化物運(yùn)輸差異[21]:玉米雌穗小花受精完成后,果穗中下部籽粒最先發(fā)育,光合產(chǎn)物轉(zhuǎn)化量多,籽粒灌漿更充實(shí),而頂部籽粒發(fā)育較晚[18],因而,果穗中下部籽粒的胚、胚乳體積較大,空腔體積較小。趙波等[22]研究表明,相較于果穗頂端,果穗基部籽粒更耐機(jī)械損傷。籽粒結(jié)構(gòu)在一定程度上反映了籽粒的灌漿充實(shí)狀況,玉米果穗不同部位籽粒結(jié)構(gòu)差異為果穗發(fā)育研究、科學(xué)試驗(yàn)中的合理取樣及玉米的生產(chǎn)應(yīng)用奠定基礎(chǔ)。

本試驗(yàn)中,XY335和DH618均為半馬齒型籽粒,KX3564為馬齒型籽粒。本研究結(jié)果表明,DH618胚與胚乳的比值在3個(gè)品種中最大,XY335硬質(zhì)胚乳與粉質(zhì)胚乳的比值顯著大于DH618和KX3564??赡苁怯捎诓煌贩N遺傳物質(zhì)的差異,籽粒發(fā)育過(guò)程中各結(jié)構(gòu)參數(shù)的相關(guān)基因表達(dá)活性不同[23]。玉米籽粒的形成過(guò)程分為胚胎發(fā)生、物質(zhì)積累和成熟脫水3個(gè)階段,胚和胚乳中儲(chǔ)存物質(zhì)的積累主要發(fā)生在籽粒灌漿期[24]。因淀粉體與蛋白體的發(fā)育與充實(shí)狀況不同,不同品種角質(zhì)胚乳與粉質(zhì)胚乳比例存在差異。一般來(lái)說(shuō),半馬齒型籽粒角質(zhì)胚乳較多,馬齒型籽粒的中央和頂部均為粉質(zhì)淀粉,且該比例隨著蛋白含量的不同而有較大差異[25]。分析不同品種的品質(zhì)成分,DH618和XY335籽粒蛋白質(zhì)含量較高,KX3564籽粒淀粉含量較高(表1)。籽粒結(jié)構(gòu)影響籽粒質(zhì)地,Guelpa等[26]研究表明,籽粒硬質(zhì)胚乳與粉質(zhì)胚乳的細(xì)胞結(jié)構(gòu)和淀粉顆粒不同,從而導(dǎo)致籽粒不同的硬度,硬質(zhì)胚乳與粉質(zhì)胚乳的比值可作為評(píng)價(jià)品種硬度的指標(biāo)。Wang等[27]研究表明,玉米籽粒硬質(zhì)胚乳較粉質(zhì)胚乳具有顯著的力學(xué)強(qiáng)度優(yōu)勢(shì),硬質(zhì)胚乳比例高的玉米品種更耐破碎。

由于籽粒內(nèi)孔隙空間測(cè)量難度大,有關(guān)籽粒空腔的研究非常有限。本研究表明,胚空腔在果穗不同部位籽粒中的分布及形態(tài)變化較?。慌呷榭涨恢饕植荚谂叩耐鈬妥蚜m敹?,集中在粉質(zhì)胚乳中;皮下空腔主要分布在籽粒尖端,少量分布在籽粒四周。果穗不同粒位籽??偪涨患s占籽粒體積的3.72%,其中,胚乳空腔>皮下空腔>胚空腔。KX3564皮下空腔體積明顯高于其他兩個(gè)品種,而皮下空腔體積與籽粒破碎率有顯著的關(guān)系[11],與張萬(wàn)旭等[28]劃分KX3564為易破碎品種,DH618和XY335為耐破碎性品種結(jié)果一致。XY335胚乳空腔體積較大,多位學(xué)者研究表明,XY335籽粒脫水速率較快,含水率穩(wěn)定時(shí)其籽粒含水率較低[29-30],后續(xù)可進(jìn)一步探究胚乳空腔與籽粒脫水之間的關(guān)系。

