趙宏蕾 常婧瑤 劉美月 辛瑩 楊樂 孔保華 劉騫
摘 要:磷酸鹽作為一種常見的功能添加劑被廣泛用于肉類制品的生產(chǎn)中,其能夠有效提升肉的保水性,改善肉制品質(zhì)構(gòu),從而賦予產(chǎn)品良好的嫩度和多汁性。現(xiàn)今,肉制品中磷酸鹽含量過高的問題仍舊突出,過量攝入磷酸鹽能夠?qū)θ祟惤】祹碇T多危害。因此,為滿足消費者期待的更健康、安全的低磷肉制品的需求,需高度重視基于“清潔標(biāo)簽”理念下的降低肉制品中磷酸鹽添加量策略的實施。超聲波、超高壓、脈沖電場、新型滾揉技術(shù)及堿性電解水等新型加工技術(shù)能夠在修飾肌肉蛋白質(zhì)結(jié)構(gòu)的同時改善肉制品品質(zhì),從而達(dá)到在未添加其他清潔標(biāo)簽配料的基礎(chǔ)上減少肉制品中磷酸鹽含量。本文在前人研究基礎(chǔ)上系統(tǒng)綜述清潔標(biāo)簽理念的發(fā)展、清潔標(biāo)簽肉制品的研發(fā)現(xiàn)狀以及降低肉制品中磷酸鹽含量的新型加工技術(shù),以期為開發(fā)“清潔標(biāo)簽”理念的低磷肉制品提供理論和技術(shù)參考。
關(guān)鍵詞:清潔標(biāo)簽;新型加工技術(shù);低磷肉制品;品質(zhì);健康
Recent Development in the Application of Novel Processing Technologies Based on the Clean Label Concept
in Low Phosphate Meat Products
ZHAO Honglei, CHANG Jingyao, LIU Meiyue, XIN Ying, YANG Le, KONG Baohua, LIU Qian*
(College of Food Science, Northeast Agricultural University, Harbin 150030, China)
Abstract: As a common functional food additive, phosphates are widely used in the production of meat products, which can effectively increase the water-holding capacity, improve the textural quality, and consequently improve the tenderness and juiciness of meat products. Now, excessive phosphate content in meat products is still a prominent problem, and excessive intake of phosphate is closely associated with increased disease risks. Thus, in order to meet consumers desire for healthier and safer low phosphate meat products, it is necessary to attach great importance to implementing the strategy to reduce the amount of phosphates added to meat products based on the clean label concept. New processing technologies such as ultrasound, high-pressure processing, pulsed electric field, new tumbling technology and alkaline electrolyzed water can modify the structure of muscle proteins and improve the textural quality of meat products, reducing the amount of phosphates added in meat products without adding other clean label ingredients. Based on previous studies, this paper systematically reviews the development of the clean label concept, the current status of the development of clean label meat products, and the new processing technologies available to reduce the content of phosphates in meat products, with a view to providing theoretical and technical reference for developing clean label meat products with reduced phosphates.
Keywords: clean label; novel processing technologies; low phosphate meat products; quality; health
DOI:10.7506/rlyj1001-8123-20201218-293
中圖分類號:TS251.5
文獻(xiàn)標(biāo)志碼:A 文章編號:1001-8123(2021)01-0083-09
引文格式:
趙宏蕾, 常婧瑤, 劉美月, 等. 基于清潔標(biāo)簽理念的新型加工技術(shù)在低磷肉制品中應(yīng)用的研究進(jìn)展[J]. 肉類研究, 2021, 35(1): 83-91. DOI:10.7506/rlyj1001-8123-20201218-293. ? ?http://www.rlyj.net.cn
