羅彥 蔣凌杰 毛建平
作者簡(jiǎn)介:
羅 彥(1971—),高級(jí)工程師,主要從事橋梁設(shè)計(jì)及檢測(cè)工作;
蔣凌杰(1988—),工程師,碩士研究生,主要從事橋梁檢測(cè)及監(jiān)測(cè)研究工作;
毛建平(1985—),高級(jí)工程師,碩士研究生,主要從事橋梁設(shè)計(jì)、檢測(cè)及監(jiān)測(cè)研究工作。
文章闡述了橫向分布系數(shù)在舊橋承載能力評(píng)定中應(yīng)用的方法,分析了橫向分布的影響因素敏感度,得到單片梁開(kāi)裂和鉸縫失效兩種損傷的橫向分布損傷識(shí)別模型,給出了基于荷載試驗(yàn)結(jié)果計(jì)算橫向分布的公式,并進(jìn)行了兩座橋梁實(shí)測(cè)橫向分布系數(shù)的計(jì)算及損傷識(shí)別分析,以驗(yàn)證梁損傷識(shí)別的有效性。
裝配式橋梁;橋梁試驗(yàn)評(píng)定;橫向分布;損傷識(shí)別
U448.21+8A461644
0 引言
裝配式空心板梁橋在我國(guó)高速公路建設(shè)中應(yīng)用廣泛[1]。在近年的高速公路改擴(kuò)建中,對(duì)該類(lèi)橋梁的承載能力檢測(cè)評(píng)定也越發(fā)受到重視。裝配式橋梁荷載試驗(yàn)承載能力評(píng)定時(shí),通常引入橋梁橫向分布的概念,將空間計(jì)算化為平面計(jì)算,從而將橋梁空間計(jì)算轉(zhuǎn)化為單梁模型計(jì)算。橫向分布系數(shù)的準(zhǔn)確計(jì)算是承載能力評(píng)定的基礎(chǔ),其準(zhǔn)確性直接影響荷載試驗(yàn)效率、荷載試驗(yàn)理論值、荷載試驗(yàn)校驗(yàn)系數(shù)的準(zhǔn)確性,從而影響橋梁承載能力評(píng)定結(jié)果。
1 橫向分布計(jì)算基本原理及方法
橫向分布計(jì)算將影響面函數(shù)分離成影響線(xiàn)函數(shù)進(jìn)行求解[2],從而達(dá)到化復(fù)雜的空間問(wèn)題為簡(jiǎn)單的平面問(wèn)題,如式(1):
S=Pη(x,y)≈η(x)η(y)(1)
式中:η(x)——單梁截面的效應(yīng)值影響線(xiàn),即縱向影響線(xiàn);
η(y)——梁的荷載橫向影響線(xiàn),即橫向分布系數(shù)。
通過(guò)以上處理,即可以通過(guò)單梁模型求得某截面上的效應(yīng)值η(x),再利用荷載分布系數(shù)η(y)計(jì)算梁的實(shí)際效應(yīng)值。引入橫向分布系數(shù)的方法,在同等精度條件下比空間分析的數(shù)值方法效率高。
杠桿法、剛接板梁法、鉸接板梁法、修正偏壓法和GM法是橫向分布系數(shù)常用的計(jì)算方法,各計(jì)算方法的原理及適用范圍不同。工程應(yīng)用中,通常采用杠桿法計(jì)算支點(diǎn)的橫向分布系數(shù),采用其他方法計(jì)算跨中的橫向分布系數(shù)。如裝配式空心板橋采用鉸接板梁法進(jìn)行跨中橫向分布系數(shù)的計(jì)算,該法通過(guò)剛度參數(shù)和板塊的數(shù)量,確定梁板的荷載橫向影響線(xiàn) [3-4],并根據(jù)荷載的橫向分布計(jì)算橫向分布系數(shù)。
2 橫向分布影響因素分析
橋梁橫向分布與橋梁的橫向連接有關(guān),與結(jié)構(gòu)的影響線(xiàn)和荷載布置也有關(guān),而影響線(xiàn)通過(guò)剛度參數(shù)及梁板數(shù)量求得。因此影響因素主要有:主梁截面剛度、梁板的數(shù)量、荷載橫向位置以及橫向連接剛度。
本文以銅鼓巖小橋荷載試驗(yàn)的計(jì)算過(guò)程為計(jì)算模型,分析橫向分布系數(shù)隨影響因素變化的規(guī)律。
銅鼓巖小橋位于柳南改擴(kuò)建工程K202+298處,橋梁全長(zhǎng)17.52 m,其上構(gòu)為1~10 m鋼筋混凝土空心板,橋面按分離式雙幅設(shè)置,單幅橋面寬13.65 m(0.5 m+12.5 m+0.65 m),設(shè)計(jì)荷載為汽-超20,掛車(chē)-120。橋梁斷面圖見(jiàn)圖1。該橋?yàn)閱慰绾?jiǎn)支梁橋,荷載試驗(yàn)以跨中斷面為控制斷面,分別進(jìn)行中載和偏載工況,加載時(shí)采用單排橫向3輛車(chē)布置,加載示意圖見(jiàn)圖2。
