国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于SiC器件車載雙向全橋CLLC諧振變換器設計及其控制方法研究

2021-06-08 21:59王濤羅文廣
廣西科技大學學報 2021年2期

王濤 羅文廣

摘? 要:針對傳統(tǒng)的控制策略動態(tài)性能不足,電壓達到穩(wěn)態(tài)值較慢,受到負載切換擾動較大及SiC mosfet反向導通壓降較大等缺點,提出了一種對CLLC諧振變換器的自抗擾控制策略,在無需對CLLC諧振變換器精確建模的情況下,建立擴張狀態(tài)觀測器和設計PD控制器,將副邊設計為有源整流橋,以提升動態(tài)響應性能,降低超調量,減小超調時間,減少諧波含量,在不增加額外器件的情況下減小損耗,進一步提升變換器的功率密度,降低了二極管壓降對于整流電壓的不利影響,對輸出電壓進行參數(shù)優(yōu)化.設計了一個輸入為350 V,輸出為300 V,功率3 kW的雙向全橋CLLC諧振變換器,以羅姆公司sct3060al-e SiC mosfet的數(shù)據(jù)為例,運用該方法通過simulink對變換器進行正向、反向仿真驗證.結果表明,與傳統(tǒng)控制策略對比仿真,其超調量從3.3%降低至1.6%,且超調時間更短,系統(tǒng)諧波含量更少.驗證了對于CLLC諧振變換器采用自抗擾控制相比于傳統(tǒng)控制策略具有超調量小、調節(jié)時間短、輸出電能質量好的優(yōu)點.

關鍵詞:CLLC諧振變換器;自抗擾控制;SiC器件;軟開關

中圖分類號:TM46DOI:10.16375/j.cnki.cn45-1395/t.2021.02.006

0引言

隨著科技的發(fā)展,在電力電子領域,對功率變換器的功率密度、轉換效率、動態(tài)性能等要求不斷提高[1-3].目前將新興的寬禁帶半導體材料應用于功率變換器成為熱點話題.寬禁帶半導體材料優(yōu)越的特性為電力電子技術發(fā)展帶來了新的提升.相較于硅材料,碳化硅材料具有更高的電子飽和速度、更低的功率器件功率損耗,且碳化硅材料的單位面積載流能力強,故器件的功率密度得以提高[4-5].文獻[6]對半橋LLC拓撲選用碳化硅器件進行參數(shù)設計,實現(xiàn)了軟開關,為SiC器件在LLC變換器應用中提供了理論分析.但其設計的開關諧振頻率為 40 kHz,對于SiC mosfet來說設計較為保守.文獻[7]將SiC器件應用于混合動力汽車和電動汽車上,大幅降低油耗,擴大駕駛艙空間.文獻[8]提出一種SiC三相逆變器熱設計方法,分析了散熱器熱阻值幾何結構、特性參數(shù)的關系,并驗證該熱設計方法的合理性與正確性,但沒有考慮到SiC mosfet的壓降問題.

文獻[9-11]介紹了軟開關的原理,將軟開關與傳統(tǒng)的硬開關作對比設計,突出了軟開關能夠降低開關損耗,提升轉換效率的特點.但文中的控制方式為開環(huán)控制,無自動糾偏能力.文獻[12-13]引入高頻軟開關技術,可在寬泛的輸入電壓范圍內可靠工作,電源開關以半橋的形式連接,但該拓撲結構電壓應力較大,不適用于電壓等級較高的場合.文獻[14]中相較于半橋功率變換器,全橋功率變換器開關管應力僅為其一半,因此,能實現(xiàn)較大功率的變換.其中雙向CLLC全橋諧振變換器相較于普通LLC諧振變換器,實現(xiàn)雙向隔直,避免因電壓方波不對稱導致變壓器偏磁飽和的問題,但其采用的傳統(tǒng)PI控制策略,當負載切換擾動較大時,其響應速度比較慢、波動較大.

對于車載雙向DC/DC變換器而言,當汽車行駛工況改變時,變換器負載存在突變的情況,母線電壓出現(xiàn)較大波動.因此,車用雙向DC/DC變換器除了安全、可靠等常規(guī)要求外,還要求具備更高的動態(tài)響應性能.基于上述問題,本文針對CLLC諧振變換器設計了自抗擾控制策略,通過仿真對比傳統(tǒng)控制策略驗證了該控制策略的有效性,并針對CLLC變換器特點和SiC mosfet反向導通壓降較大的特性,將副邊設計為有源整流橋,在不增加額外器件的情況下減小損耗,進一步提升變換器的功率密度.