ZHAO Honglei, CHANG Jingyao, LIU Meiyue, et al. Recent development in the application of novel processing technologies based on the clean label concept in low phosphate meat products[J]. Meat Research, 2021, 35(1): 83-91. DOI:10.7506/rlyj1001-8123-20201218-293. ? ?http://www.rlyj.net.cn
磷酸鹽在提高肉制品品質(zhì)、改善肉制品口感以及預(yù)防肉制品腐敗變質(zhì)等方面具有十分重要的作用,其在肉制品加工行業(yè)得到了廣泛使用[1-2]。但近年來,由于肉制品中磷酸鹽含量普遍過高導(dǎo)致的食品安全問題逐漸引起了消費者的關(guān)注[3]。按照GB 2760—2014《食品安全國家標(biāo)準(zhǔn) 食品添加劑使用標(biāo)準(zhǔn)》[4]規(guī)定,肉制品中磷酸鹽的最大添加量為5 g/kg,健康成年人每日攝入磷的最大限量為40 mg/kg[5],而人體每日攝入肉制品的量是否超過磷的最大攝入量由人的體質(zhì)量決定,若一成年人體質(zhì)量為60 kg,則其每日攝入肉制品的量不宜超過480 g,否則將會達(dá)到人體中磷的最大攝入量。若超量攝入會降低機(jī)體對鈣的吸收,進(jìn)而導(dǎo)致部分骨骼類疾病[6],并使慢性腎臟病患者的死亡風(fēng)險增加20%~40%[7-8]。此外,除外部添加的磷酸鹽外,生鮮原料肉本身也含有部分磷,故肉制品生產(chǎn)企業(yè)按照GB 2760—2014添加磷酸鹽時,也可能會超過GB 2726—2016《食品安全國家標(biāo)準(zhǔn) 熟肉制品》[9]中磷酸鹽≤5 g/kg的檢出限量。因此,消費者基于對自身健康的考慮,逐漸對磷酸鹽添加量較多的肉制品,如調(diào)理類肉制品、醬鹵類肉制品等產(chǎn)品產(chǎn)生不信任感,進(jìn)而期待低磷的健康肉制品,其與清潔標(biāo)簽追求“天然、健康、安全”的產(chǎn)品理念一致[10]。清潔標(biāo)簽是在產(chǎn)品標(biāo)簽中盡可能少出現(xiàn)E編碼(一種區(qū)分各種食品添加劑的編碼系統(tǒng)),保持標(biāo)簽配料欄中食品的天然屬性。在國內(nèi)外,盡量少用E編碼添加劑的清潔標(biāo)簽產(chǎn)品是一種健康的標(biāo)志,消費者在購買食品時,選擇配料表中食品添加劑含量少的產(chǎn)品已經(jīng)成為一種消費趨勢[11]。近年來,研究人員開發(fā)出大量以天然物質(zhì)為基質(zhì)的清潔標(biāo)簽配料,以達(dá)到部分替代磷酸鹽的效果[12],但是,過多添加會對最終產(chǎn)品的感官特性造成一定負(fù)面影響。如C?mara等[13]將斯勒奇亞籽多糖應(yīng)用于博洛尼亞香腸中,結(jié)果表明,添加2%斯勒奇亞籽多糖能增加產(chǎn)品的彈性和內(nèi)聚力,并將產(chǎn)品的磷酸鹽含量降低至0.25%,但多糖添加量過多會影響產(chǎn)品的口感及整體可接受度?;诖?,“綠色、健康、安全”的新型加工技術(shù)在既能夠降低磷酸鹽含量,且不添加其他替代物的同時,保持肉制品良好的口感及特有風(fēng)味,并具有加工時間短及產(chǎn)品健康、安全等優(yōu)點,已經(jīng)逐漸成為清潔標(biāo)簽理念低磷肉制品加工的研究熱點[14]。
基于上述消費理念,本文系統(tǒng)綜述應(yīng)用超聲波、超高壓、脈沖電場、新型滾揉技術(shù)及堿性電解水等新型加工技術(shù)降低磷酸鹽使用量方面的研究進(jìn)展[15],其在一定程度上替代部分磷酸鹽,抑制部分不飽和脂肪酸、蛋白質(zhì)的氧化,進(jìn)而延長產(chǎn)品的貨架期,生產(chǎn)出的低磷健康肉制品也更為消費者青睞,并極大程度保障了食品的質(zhì)量安全[16]。本文全面綜述清潔標(biāo)簽理念及其在肉制品中的研究現(xiàn)狀以及現(xiàn)有的降低磷酸鹽含量的新型加工技術(shù),為研發(fā)出滿足消費者清潔標(biāo)簽理念需求的低磷肉制品提供理論指導(dǎo)。
1 清潔標(biāo)簽
1.1 清潔標(biāo)簽理念
清潔標(biāo)簽理念源于20世紀(jì)80年代的英國,為了方便消費者進(jìn)一步區(qū)分各種食品添加劑,歐盟采用了E編碼系統(tǒng),其中包含上百種獲準(zhǔn)使用的食品添加劑[17],如磷酸鹽的E編碼為E450~E459。磷酸鹽因具有較好的持水、持油能力而在肉品行業(yè)得到廣泛使用,但磷酸鹽攝入量過多會對人體健康產(chǎn)生危害,短時間內(nèi)可能會造成腹痛、腹瀉等不良反應(yīng),長期大量攝入還會破壞人體的鈣磷平衡,因此,消費者逐漸對自身的健康問題感到焦慮,故逐漸追求“天然、健康、安全”的食品理念[18-19],這與清潔標(biāo)簽追求的產(chǎn)品理念一致[20]。早期的清潔標(biāo)簽在各個國家均未有明確、統(tǒng)一的定義[3],但通過對消費者市場進(jìn)行調(diào)查分析,食品行業(yè)逐步總結(jié)出一個關(guān)于清潔標(biāo)簽的相對成熟的概念:產(chǎn)品中的添加成分綠色、天然、有機(jī);產(chǎn)品中添加劑的含量較少;產(chǎn)品中的成分普遍、精簡、易懂;制得的產(chǎn)品更加健康、安全[21]??傮w而言,消費者對于清潔標(biāo)簽食品的接受程度很高,認(rèn)為其是更健康、更安全的選擇,這一食品理念不僅逐漸受到消費者的廣泛追捧,在低磷肉制品的加工過程中更是備受關(guān)注[22]。
1.2 清潔標(biāo)簽肉制品研發(fā)現(xiàn)狀
近年來,開發(fā)清潔標(biāo)簽產(chǎn)品以滿足消費者的需求變得十分迫切,研究人員開始轉(zhuǎn)變以往的思路,使產(chǎn)品相對“天然、健康、安全”,以倡導(dǎo)回歸自然、追求健康食品的理念[22]。目前研究人員開發(fā)了大量以天然物質(zhì)為基質(zhì)的清潔標(biāo)簽配料來替代磷酸鹽,進(jìn)而生產(chǎn)更健康、安全的肉制品,如向肉制品中添加多糖、植物蛋白、親水膠體、菌菇提取物等天然物質(zhì),提高了產(chǎn)品的出品率并改善了產(chǎn)品品質(zhì),在減少磷酸鹽的添加量方面取得了一定進(jìn)展,但部分天然物質(zhì)的添加會對產(chǎn)品的感官特性產(chǎn)生一定負(fù)面影響,最終影響產(chǎn)品的整體接受度[23-24]。基于此,研究人員將新型加工技術(shù)引入降低磷酸鹽含量的研究中,且無需添加以天然物質(zhì)為基質(zhì)的清潔標(biāo)簽配料,旨在降低磷酸鹽的含量并為消費者提供健康、安全的肉制品[25-26]。未來的發(fā)展也可將新型加工技術(shù)與清潔標(biāo)簽配料協(xié)同使用,以進(jìn)一步生產(chǎn)低磷肉制品。從長遠(yuǎn)角度來看,具有清潔標(biāo)簽理念的低磷肉制品可能會持續(xù)流行,并在未來的研究中可能有著長期的發(fā)展和延伸[27]。