2.1 截面剛度對(duì)橫向分布的影響分析
空心板的橋面鋪裝厚度相對(duì)空心板的高度較大,考慮橋面鋪裝明顯提高主梁的整體剛度。中小跨徑的普通鋼筋混凝土空心板在荷載長(zhǎng)期作用下出現(xiàn)較多的橫向貫通裂縫,截面開(kāi)裂也較大削弱截面的剛度。為研究其影響程度,采用橋梁博士3.0軟件進(jìn)行影響線(xiàn)的計(jì)算,以偏載工況橫向布載為例,計(jì)算3種情況下的橫向分布系數(shù)并對(duì)比分析,結(jié)果見(jiàn)表1。
由表1可知,在考慮橋面鋪裝整體剛度增加(約增大1倍)和考慮截面開(kāi)裂整體剛度減?。s減小1倍)情況下橫向分布系數(shù)基本保持不變,偏差率多數(shù)在5%以?xún)?nèi),對(duì)荷載試驗(yàn)撓度及應(yīng)變的計(jì)算值影響不大,但因?yàn)閷?shí)際剛度直接影響實(shí)測(cè)的應(yīng)變和撓度,最終導(dǎo)致實(shí)測(cè)試驗(yàn)撓度校驗(yàn)系數(shù)成倍的變化。因此,在進(jìn)行荷載試驗(yàn)計(jì)算時(shí),需計(jì)入橋面鋪裝參與荷載試驗(yàn)理論值的計(jì)算。
2.2 單板開(kāi)裂對(duì)橫向分布系數(shù)影響分析
以上分析了所有梁開(kāi)裂的情況,而實(shí)際情況中每片梁的狀況不一致,會(huì)出現(xiàn)單片梁開(kāi)裂嚴(yán)重的現(xiàn)象。以銅鼓巖小橋中載為例,如5#梁開(kāi)裂,按照開(kāi)裂剛度重新進(jìn)行橫向分布系數(shù)計(jì)算,計(jì)算結(jié)果見(jiàn)表2及下頁(yè)圖3。
單片梁開(kāi)裂后其承擔(dān)荷載的能力減弱,橫向分布系在該梁處數(shù)值變小,而兩側(cè)邊梁的橫向分布系數(shù)增大,且隨著距離開(kāi)裂梁的距離增加而增大。該橫向分布規(guī)律可作為實(shí)測(cè)橫向分布系數(shù)進(jìn)行開(kāi)裂識(shí)別的依據(jù)。
2.3 鉸縫失效對(duì)橫向分布的影響
近年來(lái)由于道路交通量的迅猛增加,造成梁板間橫向傳遞部分失效情況越發(fā)明顯,導(dǎo)致出現(xiàn)趨于單塊板參與受力現(xiàn)象,影響結(jié)構(gòu)的承載能力,威脅行車(chē)安全性 [5-6]。裝配式空心板梁鉸縫受力復(fù)雜,單從檢測(cè)的表觀缺陷難以直接判斷鉸縫是否存在內(nèi)部損傷,因此,需分析鉸縫內(nèi)部損傷失效后對(duì)橫向分布的影響。按照5#鉸縫(5#梁和6#梁間鉸縫)失效時(shí)重新計(jì)算跨中橫向分布系數(shù),結(jié)果見(jiàn)表3及圖4。
由表3和圖4可知,5#鉸縫開(kāi)裂后,5#梁處橫向分布系數(shù)明顯增大,且加載車(chē)輛多的一側(cè)的橫向分布系數(shù)也隨著增大。其橫向分布規(guī)律可作為荷載試驗(yàn)實(shí)測(cè)橫向分布進(jìn)行鉸縫損傷判斷的依據(jù)。
3 試驗(yàn)實(shí)測(cè)橫向分布系數(shù)計(jì)算及損傷識(shí)別方法
橫向分布系數(shù)可通過(guò)荷載試驗(yàn)實(shí)測(cè)撓度值進(jìn)行計(jì)算分析得到。梁的橫向分布系數(shù)值為各個(gè)主梁實(shí)測(cè)撓度值與各個(gè)主梁實(shí)測(cè)撓度值總和的比值,再乘以車(chē)道數(shù)來(lái)進(jìn)行計(jì)算[7],見(jiàn)式(2)。
mi=N·wi/∑ni=1wi(2)
式中:mi——試驗(yàn)荷載作用下第i片梁的橫向分布系數(shù);
wi——試驗(yàn)荷載作用在第i片梁的實(shí)測(cè)撓度值;
n——梁的數(shù)量;
N——加載橫向車(chē)輛數(shù)。