1基于SiC器件的車載雙向全橋

CLLC諧振變換器設計

1.1?? 拓撲結構

雙向全橋CLLC諧振變換器的拓撲結構如圖1所示,包含充電模式和放電模式.雙向CLLC諧振變換器由兩個全橋電路和諧振網(wǎng)絡組成,其中S1—S4和S5—S8構成兩個全橋電路,[Lr1] 、[Lr2]、[Lm]、[Cr1]與[Cr2]構成諧振網(wǎng)絡,且[Cr1]和[Cr2]起隔直作用,變壓器起電氣隔離作用.充電模式時,S1、S4與 S2、S3加占空比不超過50%的互補的驅動信號,S5—S8充當二極管進行整流;放電模式時,S5、S8與 S6、S7加占空比不超過50%的互補的驅動信號,S1—S4進行整流.

3仿真及分析

根據(jù)前面的分析設計,對系統(tǒng)正向和反向運行進行仿真.開關管采用羅姆公司sct3060al-e SiC mosfet的具體參數(shù)進行仿真,通態(tài)電阻為0.6 Ω,寄生二極管壓降為3.2 V.分別對變換器在正向和反向運行時不同工作情況下進行仿真.正向仿真波形如圖8—圖11所示.圖8中,原邊開關管的漏源極電壓下降為0時,開關管才開始導通,滿足ZVS開通.圖9中,變換器工作在諧振頻率處,由于工作在諧振點,該諧振電流的波形近似為正弦波.由圖10可知副邊整流二極管恰好實現(xiàn)零電流關斷(ZCS).由圖11可知,此時輸出電壓穩(wěn)定在300 V.

反向仿真波形如圖12—圖13所示.同正向分析方法類似,可以看出全橋CLLC諧振變換器參數(shù)設計合理,能夠實現(xiàn)ZVS和ZCS,并且輸出電壓電流穩(wěn)定,設計可行.

CLLC諧振變換器的自抗擾控制(ADRC)框圖及參數(shù)設計如圖14—圖15所示.

根據(jù)設計的模型和參數(shù)運用simulink進行仿真對比驗證.圖16為模擬汽車運行時由半載切換到滿載時電壓動態(tài)響應圖,其中虛線為傳統(tǒng)的PID控制策略動態(tài)響應曲線,實線為自抗擾控制動態(tài)響應曲線.

通過對比仿真可知,相較于PID控制策略,采用自抗擾控制策略的超調量從3.3%降低至1.6%,且超調時間更短,系統(tǒng)諧波含量更少.驗證了對于新能源車CLLC諧振變換器采用自抗擾控制相比于傳統(tǒng)的PID控制策略具有超調量小、調節(jié)時間短、抗擾性能強、輸出電能質量好的優(yōu)點.

4結束語

本文介紹了全橋CLLC諧振變換器的工作原理,利用基波分析法得到變換器的電壓增益表達式.分析實現(xiàn)ZVS的約束條件,通過各個參數(shù)對增益的影響給出了簡便的參數(shù)設計方法,并結合增益表達式畫出增益曲線進行驗證.針對新能源汽車行駛工況較為復雜,要求車用雙向DC/DC變換器具有更高的動態(tài)響應性能,本文針對CLLC諧振變換器設計了自抗擾控制策略,通過仿真對比傳統(tǒng)控制策略驗證了該控制策略的有效性,并基于CLLC變換器特點和SiC mosfet反向導通壓降較大的特性,將副邊設計為有源整流橋,在不增加額外器件的情況下減小損耗,進一步提升變換器的功率密度,降低了SiC mosfet的二極管壓降對于整流電壓的不利影響,實現(xiàn)了對輸出電壓參數(shù)的優(yōu)化.

參考文獻

[1] 陳亞愛,梁新宇,周京華.雙向DC-DC變換器拓撲結構綜述[J].電氣自動化,2017,39(6):1-6.

[2] ZHANG T Z,F(xiàn)U J Y,QIAN Q S.Dead-time for zero-voltage-switching in battery chargers with the phase-shifted full-bridge topology:comprehensive theoretical analysis and experimental verification[J].Journal of Power Electronics,2016,16(2):425-435.

[3] CONG L,LEE H.High-voltage high-frequency non-isolated DC–DC converters with passive-saving two-phase QSW-ZVS technique[J].Analog Integrated Circuits and Signal Processing,2016,88(2):303-317.

[4] 柏松,李士顏,費晨曦,等.新一代SiC功率MOSFET器件研究進展[J].人工晶體學報,2020,49(11):2122-2127.

[5] 馮旺,田曉麗,陸江,等.碳化硅絕緣柵雙極型晶體管器件發(fā)展概述[J].電力電子技術,2020,54(10):1-4.

[6] 張安,孫傳銘,張寶強,等.半橋型LLC全碳化硅諧振充電機應用研究[J].電力電子技術,2020,54(10):64-67.

[7] ROHM.用SiC打造節(jié)能可持續(xù)系統(tǒng)——SiC在光伏和車載領域的應用[J].變頻器世界,2020(7):7-10.

[8] 滕欣元,鄭建勇.基于PLECS的SiC逆變器熱設計研究[J].電測與儀表,2020,57(13):17-22.