2 新型加工技術(shù)在低磷肉制品中的應(yīng)用
隨著消費者對清潔標(biāo)簽肉制品的重視程度逐漸增加,新型加工技術(shù)在低磷肉制品中的應(yīng)用取得了一系列重要進(jìn)展,如超聲波、超高壓、脈沖電場、新型滾揉技術(shù)及堿性電解水等。這些新型加工技術(shù)與傳統(tǒng)工藝相比,其優(yōu)勢在于降低產(chǎn)品中的磷酸鹽含量、減少產(chǎn)品加工時間以及在生產(chǎn)更健康的產(chǎn)品的同時保持食品的感官特性和營養(yǎng)品質(zhì)[27-28]。此外,新型加工技術(shù)還可以增強(qiáng)肌原纖維蛋白的溶解性,修飾蛋白結(jié)構(gòu),并且有助于其他添加劑的擴(kuò)散[29-31]。因此,為滿足消費者對清潔標(biāo)簽肉制品的需求,本文簡要討論了以下5 種新型加工技術(shù)降低肉制品中磷酸鹽含量的作用機(jī)制及產(chǎn)品效果,為研發(fā)出滿足消費者清潔標(biāo)簽理念的低磷肉制品提供理論指導(dǎo)。
2.1 超聲波
超聲波作為一種簡單、綠色、節(jié)能的新型加工技術(shù),在肉制品加工及應(yīng)用中具有巨大的潛力[32]。它是一種由電能轉(zhuǎn)換為聲能的非熱加工技術(shù)[33],其產(chǎn)生的能量一部分會轉(zhuǎn)化為熱量而損失,其余能量會引起空化效應(yīng),進(jìn)而產(chǎn)生大量氣泡,氣泡破裂時產(chǎn)生的剪切力可以快速破壞肉的組織結(jié)構(gòu),進(jìn)而破壞肌肉微觀結(jié)構(gòu)中的Z線和M線[34],從而改變肌動球蛋白的結(jié)構(gòu),破壞肌動蛋白-肌球蛋白之間相互作用的“橋梁”,使肌動球蛋白解離成肌動蛋白和肌球蛋白[35],蛋白之間產(chǎn)生明顯間隙,從而改善產(chǎn)品保水性和凝膠特性[36]。表1總結(jié)了超聲波處理對肉類肌原纖維蛋白結(jié)構(gòu)與功能特性的影響。超聲波作為一項能夠改善肌肉微觀結(jié)構(gòu)的新型加工技術(shù),在降低磷酸鹽添加量的同時不損害肉制品質(zhì)地和風(fēng)味,其對清潔標(biāo)簽理念的低磷肉制品研發(fā)具有積極意義。
自1950年以來,超聲波在肉類行業(yè)的解凍、嫩化和抑菌方面應(yīng)用逐漸增加[42-43]。如今,超聲處理也常用來改善肉制品質(zhì)地、風(fēng)味和保水性,一些研究討論了超聲處理對肉制品微觀結(jié)構(gòu)的影響以及在降低肉制品中磷酸鹽添加量方面的積極作用。Li Ke等[44]將雞肉糜于頻率20 kHz、功率450 W的超聲浴中超聲處理6 min,結(jié)果表明,超聲處理顯著改善了肌原纖維蛋白的乳化性能,有助于形成更均一的肌原纖維網(wǎng)狀凝膠結(jié)構(gòu),并增加活性巰基數(shù)量,其在降低肉制品磷酸鹽添加量方面顯示出巨大的潛力。Pinton等[45]將磷酸鹽含量為0.25%的肉糜于頻率25 kHz、功率230 W的超聲浴處理0、18、27 min,對產(chǎn)品的乳化穩(wěn)定性、pH值、質(zhì)構(gòu)特性及感官評價等進(jìn)行研究,結(jié)果表明,經(jīng)超聲處理的產(chǎn)品與對照組相比,硫代巴比妥酸反應(yīng)物值未增加,且其感官評價相對較好,并對產(chǎn)品中降低氯化鈉的含量也有積極影響。此外,在本課題組前期的研究中發(fā)現(xiàn),25 min超聲(頻率25 kHz、功率240 W)處理可以顯著減少低磷酸鹽法蘭克福香腸的蒸煮損失,提高其乳化穩(wěn)定性、質(zhì)構(gòu)特性和感官評分,并通過產(chǎn)品動態(tài)水分布分析和微觀結(jié)構(gòu)觀察驗證了上述結(jié)果;與此同時,如圖1所示,與對照組相比,未經(jīng)過超聲處理的低磷酸鹽添加量處理組的三維網(wǎng)狀結(jié)構(gòu)不緊密、不均勻,且在整個網(wǎng)狀結(jié)構(gòu)中還存在一些較大的孔洞,而超聲波處理25 min時可發(fā)生空化效應(yīng),導(dǎo)致產(chǎn)品的蛋白網(wǎng)狀結(jié)構(gòu)間的孔徑明顯減小,同時形成更緊湊、均勻、致密的微觀結(jié)構(gòu),以保持更多的水分[46]。雖然超聲波技術(shù)是一種新型綠色加工技術(shù),但在實際應(yīng)用中超聲波會產(chǎn)生高能量及高活性自由基,其是否會產(chǎn)生有害物質(zhì)尚未見報道[47]。此外,超聲波儀器的成本問題也導(dǎo)致其在實際生產(chǎn)中尚未得到充分應(yīng)用。因此,如何將現(xiàn)有的研究成果綜合運用到肉品行業(yè)仍是一個值得思考的問題。
2.2 超高壓
超高壓處理是一種新型非熱加工技術(shù),可對食品進(jìn)行巴氏消毒,同時也可以保留食品某些特有的風(fēng)味及口感[48],也有大量研究表明該技術(shù)可有效延長肉類產(chǎn)品的貨架期[49]。此外,超高壓處理會引起肉類蛋白之間的非共價相互作用,進(jìn)而誘導(dǎo)蛋白質(zhì)變性、聚集及膠凝現(xiàn)象,最終改善肉制品的持水能力、保持其柔嫩多汁的口感[50],并對生產(chǎn)更健康、更安全的肉類產(chǎn)品有著積極作用。隨著消費者對清潔標(biāo)簽肉制品的需求不斷增長,肉類工業(yè)逐步減少產(chǎn)品中磷酸鹽的含量,以減少消費者對健康問題的擔(dān)憂?;诖?,研究人員將超高壓處理應(yīng)用于低磷肉制品中以提高產(chǎn)品的質(zhì)構(gòu)特性及整體可接受度,同時保證了肉制品的健康性及安全性[51]。表2總結(jié)了超高壓處理對肉類肌原纖維蛋白結(jié)構(gòu)與功能特性的影響,為低磷肉制品的研發(fā)提供了理論指導(dǎo)。