根據(jù)理論分析,在采用實(shí)測(cè)值進(jìn)行計(jì)算時(shí),實(shí)測(cè)應(yīng)變及實(shí)測(cè)撓度均可以用于橫向分布系數(shù)計(jì)算,即wi可為試驗(yàn)荷載作用在第i片梁的實(shí)測(cè)效應(yīng)值(應(yīng)變值或者撓度值)。
以銅鼓巖小橋和龍鳳二橋荷載試驗(yàn)實(shí)測(cè)數(shù)據(jù)為基礎(chǔ),采用上述方法計(jì)算橫向分布系數(shù),并進(jìn)行損傷識(shí)別。銅鼓巖小橋橫向分布系數(shù)計(jì)算見(jiàn)表4及圖5。
由表4及圖5可知,橫向分布系數(shù)在5#梁處陡然增大,4#梁橫向分布系數(shù)大于6#梁。根據(jù)前文損傷橫向分布影響分析,可以判斷該梁在5#和6#梁之間的鉸縫內(nèi)部存在損傷。
以同樣方法計(jì)算了龍鳳二橋的橫向分布系數(shù),得到橫向分布規(guī)律(見(jiàn)圖6)。由圖6可知,中載工況下按照實(shí)測(cè)應(yīng)變和實(shí)測(cè)撓度計(jì)算的橫向分布基本一致,驗(yàn)證了前文分析的正確性。從橫向分布規(guī)律可看出, 5#梁處橫向分布系數(shù)陡然增大,6#梁的橫向分布系數(shù)減小,根據(jù)前文分析結(jié)果,可以判斷5#和6#梁之間的鉸縫內(nèi)部存在損傷。
結(jié)合兩座橋的現(xiàn)場(chǎng)檢測(cè)結(jié)果,損傷鉸縫處存在有明顯的開(kāi)裂滲水,主梁的校驗(yàn)系數(shù)最大值接近1.0,且部分測(cè)點(diǎn)相對(duì)殘余應(yīng)變>20%,進(jìn)一步判斷鉸縫基本失去傳力性能,單板受力的趨勢(shì)明顯,急需進(jìn)行維修加固。
4 結(jié)語(yǔ)
橫向分布在橋梁檢測(cè)評(píng)定中有著十分重要的作用,準(zhǔn)確的計(jì)算分析是承載能力評(píng)定的基礎(chǔ)。文章分析了橫向分布影響因素及影響程度,明確了橋梁荷載試驗(yàn)時(shí)計(jì)入橋面鋪裝參與剛度計(jì)算的重要性,并得到了單梁開(kāi)裂和鉸縫失效下橫向分布損傷識(shí)別模型。文中給出了基于實(shí)測(cè)應(yīng)變和實(shí)測(cè)撓度進(jìn)行橫向分布系數(shù)分析的方法,以實(shí)際荷載試驗(yàn)項(xiàng)目為例進(jìn)行了橫向分布系數(shù)的計(jì)算,論證了實(shí)測(cè)應(yīng)變和實(shí)測(cè)撓度進(jìn)行橫向分布系數(shù)計(jì)算的適用性,并結(jié)合實(shí)測(cè)橫向分布系數(shù)規(guī)律和橫向分布損傷識(shí)別模型,進(jìn)行了橋梁損傷的識(shí)別,提出維修加固建議。本文為舊橋檢測(cè)評(píng)定提供參考。
[1]范立礎(chǔ).橋梁工程[M].北京:人民交通出版社,2006.
[2]姚玲森.橋梁工程(第二版)[M].北京:人民交通出版社,2008.
[3]雷曉紅.荷載橫向分布系數(shù)在混凝土橋梁加固檢測(cè)中的研究[D].武漢:武漢理工大學(xué),2006.
[4]韋立林,王文寧,王建軍.簡(jiǎn)支梁橋荷載試驗(yàn)橫向分布系數(shù)分析方法[J].廣西大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,32(2):183-185,199.
[5]陳曉強(qiáng),趙佳軍,吳建平.板橋結(jié)構(gòu)由鉸縫引起的病害分析及加固改造[J].現(xiàn)代交通科技,2004(1):46-48.
[6]王硯桐.高等級(jí)公路單板受力現(xiàn)象及原因分析[J].公路交通技術(shù),2004(4):29-32.
[7]李松輝,李 沖,閆 明.在役橋梁實(shí)測(cè)荷載橫向分布系數(shù)研究與應(yīng)用[J].山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,28(5):27-29,34.