[9] 馬明,羅文廣,王志濤,等.基于LTspice的半橋LLC諧振變換器的參數(shù)設計與仿真[J].廣西科技大學學報,2020,31(3):28-36.

[10]?? 于仲安,葛庭宇,何俊杰.ZVS移相全橋變換器的優(yōu)化設計與仿真[J].現(xiàn)代電子技術,2019,42(13):161-164.

[11]?? CHEON-YONG L,JEONG Y,MOON G-W.Phase-shifted full-bridge DC-DC converter with high efficiency and high power density using center-tapped clamp circuit for battery charging in electric vehicles[J].IEEE Transactions on Power Electronics,2019,34(11):10945-10959.DOI:10.1109/TPEL.2019.2899960.

[12]?? SAMSUDIN N A,IQBAL S,TAIB S.Series resonant high-voltage DC-DC converter with reduced component count:high voltage converter with reduced component count[J].IEEE Transactions on Electrical and Electronic Engineering,2016,11(5):648-654.

[13]?? CHEN Z Y,ZHOU Q,XU J P.Asymmetrical pulse-width-modulated full-bridge secondary dual resonance DC-DC converter[J].Journal of Power Electronics,2014,14(6):1224-1232.

[14]?? 李樹娟,張振國,葉玉曜,等.雙向對稱型LLC諧振變換器參數(shù)優(yōu)化分析[J].電子測量技術,2017,40(6):58-61,75.

[15]?? 涂丹鳳,張代潤,范文,等.基于VSG的并網(wǎng)變流器LADRC策略研究[J].電測與儀表,2020,23(11):1-8.

[16]?? 王孝洪,吳豐,HOANG Thi Thu Giang,等.線性自抗擾控制在全橋DC-DC變換器中的應用[J].控制理論與應用,2018,35(11):1610-1617.

[17]?? ZHENG K,ZHANG G D,ZHOU D F,et al.Modeling,dynamic analysis and control design of full-bridge LLC resonant converters with sliding-mode and PI control scheme[J].Journal of Power Electronics,2018,18(3):766-777.

Design and control method of vehicle bidirectional full bridge CLLC resonant converter based on SiC device

WANG Tao1,2, LUO Wenguang*1,2

(1. School of Electric and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China;2. Guangxi Key Laboratory of Automobile Componment and Vehicle Technology(Guangxi University of Science and Technology), Liuzhou 545006, China)

Abstract: The driving conditions of new energy vehicles are more complicated, and the two-way DC/DC converters for vehicles are required to have higher dynamic response performance. Aiming at the shortcomings of traditional control strategies such as insufficient dynamic performance, slower voltage reaching the steady-state value, greater disturbance of load switching, and greater reverse voltage drop of SiC mosfet, an auto disturbance rejection control strategy for CLLC resonant converters is proposed. An extended state observer is established and a PD controller is designed without the need for accurate modeling of CLLC resonant converter. The secondary side is designed as an active rectifier bridge to improve the dynamic response performance, reduce overshoot, overshoot time and harmonic content. The power density of the converter is further improved by reducing the loss without adding additional devices, and the adverse effect of diode voltage drop on the rectifier voltage is reduced. The output? voltage parameters are optimized. A bidirectional full-bridge CLLC resonant converter with an input of 350 V, an output of 300 V, and a power of 3 kW is designed. Taking the data of Rohm's sct3060al-e SiC mosfet as an example, this method is used to forward and reverse the converter through simulink Simulation.? The? results show that compared with the traditional control strategy,? the? overshoot? is?reduced from 3.3% to 1.6%, and the overshoot time is shorter. The system has less harmonic content. Compared with the traditional control strategy, the use of auto-disturbance rejection control for the CLLC resonant converter has the advantages of small overshoot, short adjustment time and good output power quality.

Key words: CLLC resonant converter; auto disturbance rejection control; SiC device; soft switching

(責任編輯:黎 ? 婭)

收稿日期:2020-11-30

基金項目:國家自然科學基金項目(61563006);廣西自然科學基金重點項目(2020GXNSFDA238011)資助.

作者簡介:王濤,碩士研究生.

通信作者:羅文廣,教授,碩士生導師,研究方向:智能控制及應用、汽車電子控制技術,E-mail:lwg168@126.com.

揭西县| 井陉县| 乃东县| 彭水| 通江县| 舞阳县| 大兴区| 昌都县| 平远县| 漳浦县| 黔西县| 西城区| 平原县| 井陉县| 庆安县| 广州市| 鄂托克前旗| 上饶县| 揭阳市| 沅陵县| 娄烦县| 宁明县| 汶上县| 九台市| 宣威市| 环江| 明溪县| 雷州市| 治多县| 徐州市| 南平市| 东明县| 长葛市| 澄城县| 汤原县| 仪陇县| 博乐市| 洪湖市| 元氏县| 临武县| 怀仁县|