Villamonte等[58]將豬肉糜進(jìn)行350 MPa、6 min的超高壓處理,對磷酸鹽添加量為0.25%~0.50%的豬肉糜質(zhì)地、顏色、蒸煮損失及質(zhì)構(gòu)特性等進(jìn)行評估,結(jié)果表明,磷酸鹽添加量0.25%的肉糜蒸煮損失最低,與1.5%食鹽或3%食鹽的協(xié)同效果最佳,處理組產(chǎn)品的亮度值和黃度值均較對照組高,且不會改變熟肉糜的內(nèi)聚性和硬度,產(chǎn)品的整體可接受度較高。Zheng Haibo等[59]將雞肉腸進(jìn)行200 MPa、30 min的超高壓處理協(xié)同75 ℃熱處理,對產(chǎn)品的外觀、持水能力、質(zhì)構(gòu)特性等指標(biāo)進(jìn)行分析,結(jié)果表明,該產(chǎn)品具有較高的持水能力和良好的質(zhì)地,可用于生產(chǎn)低磷酸鹽乳化肉糜類制品,但需要進(jìn)一步的研究來了解超高壓與高溫相結(jié)合對肌原纖維的影響,且需補(bǔ)充肌肉蛋白質(zhì)解聚和聚集的詳細(xì)機(jī)理,以探究其對低磷肉制品品質(zhì)的影響。此外,OFlynn等[60]對豬肉腸進(jìn)行150~300 MPa、5 min的超高壓處理,對產(chǎn)品的成分、乳化穩(wěn)定性、顏色、質(zhì)構(gòu)特性及感官評價進(jìn)行分析,結(jié)果表明,與對照組豬肉腸相比,磷酸鹽添加量0.25%時產(chǎn)品硬度、內(nèi)聚性和咀嚼性均得到顯著改善,但產(chǎn)品的紅度值較高,可接受度也受到輕微影響。超高壓處理是一種開發(fā)新型健康肉制品的有效策略[61],其可降低肉制品的蒸煮損失,進(jìn)而降低磷酸鹽含量,但過高的壓力會造成蛋白質(zhì)構(gòu)象的改變及ATP酶活性的喪失,進(jìn)而使蛋白質(zhì)在加熱過程中形成的分子間交聯(lián)能力變?nèi)?,最終導(dǎo)致肉制品持水能力顯著下降[62],產(chǎn)品的色澤、風(fēng)味也可能會受到輕微影響。因此,在控制適度的壓力范圍內(nèi),超高壓處理能達(dá)到較好的產(chǎn)品效果??傊?jīng)超高壓處理的肉制品具有相對安全健康、營養(yǎng)成分損失較少等特點,在清潔標(biāo)簽理念的低磷肉制品研發(fā)中具有很好的應(yīng)用前景。
2.3 脈沖電場
脈沖電場是一種應(yīng)用于食品行業(yè)中的非熱加工技術(shù),其實用性得到肉品行業(yè)極大程度地認(rèn)同,它是一種適用于液體和半固體間的創(chuàng)新型食品加工技術(shù)[63],其原理是在2 個電極之間施加電流,從而引起電穿孔現(xiàn)象,進(jìn)而實現(xiàn)對食品組織結(jié)構(gòu)的修飾,對肉制品的貯藏、嫩化和保水等方面有積極影響。高電場強(qiáng)度的脈沖作用能夠影響脂肪酸與細(xì)胞膜磷脂之間的相互作用,擴(kuò)大肌肉細(xì)胞膜現(xiàn)有的孔洞或產(chǎn)生新孔洞,進(jìn)而增加細(xì)胞膜的滲透性[64-65],可以顯著改善肉制品對磷酸鹽、亞硝酸鹽等添加劑的吸收,提高其在肉制品中的吸收率,進(jìn)而減少添加劑的添加量和產(chǎn)品所需的加工時間。此外,脈沖電場誘導(dǎo)的靜電相互作用會破壞蛋白質(zhì)的修飾結(jié)構(gòu),表3總結(jié)了脈沖電場對肉類肌原纖維蛋白結(jié)構(gòu)與功能特性的影響,進(jìn)而改善肉的結(jié)構(gòu)和質(zhì)地,使肉制品肉嫩多汁且富有彈性[66],有助于清潔標(biāo)簽理念的低磷肉制品的開發(fā)。
Dong Ming等[72]將雞胸肉中提取的肌原纖維蛋白置于不同電場強(qiáng)度(0~28 kV/cm)和脈沖頻率(0~1 000 Hz)的電場中,研究其對肌原纖維蛋白理化性質(zhì)和構(gòu)象的影響,結(jié)果表明,隨著脈沖電場強(qiáng)度的增加,α-螺旋含量增加且β-轉(zhuǎn)角和無規(guī)卷曲含量減少,肌原纖維蛋白的溶解度、表面疏水性和巰基含量均得到明顯改善,可作為一種應(yīng)用于肉制品的有前景的綠色降磷技術(shù)。但是,當(dāng)電場強(qiáng)度超過18 kV/cm時,官能團(tuán)的相互作用會引起蛋白質(zhì)的聚集,降低肌原纖維蛋白的保水性,且產(chǎn)品可接受度會受到輕微影響。盡管脈沖電場是一項創(chuàng)新型非熱加工技術(shù),但在高強(qiáng)度電場處理時產(chǎn)生的熱量會導(dǎo)致肌原纖維蛋白溫度升高,甚至導(dǎo)致肌原纖維蛋白變性[73],進(jìn)而降低肉制品持水能力,故低強(qiáng)度脈沖電場必須保證肌原纖維蛋白處于不變性的狀態(tài),再進(jìn)一步降低肉制品中磷酸鹽含量。此外,根據(jù)加工參數(shù)和處理條件,必須考慮脈沖電場的副作用(如肌原纖維蛋白溫度升高或發(fā)生電化學(xué)反應(yīng)等),以保持食品質(zhì)量??傊M管脈沖電場降低肉制品中磷酸鹽含量的相關(guān)研究較少,但也是未來開發(fā)清潔標(biāo)簽理念低磷肉制品的一個很好的研究方向。
2.4 新型滾揉技術(shù)
滾揉技術(shù)能夠改善肉制品的嫩度、色澤,并能促進(jìn)鹽溶性蛋白的溶出[73],但傳統(tǒng)滾揉技術(shù)受真空度、溫度等條件的影響,若處理條件控制不當(dāng),會造成耗時過長、顏色劣變及過度失水等風(fēng)險[74]。近年來,有研究表明,將滾揉工藝與其他工藝結(jié)合的新型滾揉技術(shù),如超聲輔助變壓滾揉、超聲輔助呼吸滾揉等能夠有效促進(jìn)食鹽、磷酸鹽等添加劑的滲透和擴(kuò)散,進(jìn)而減少添加劑的使用量,同時顯著提高產(chǎn)品的嫩度和口感[75-76]。在產(chǎn)品的滾揉過程中,通過調(diào)整滾筒內(nèi)的壓力,使原料肉交替處于壓縮和舒張狀態(tài),進(jìn)而使原料肉呈現(xiàn)呼吸模式,從而有利于鹽溶性蛋白的溶出和添加劑的滲透,以提高滾揉腌制效果[77],且超聲波技術(shù)的空化作用、超高壓技術(shù)的機(jī)械作用能輔助滾揉腌制的呼吸模式,破壞肉中的肌原纖維蛋白,使得細(xì)胞的內(nèi)容物釋放,蛋白質(zhì)間空隙變大,從而起到提升肉制品持水能力的作用[78]。透射電鏡觀察結(jié)果也表明新型滾揉技術(shù)對肉類微觀結(jié)構(gòu)有顯著影響[79]。新型滾揉技術(shù)可以在降低磷酸鹽添加量的同時提高產(chǎn)品的嫩度和風(fēng)味,對清潔標(biāo)簽理念低磷肉制品的研發(fā)具有積極意義。