4 結(jié) 論

果穗上著生位置不同,籽粒內(nèi)部結(jié)構(gòu)存在較大差異,不同結(jié)構(gòu)指標(biāo)在果穗上的變化規(guī)律不同。

果穗兩端結(jié)構(gòu)變異較大,不考慮果穗兩端極端籽粒,從果穗基部至頂部,胚體積、胚乳體積及硬質(zhì)胚乳體積線性減小,各指標(biāo)變化范圍分別為15.82~33.36mm3、180.15~296.50 mm3、87.13~166.00 mm3;胚乳空腔>皮下空腔>胚空腔,果穗中部籽粒的空腔較小且穩(wěn)定;胚與胚乳比值粒位間基本穩(wěn)定,粉質(zhì)胚乳體積、硬質(zhì)胚乳與粉質(zhì)胚乳比值從基部至頂部逐漸減小,隨著粒位的增加,品種間差異增大。品種間籽粒結(jié)構(gòu)存在較大差異:DH618不同粒位胚與胚乳的比值較大,XY335胚乳空腔體積及硬質(zhì)胚乳與粉質(zhì)胚乳的比值較大,KX3564皮下空腔體積較大。

[1] 黃熊娟,梁和,吳子愷. 高油玉米含油率、籽粒結(jié)構(gòu)與氮鉀施用量的通徑分析[J]. 中國(guó)農(nóng)學(xué)通報(bào),2006,22(8):268-271.

Huang Xiongjuan, Liang He, Wu Zikai. Correlation and path analysis among grain oil rate and grain structure anddifferent levels of nitrogen and potassium of high oil corn. Chinese Agricultural Science Bulletin, 2006, 22(8): 268-271. (in Chinese with English abstract)

[2] 馬秀鳳,郭強(qiáng),藺崇明,等. 不同胚乳類(lèi)型玉米籽粒超微結(jié)構(gòu)及其營(yíng)養(yǎng)品質(zhì)的動(dòng)態(tài)變化[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2016,44(1):53-60.

Ma Xiufeng, Guo Qiang, Lin Chongming, et al. Dynamiac changes of ultra-structure and nutritional quality in maize kernels with different endosperm types[J]. Journal of Northwest A&F University: Nat. Sci. Ed., 2016, 44(1): 53-60. (in Chinese with English abstract)

[3] Jaime H, Calderini D F. Pericarp growth dynamics associate with final grain weight in wheat under contrasting plant densities and increased night temperature[J]. Annals of Botany. 2020, 126(6): 1063-1076.

[4] 孫源澤. 玉米種胚不同發(fā)育時(shí)期生理生化指標(biāo)及甲基化水平的變化[D]. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2016.

Sun Zeyuan. Changes of Maize Germ Physiological and Biochemical Indexes and Methylation Levels During Developmental Stages[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese with English abstract)

[5] Waelti H. Physical Properties and Morphological Characteristics of Maize and Their Influence on Threshing Injury of Kernels[D]. Iowa, America: PhD Dissertation of Iowa State University, 1967.

[6] 杜雙奎. 玉米品種籽粒品質(zhì)與擠壓膨化特性研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2006.

Du Shuangkui. Kernel Quality Properties and Extrusion Characteristics of Maize Varieties[D]. Yangling: Northwest A&F University, 2006. (in Chinese with English abstract)

[7] 郭禎祥,趙仁勇. 玉米硬度測(cè)定方法研究[J]. 糧食與飼料工業(yè),2002(12):44-46.

Guo Zhenxiang, Zhao Renyong. Corn hardness determination[J]. Cereal&Feed Industry, 2002(12): 44-46. (in Chinese with English abstract)

[8] 韓仲志,趙友剛,楊錦忠. 基于籽粒RGB圖像獨(dú)立分量的玉米胚部特征檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(3):222-226.

Han Zhongzhi, Zhao Yougang, Yang Jinzhong. Detection of embryo based on independent components for kernel RGB images in maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 222-226. (in Chinese with English abstract)

[9] 寧紀(jì)鋒,何東健,楊蜀秦. 玉米籽粒的尖端和胚部的計(jì)算機(jī)視覺(jué)識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(3):117-119.