Li Yan等[80]將雞胸肉放置于超聲輔助呼吸滾揉設(shè)備中,結(jié)果表明,超聲輔助呼吸滾揉技術(shù)提高了雞胸肉的腌制吸收率,產(chǎn)品的嫩度和風(fēng)味也得到一定程度的改善,且α-螺旋數(shù)量顯著降低,β-折疊數(shù)量顯著提高,不易流動水含量增加,產(chǎn)品的持水能力提高,因此,超聲輔助呼吸滾揉技術(shù)可作為一種潛在的降低肉制品中磷酸鹽含量的新型加工技術(shù)。李鵬等[79]將磷酸鹽添加量0.3%的雞胸肉放置于超聲輔助變壓滾揉設(shè)備中處理100 min,結(jié)果表明,經(jīng)超聲輔助變壓滾揉處理的產(chǎn)品水分子與蛋白質(zhì)之間結(jié)合更緊密,部分自由水變成不易流動水,產(chǎn)品的持水能力明顯提高。但是,新型滾揉技術(shù)通常對于滾揉設(shè)備的要求較高,需要使用專業(yè)的耐高壓材料及質(zhì)量較好的填充氣體[81],且在加工過程中需要注意加工時間,以避免加工過程中肌原纖維蛋白發(fā)生變性,這也進(jìn)一步增加了生產(chǎn)成本,因此目前也處于研究階段,需要研發(fā)人員進(jìn)一步探索其在降低磷酸鹽添加量方面的應(yīng)用??傊?,經(jīng)新型滾揉技術(shù)處理的肉制品品質(zhì)得到很大程度的改善,其在清潔標(biāo)簽理念低磷肉制品的研發(fā)中具有很好的應(yīng)用前景。
2.5 堿性電解水
堿性電解水通常是由電解鹽溶液而得,其中氫離子和鈉離子等帶正電的離子向陰極移動,進(jìn)而生成氫氣和氫氧化鈉[82],使堿性電解水?dāng)y帶較多負(fù)電荷,并具有較強(qiáng)的還原能力[83-84],可明顯提高肉制品的pH值,導(dǎo)致肌原纖維蛋白pH值遠(yuǎn)離其等電點,蛋白質(zhì)之間的靜電排斥力增加,結(jié)構(gòu)變松弛,水進(jìn)入蛋白質(zhì)之間的空隙,從而具有較強(qiáng)的滲透力和溶解性以及很強(qiáng)的抗氧化性[85]。通常在食品中關(guān)于堿性電解水的研究主要集中在其與酸性和弱酸性電解水進(jìn)行組合,以增強(qiáng)產(chǎn)品的抗菌效果[86],關(guān)于其降低肉制品中氯化鈉含量的研究也已得到證實[87],但其降低肉制品中磷酸鹽含量方面的研究相對較少。表4總結(jié)了堿性電解水對肉類肌原纖維蛋白結(jié)構(gòu)與功能特性的影響,其在未來降低磷酸鹽使用量方面可能會具有很大的發(fā)展?jié)摿Α?/p>
Lin Huimin等[88]用pH值為11.6的堿性電解水部分替代磷酸鹽,研究其對鯰魚片持水能力、色澤、質(zhì)地和脂質(zhì)氧化的影響,結(jié)果表明,堿性電解水提高了鯰魚片的持水能力,可將磷酸鹽添加量降低50%,產(chǎn)品的抗氧化性比使用磷酸鹽的處理組效果更好,但堿性電解水對產(chǎn)品的亮度值、硬度及彈性沒有顯著影響。堿性電解水具有較強(qiáng)的持水能力及抗氧化特性,可以在降低磷酸鹽添加量的同時保持肉制品肉嫩多汁的口感,有助于清潔標(biāo)簽理念低磷肉制品的開發(fā)。但是,當(dāng)肉制品pH值過高時會嚴(yán)重影響產(chǎn)品口感,需要進(jìn)一步注意堿性電解水的用量,且堿性電解水在實際生產(chǎn)中應(yīng)用也需關(guān)注以下問題,包括不同貯藏條件下堿性電解水的穩(wěn)定性、耐腐蝕性和氯酸鹽殘留量等問題,其對更多肉制品的影響還需要進(jìn)一步研究。此外,堿性電解水可進(jìn)一步與其他新型技術(shù)結(jié)合使用,進(jìn)而降低磷酸鹽在產(chǎn)品中的添加量,改善產(chǎn)品品質(zhì),是未來開發(fā)清潔標(biāo)簽理念低磷肉制品的一個很好的研究方向。
3 結(jié) 語
磷酸鹽作為應(yīng)用于乳化肉糜制品中重要的保水劑和改良劑,在提高產(chǎn)品的質(zhì)地和風(fēng)味等方面有著重要的作用,但隨著人們生活質(zhì)量不斷提高,消費者對于磷酸鹽攝入量過多會帶來健康危害這一認(rèn)知也逐漸清晰,進(jìn)而越來越注重食品的天然、健康及安全問題,進(jìn)一步期待清潔標(biāo)簽理念的低磷肉制品。因此,在食品加工過程中,研究人員開發(fā)了眾多新型加工技術(shù)降低磷酸鹽在肉制品中的含量,同時也保留了肉制品原有的風(fēng)味、口感和營養(yǎng)成分。除提供更健康的產(chǎn)品特性外,新型加工技術(shù)還具備提高肉制品產(chǎn)量、延長貨架期等優(yōu)勢。在低磷肉制品的研究方面,超聲波、超高壓、脈沖電場、新型滾揉及堿性電解水技術(shù)均取得了初步進(jìn)展,但還需更多研究其在低磷肉制品中研發(fā)的巨大潛力,如新型加工技術(shù)是否會對低磷肉制品在人體內(nèi)的消化吸收產(chǎn)生影響等。此外,基于目前的研究思路,新型加工技術(shù)之間結(jié)合使用、清潔標(biāo)簽配料與新型加工技術(shù)結(jié)合使用在降低磷酸鹽使用量方面也具有巨大的研究潛力,需要進(jìn)一步研究其對低磷肉制品產(chǎn)生的積極效果。
參考文獻(xiàn):
[1] POWELL M J, SEBRANEK J G, PRUSA K J, et al. Evaluation of citrus fiber as a natural replacer of sodium phosphate in alternatively-cured all-pork Bologna sausage[J]. Meat Science, 2019, 157: 1-7. DOI:10.22175/rmc2017.042.
[2] 張蕓, 卞春麗, 張亞娟, 等. 磷酸鹽對乳化腸持水性的影響[J]. 現(xiàn)代食品, 2017(19): 104-106. DOI:10.16736/j.cnki.cn41-1434/ts.2017.19.030.
[3] Bánáti d. Consumer response to food scandals and scares[J]. Trends in Food Science and Technology, 2011, 22(2/3): 56-60. DOI:10.1016/j.tifs.2010.12.007.
[4] 中華人民共和國衛(wèi)生部. 食品安全國家標(biāo)準(zhǔn) 食品添加劑使用標(biāo)準(zhǔn): GB 2760—2014[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2014.
[5] YOUNES M, AQUILINA G, CASTLE L, et al. Re-evaluation of phosphoric acid-phosphates-di-, tri- and polyphosphates (E338-341, E343, E450-452) as food additives and the safety of proposed extension of use[J]. EFSA Journal, 2019, 17(6): 5674. DOI:10.2903/j.efsa.2019.5674.
[6] 王鐵良, 李瑾, 王會鋒, 等. 食品添加劑-復(fù)合磷酸鹽的分析研究[J]. 食品工業(yè)科技, 2007(12): 201-203. DOI:10.13386/j.issn1002-0306.2007.12.048.
[7] SINHA A, PRASAD N. Dietary management of hyperphosphatemia in chronic kidney disease[J]. Clinical Queries Nephrology, 2014, 3(1): 38-45. DOI:10.1016/j.cqn.2014.03.003.
[8] TENTORI F, BLAYNEY M J, ALBERT J M, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the dialysis outcomes and practice patterns study (DOPPS)[J].?American Journal of Kidney Diseases, 2008, 52(3): 519-530. DOI:10.1053/j.ajkd.2008.03.020.
[9] 中華人民共和國國家衛(wèi)生和計劃生育委員會, 國家食品藥品監(jiān)督管理總局. 食品安全國家標(biāo)準(zhǔn) 熟肉制品: GB 2726—2016[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2016.
[10] Asioli d, Aschemann-Witzel J, Caputo v. Making sense of the “clean label” trends: a review of consumer food choice behavior and discussion of industry implications[J]. Food Research International, 2017, 99: 58-71. DOI:10.1016/j.foodres.2017.07.022.
[11] Busken, David F. Cleaning it up: what is a clean label ingredient?[J]. Cereals Foods Worlds, 2013, 60(2): 112-113. DOI:10.1094/CFW-60-2-0112.
[12] Thangavelu K P, Kerry J P, Tiwari B K, et al. Novel processing technologies and ingredient strategies for the reduction of phosphate additives in processed meat[J]. Trends in Food Science and Technology, 2019, 94: 43-53. DOI:10.1016/j.tifs.2019.10.001.
[13] C?mara a k f l, Vidal v a s, Santos m, et al. Reducing phosphate in emulsified meat products by adding chia (Salvia hispanica L.) mucilage in powder or gel format: a clean label technological strategy[J]. Meat Science, 2020, 163: 108085. DOI:10.1016/j.meatsci.2020.108085.
[14] Chemat F, Rombaut N, Meullemiestre A, et al. Review of green food processing techniques. Preservation, transformation, and extraction[J]. Innovative Food Science and Emerging Technologies, 2017, 41: 357-377. DOI:10.1016/j.ifset.2017.04.016.
[15] Pe?a M M l, Welti-Chanes J, Martin-Belloso o, et al. Novel technologies to improve food safety and quality[J]. Current Opinion in Food Science, 2019, 30: 1-7. DOI:10.1016/j.cofs.2018.10.009.
[16] Troy D J, Ojha K S, Kerry J P, et al. Sustainable and consumer-friendly emerging technologies for application within the meat industry: an overview[J]. Meat Science, 2016, 120: 2-9. DOI:10.1016/j.meatsci.2016.04.002.
[17] Maruyama s, Streletskaya n a, Lim j. Clean label: why this ingredient but not that one?[J]. Food Quality and Preference, 2020, 87: 104062. DOI:10.1016/j.foodqual.2020.104062.