Ning Jifeng, He Dongjian, Yang Shuqin. Identification of tip cap and germ surface of corn kernel using com putervision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(3):117-119. (in Chinese with English abstract)

[10] Schoeman L, Williams P, Plessis A D, et al. X-ray micro-computed tomography (CT) for non-destructive characterisation of food microstructure[J]. Trends in Food Science & Technology, 2016, 47: 10-24.

[11] Hou J F, Zhang Y, Jin X L, et al. Structural parameters for X-ray micro-computed tomography (CT) and their relationship with the breakage rate of maize varieties[J]. Plant Methods, 2019, 15(1): 915-920.

[12] Yin X B, Hou J F, Ming B. Kernel position effects of grain morphological characteristics by X-ray micro-computed tomography (CT)[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(2):159-166.

[13] 徐云姬,顧道健,秦昊,等. 玉米灌漿期果穗不同部位籽粒碳水化合物積累與淀粉合成相關(guān)酶活性變化[J]. 作物學(xué)報(bào),2015,41(2):297-307.

Xu Yunji, Gu Daojian, Qing Hao, et al. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling[J]. Acta Agoronmica Sinica, 2015, 41(2): 297-307. (in Chinese with English abstract)

[14] 張麗,張吉旺,周偉,等. 玉米不同粒位子粒容重與子粒物理性狀的相關(guān)分析[J]. 玉米科學(xué),2015,23(2):64-68.

Zhang Li, Zhang Jiwang, Zhou Wei, et al. Correlation analysis on test weight of maize grains at different grain positions with grain physical characters[J]. Journal of Maize Sciences, 2015, 23(2): 64-68. (in Chinese with English abstract)

[15] 王曉燕,董樹(shù)亭,高榮岐,等. 不同類(lèi)型玉米胚乳細(xì)胞增殖動(dòng)態(tài)及其與粒重的關(guān)系[J]. 華北農(nóng)學(xué)報(bào),2006(2):23-26.

Wang Xiaoyan, Dong Shuting, Gao Rongqi, et al. Endosperm cell proliferating and its relation to grain weight indifferent types of maize[J]. Acta Agriculturae Boreali-Sinica, 2006(2): 23-26. (in Chinese with English abstract)

[16] 楊建昌. 水稻弱勢(shì)粒灌漿機(jī)理與調(diào)控途徑[J]. 作物學(xué)報(bào),2010,36(12):2011-2019.

Yang Jianchang. Mechanism and regulation in the filling of inferior spikelets of rice[J]. Acta Agoronmica Sinica, 2010, 36(12): 2011-2019. (in Chinese with English abstract)

[17] Nagato K. Differences in grain weight of spikelets located at different positions within a rice panicle[J]. Japanese Journal of Crop Science, 1941, 13: 154-169. (In Japanese)

[18] 楊同文,李潮海. 玉米籽粒發(fā)育的粒位效應(yīng)機(jī)理研究[J].種子,2012,31(3):54-58.

Yang Tongwen, Li Chaohai. Study on mechanisms of kernel position effects in maize kernel developing[J]. Seed, 2012, 31(3): 54-58. (in Chinese with English abstract)

[19] Gao S, Ming B, Li L L, et al. Maize grain moisture content correction: From nonstandard to standard system[J]. Biosystems Engineering, 2021, 204(5): 212-222.

[20] Zhao F C, Jing L Q, Wang D C, et al. Grain and starchgranule morphology in superior and inferior kernels of maizein response to nitrogen[J]. Scientific Reports, 2018, 8(1): 6343.

[21] 徐云姬. 3種禾谷類(lèi)作物強(qiáng)、弱勢(shì)粒灌漿差異機(jī)理及其調(diào)控技術(shù)[D]. 揚(yáng)州:揚(yáng)州大學(xué),2016.

Xu Yunji. Mechanism in the Filling Difference Between Superior and Inferior Caryopses of Three Cereal Crops and Its Regulation Techniques[D]. Yangzhou: Agricultural College Yangzhou University, 2016. (in Chinese with English abstract)

[22] 趙波,吳雅薇,李小龍,等. 玉米強(qiáng)弱勢(shì)粒間機(jī)械脫粒破碎率的差異[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2020,28(6):843-851.