[18] Rose n, Reynolds t, Kolodinsky j, et al. P90 consumer use of food labels increases as “Clean Label” trend continues[J]. Journal of Nutrition Education and Behavior, 2020, 52(7): 58-59. DOI:10.1016/j.jneb.2020.04.136.
[19] Meneses Y, Cannon K J, Flores R A, et al. Keys to understanding and addressing consumer perceptions and concerns about processed foods[J]. Cereal Foods World, 2014, 59(3): 141-146. DOI:10.1094/CFW-59-3-0141.
[20] Román S, Sánchez-Siles L M, Siegrist M, et al. The importance of food naturalness for consumers: results of a systematic review[J]. Trends in Food Science and Technology, 2017, 67: 44-57. DOI:10.1016/j.tifs.2017.06.010.
[21] Varela p, Fiszman s m. Exploring consumers knowledge and perceptions of hydrocolloids used as food additives and ingredients[J]. Food Hydrocolloids, 2013, 30(1): 477-484. DOI:10.1016/j.foodhyd.2012.07.001.
[22] 張連慧, 應(yīng)欣, 王勇. 清潔標(biāo)簽在食品行業(yè)中的應(yīng)用[J]. 食品科技, 2018, 43(6): 326-330. DOI:10.13684/j.cnki.spkj.2018.06.060.
[23] Chattopadhyay K, Xavier K M, Layana P, et al. Chitosan hydrogel inclusion in fish mince based emulsion sausages: effect of gel interaction on functional and physicochemical qualities[J]. International Journal of Biological Macromolecules, 2019, 134: 1063-1069. DOI:10.1016/j.ijbiomac.2019.05.148.
[24] Choe J, Lee J, Jo K, et al. Application of winter mushroom powder as an alternative to phosphates in emulsion-type sausages[J]. Meat Science, 2018, 143: 114-118. DOI:10.1016/j.meatsci.2018.04.038.
[25] Rastogi N K. Opportunities and challenges in application of ultrasound in food processing[J]. Critical Reviews in Food Science and Nutrition, 2011, 51(8): 705-722. DOI:10.1080/10408391003770583.
[26] Pinton m s, Santos b a, Lorenzo j m, et al. Green technologies as a strategy to reduce NaCl and phosphate in meat products: an overview[J]. Current Opinion in Food Science, 2021, 40: 1-5. DOI:10.1016/j.cofs.2020.03.011.
[27] Silva J S D, Voss M, Menezes C R d, et al. Is it possible to reduce the cooking time of mortadellas using ultrasound without affecting their oxidative and microbiological quality?[J]. Meat Science, 2020, 159: 107949. DOI:107947.10.1016/j.meatsci.2019.107947.
[28] Cichoski A J, Rampelotto C, Silva M S, et al. Ultrasound-assisted post-packaging pasteurization of sausages[J]. Innovative Food Science and Emerging Technologies, 2015, 30: 132-137. DOI:10.1016/j.ifset.2015.04.011.
[29] CHEN Xing, LIANG Li, XU Xinglian. Advances in converting of meat protein into functional ingredient via engineering modification of high pressure homogenization[J]. Trends in Food Science and Technology, 2020, 106: 12-29. DOI:10.1016/j.tifs.2020.09.032.
[30] Bhat Z F, Morton J D, Mason S L, et al. Current and future prospects for the use of pulsed electric field in the meat industry[J]. Critical Reviews in Food Science and Nutrition, 2019, 59: 1660-1674. DOI:10.1080/10408398.2018.1425825.
[31] Bhat Z F, Morton J D, Mason S L, et al. The application of pulsed electric field as a sodium reducing strategy for meat products[J]. Food Chemistry, 2020, 306: 125622. DOI:10.1016/j.foodchem.2019.125622.
[32] Alarcon-Rojo A D, Carrillo-Lopez L M, Reyes-Villagrana R, et al. Ultrasound and meat quality: a review[J]. Ultrasonics Sonochemistry, 2019, 55: 369-382. DOI:10.1016/j.ultsonch.2018.09.016.
[33] Berlan J, Mason T J. Sonochemistry: from research laboratories to industrial plants[J]. Ultrasonics, 1992, 30: 203-212. DOI:10.1016/0041-624X(92)90078-Z.
[34] Zou Yunhe, Zhang Wangang, Kang Dacheng, et al. Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking[J]. International Journal of Food Science and Technology, 2018, 53: 828-836. DOI:10.1111/ijfs.13659.
[35] BRASIL C C B, BARIN J S, JACOB-LOPES E, et al. Single step non-thermal cleaning/sanitation of knives used in meat industry with ultrasound[J]. Food Research International, 2017, 91: 133-139. DOI:10.1016/j.foodres.2016.11.030.
[36] Amiri A, Sharifian P, Soltanizadeh N, et al. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins[J]. International Journal of Biological Macromolecules, 2018, 111: 139-147. DOI:10.1016/j.ijbiomac.2017.12.167.
[37] CHANG Haijun, WANG Qiang, TANG Chunhong, et al. Effects of ultrasound treatment on connective tissue collagen and meat quality of beef semitendinosus muscle[J]. Journal of Food Quality, 2015, 38: 256-267. DOI:10.1111/jfq.12141.
[38] KANG Dacheng, ZOU Yunhe, CHEN Yuping, et al. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing[J]. Ultrasonics Sonochemistry, 2016, 33: 47-53. DOI:10.1016/j.ultsonch.2016.04.024.
[39] Yeung C K, Huang S C. Effects of ultrasound pretreatment and ageing processing on quality and tenderness of pork loin[J]. Journal of Food and Nutrition Research, 2017, 5: 809-816. DOI:10.12691/jfnr-5-11-3.
[40] McDonnell C K, Allen P, Morin C, et al. The effect of ultrasonic salting on protein and water-protein interactions in meat[J]. Food Chemistry, 2014, 147: 245-251. DOI:10.1016/j.foodchem.2013.09.125.
[41] Saleem R, Ahmad R. Effect of ultrasonication on secondary structure and heat induced gelation of chicken myofibrils[J]. Journal of Food Science and Technology, 2016, 53: 3340-3348. DOI:10.1007/s13197-016-2311-z.
[42] Caraveo O, Alarcon-Rojo A D, Renteria A, et al. Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 ℃[J]. Journal of the Science of Food and Agriculture, 2015, 95: 2487-2493. DOI:10.1002/jsfa.6979.