Zhao Bo, Wu Yawei, Li Xiaolong, et al. Differences in mechanical threshing broken rate between superior and inferior maize grains[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 843-851. (in Chinese with English abstract)

[23] 于濤,李耕,劉鵬,等. 玉米早期發(fā)育階段粒位效應(yīng)的蛋白質(zhì)組學(xué)分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2016,49(1):54-68.

Yu Tao, Li Geng, Liu Peng, et al. Proteomics analysis of rain position effects during early developmental stages of maize[J]. Scientia Agricultura Sinica, 2016, 49(1): 54-68. (in Chinese with English abstract)

[24] Sreenivasulu N, Wobus U. Seed-development programs: A systems biology-based comparison between dicots and monocots[J]. Annual Review of Plant Biology. 2013, 64: 189-217.

[25] Eckhoff S R, Watson S A. Corn and Sorghum Starches: Production. In: BeMiller J, Whistler R. Starch: Chemistry and Technology (3rded.)[M]. Burlington, MA, USA: Academic Press, 2009: 373-440.

[26] Guelpa A, Plessis A D, Kidd M, et al. Non-destructive estimation of maize (L.) kernel hardness by means of an X-ray micro-computed tomography (CT) density calibration[J]. Food and Bioprocess Technology, 2015, 8: 1419-1429.

[27] Wang B, Wang J. Mechanical properties of maize kernel horny endosperm, floury endosperm and germ[J]. International Journal of Food Properties, 2019, 22(1): 863-877.

[28] 張萬(wàn)旭,王克如,謝瑞芝,等.玉米機(jī)械收獲子粒破碎率與含水率關(guān)系的品種間差異[J]. 玉米科學(xué),2018,26(4):74-78.

Zhang Wanxu, Wang Keru, Xie Ruizhi, et al. Relationship between maize grain broken rate and moisture content as well as the differences among cultivars[J]. Journal of Maize Sciences, 2018, 26(4): 74-78. (in Chinese with English abstract)

[29] 李璐璐,謝瑞芝,范盼盼,等. 鄭單958與先玉335子粒脫水特征研究[J]. 玉米科學(xué),2016,24(2):57-61,71.

Li Lulu, Xie Ruizhi, Fan Panpan, et al. Study on dehydration in kernel between zhengdan958 and xianyu335[J]. Journal of Maize Sciences, 2016, 24(2): 57-61, 71. (in Chinese with English abstract)

[30] 朱亞利,王晨光,楊梅,等. 不同熟期玉米不同粒位籽粒灌漿和脫水特性對(duì)密度的響應(yīng)[J]. 作物學(xué)報(bào),2021,47(3):507-519.

Zhu Yali, Wang Chenguang, Yang Mei, Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density[J]. ActaAgoronmicaSinica, 2021, 47(3): 507-519. (in Chinese with English abstract)

Effects of various grain positions of ear on the internal structural parameters of maize grain using X-rayCT

Yin Xuebo1,Ming Bo1, HouJunfeng2, Wang Keru1, Li Shaokun1, XieRuizhi1※

(1/,,100081,; 2322100,)

Grain structure is an important characteristic of maize varieties, particularly in representing the grain filling and texture in some cases. But the effect of kernel positions on grain structures in maize still remained unclear. Clarifying the kernel position effects of grain structure is beneficial to comprehensively grasp the grain characteristics of maize ears, and provides a reference for the production, processing and variety improvement of maize. In this study, three grain types of maize cultivars were taken to clarify the kernel position effects, including Denghai 618 (DH618), KX3564, and Xianyu 335 (XY335), from Qitai, Xinjiang of Western China in 2018. Samples were selected at regular kernel intervals, where each ear was in an average of 12 grains. A total of 104 samples were scanned from the three varieties. The grain three-dimensional structures were reconstructed by imaging processing, such as segmentation, thresholding, and reconstruction, where more than 900 2D images were obtained in the different sections (--, and-) of grains using an X-ray micro-computed tomography (X-rayCT). In addition to visualization, the grain structural parameters were also extracted, including the embryo, endosperm, subcutaneous cavity, embryo cavity, hard endosperm, soft endosperm, and endosperm cavity. The internal structure of grain was more accurately determined, especially on the cavity structure of grain, compared with the traditional manual and machine vision. The results showed thatthe effect of kernel position grain structure indicators on ear was different. Specifically, the volume of embryo, endosperm, and hard endosperm showed a linear downward trend from the base to the top of the ear, without considering the extreme grains at both sides of the ear. The range of each indicator on ear was 15.82-33.36, 180.15-296.50 and 87.13-166.00 mm3, respectively. The cavity volume of subcutaneous, embryo, and endosperm remained stable in the middle of the ear, significantly lower than those in the upper and lower parts, in the sequence endosperm cavity> subcutaneous cavity> the embryo cavity. The ratio of embryo to endosperm was basically stable among grains. The volume of soft endosperm and the ratio of hard endosperm to soft endosperm decreased gradually from the base to the top, but the slope was different. There was the same tendency of parameters at different kernel positions in three varieties, but there were differences in absolute value:the ratio of grain embryo to endosperm at different positions of the ear in DH618 was significantly higher than those in KX3564 and XY335. The ratio of hard to soft endosperm in XY335 was significantly larger than those in DH618 and KX3564. In terms of grain cavities, KX3564 had a higher proportion of subcutaneous cavities and XY335 had a higher proportion of endosperm cavities. The volume proportion of embryo, endosperm and subcutaneous cavity in maize grains of the three varieties was 9.27%, 89.87% and 0.86%, respectively. X-rayCT technology provides a new method and idea for the study of maize grain characters. Kernel position has also played a significant role in the grain structure among different positions of the maize ear. The findings suggest that the sampling position should be considered when conducting kernel research, due mainly to the differences of grain structure in positions of the maize ear.

crops; maize; kernel position effects; grain structure; X-rayCT

2020-09-03

2021-02-26

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0300405);國(guó)家玉米產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-02-25);國(guó)家自然科學(xué)基金(31971849);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程項(xiàng)目

銀學(xué)波,研究方向?yàn)橛衩鬃蚜C(jī)械收獲。Email:3023937790@qq.com

謝瑞芝,博士,研究員,研究方向?yàn)橛衩咨砼c生態(tài)學(xué)。Email:xieruizhi@caas.cn

10.11975/j.issn.1002-6819.2021.07.002

S513.210.70

A

1002-6819(2021)-07-0008-07

銀學(xué)波,明博,侯俊峰,等. 基于X-rayCT技術(shù)的玉米籽粒結(jié)構(gòu)特征的粒位效應(yīng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):8-14. doi:10.11975/j.issn.1002-6819.2021.07.002 http://www.tcsae.org

Yin Xuebo, Ming Bo, Hou Junfeng, et al. Effects of various grain positions of ear on the internal structural parameters of maize grain using X-rayCT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 8-14. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.002 http://www.tcsae.org

猜你喜歡
胚乳空腔粉質(zhì)
水泥土換填法在粉質(zhì)砂土路基施工中的應(yīng)用研究
粉質(zhì)黏土大面積深基坑降水施工方案探討
基于邊光滑有限元法的二維復(fù)合彈性空腔聲振特性分析
胚乳切割與置換對(duì)小麥種子萌發(fā)和幼苗生長(zhǎng)的影響
空腔參數(shù)對(duì)重力壩穩(wěn)定的影響分析
前置污水去油池
前置污水去油池
為什么種子含有豐富的營(yíng)養(yǎng)?
哈拉軍水電站動(dòng)力渠強(qiáng)濕陷性粉質(zhì)黏土段處理設(shè)計(jì)
某機(jī)場(chǎng)粉質(zhì)黏土軟弱地基的工程特性研究
河南科技(2014年14期)2014-02-27 14:11:44
南雄市| 六枝特区| 东台市| 龙南县| 清丰县| 青川县| 德安县| 都匀市| 龙岩市| 虎林市| 剑阁县| 甘谷县| 南丰县| 宁蒗| 林口县| 古丈县| 佛坪县| 积石山| 全椒县| 孝感市| 新安县| 元阳县| 巫溪县| 两当县| 阿城市| 利津县| 青岛市| 寿宁县| 尚义县| 习水县| 获嘉县| 宿州市| 环江| 来凤县| 界首市| 白河县| 绩溪县| 叙永县| 泽库县| 承德市| 黄骅市|