[43] Pe?a-González E M, Alarcón-Rojo A D, Rentería A, et al. Quality and sensory profile of ultrasound-treated beef[J]. Italian Journal of Food Science, 2017, 29: 463-475. DOI:10.14674/1120-1770/ijfs.v604.
[44] LI Ke, KANG Zhuangli, ZHAO Yingying, et al. Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat[J]. Food Bioprcess Technology, 2014, 7(12): 3466-3477. DOI:10.1007/s11947-014-1358-y.
[45] PINTON M B, CORREA L P, FACCHI M M X, et al. Ultrasound: a new approach to reduce phosphate content of meat emulsions[J]. Meat Science, 2019, 152: 88-95. DOI:10.1016/j.meatsci.2019.02.010.
[46] ZHANG Fengxue, ZHAO Honglei, CAO Chuanai, et al. Application of temperature-controlled ultrasound treatment and its potential to reduce phosphate content in frankfurter-type sausages by 50%[J]. Ultrasonics Sonochemistry, 2021, 71: 105379. DOI:10.1016/j.ultsonch.2020.105379.
[47] 黃亞軍, 周存六. 超聲波技術(shù)在肉及肉制品中的應(yīng)用研究進(jìn)展[J]. 肉類研究, 2020, 34(5): 91-97. DOI:10.7506/rlyj1001-8123-20200319-079.
[48] Rastogi N K, Raghavarao K S M S, Balasubramaniam V M,
et al. Opportunities and challenges in high pressure processing of foods[J]. Critical Reviews in Food Science and Nutrition, 2007, 47: 69-112. DOI:10.1080/10408390600626420.
[49] Diez A M, Urso R, Rantsiou K, et al. Spoilage of blood sausages morcilla de Burgos treated with high hydrostatic pressure[J]. Meat Science, 2008, 123: 246-253. DOI:10.1016/j.ijfoodmicro.2008.02.017.
[50] Vanga s k, Singh A, Raghavan V. Changes in soybean trypsin inhibitor by varying pressure and temperature of processing: a molecular modeling study[J]. Innovative Food Science and Emerging Technologies, 2018, 49: 31-40. DOI:10.1016/j.ifset.2018.07.015.
[51] Mújica H, Valdez A, Tonello C, et al. High pressure processing technologies for the pasteurization and sterilization of foods[J]. Food and Bioprocess Technology, 2011, 4: 969-985. DOI:10.1007/s11947-011-0543-5.
[52] Kruk Z A, Yun H, Rutley D L, et al. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet[J]. Food Control, 2011, 22(1): 6-12. DOI:10.1016/j.foodcont.2010.06.003.
[53] Cap m, Paredes p f, Fernández d, et al. Effect of high hydrostatic pressure on Salmonella spp inactivation and meat-quality of frozen chicken breast[J]. LWT-Food Science and Technology, 2020, 118: 108873. DOI:10.1016/j.lwt.2019.108873.
[54] Souza C M, Boler D D, Clark D L, et al. The effects of high pressure processing on pork quality, palatability, and further processed products[J]. Meat Science, 2011, 87(4): 419-427. DOI:10.1016/j.meatsci.2010.11.023.
[55] Hwang s i, Hong g p. Effects of high pressure in combination with the type of aging on the eating quality and biochemical changes in pork loin[J]. Meat Science, 2020, 162: 108028. DOI:10.1016/j.meatsci.2019.108028.
[56] Sun s q, Rasmussen f d, Cavender g a, et al. Texture, color and sensory evaluation of sous-vide cooked beef steaks processed using high pressure processing as method of microbial control[J]. LWT-Food Science and Technology, 2019, 103: 169-177. DOI:10.1016/j.lwt.2018.12.072.
[57] Bolumar T, Andersen M L, Orlien V, et al. Mechanisms of radical formation in beef and chicken meat during high pressure processing evaluated by electron spin resonance detection and the addition of antioxidants[J]. Food Chemistry, 2014, 150: 422-428. DOI:10.1016/j.foodchem.2013.10.161.
[58] Villamonte G, Simonin H, Duranton F, et al. Functionality of pork meat proteins: impact of sodium chloride and phosphates under high-pressure processing[J]. Innovative Food Science and Emerging Technologies, 2013, 18: 15-23. DOI:10.1016/j.ifset.2012.12.001.
[59] ZHENG Haibo, XIONG Guoyuan, HAN Minyi, et al. High pressure/thermal combinations on texture and water holding capacity of chicken batters[J]. Innovative Food Science and Emerging Technologies, 2015, 30: 8-14. DOI:10.1016/j.ifset.2015.06.002.
[60] OFLYNN C C, CRUZ-ROMERO M C, TROY D J, et al. The application of high-pressure treatment in the reduction of phosphate levels in breakfast sausages[J]. Meat Science, 2014, 96(1): 633-639. DOI:10.1016/j.meatsci.2013.08.028.
[61] Xue siwen, Wang huhu, Yang huijuan, et al. Effects of high-pressure treatments on water characteristics and juiciness of rabbit meat sausages: role of microstructure and chemical interactions[J]. Innovative Food Science and Emerging Technologies, 2017, 41: 150-159.?DOI:10.1016/j.ifset.2017.03.006.
[62] 錢暢, 薛思雯, 徐幸蓮, 等. 超高壓及三聚磷酸鈉質(zhì)量分?jǐn)?shù)對肌球蛋白凝膠保水性及熱膠凝過程的影響[J]. 食品科學(xué), 2019, 40(1): 92-101.
DOI:10.7506/spkx1002-6630-20171222-281.
[63] Ricci A, Parpinello G P, Versari A, et al. Recent advances and applications of pulsed electric fields (PEF) to improve polyphenol extraction and color release during red winemaking[J]. Beverages, 2018, 4(1): 18. DOI:10.3390/beverages4010018.
[64] Chauhan O P, Unni L E. Pulsed electric field (PEF) processing of foods and its combination with electron beam processing[M]//Electron Beam Pasteurization and Complementary Food Processing Technologies. Woodhead Publishing, 2015: 157-184. DOI:10.1533/9781782421085.2.157.
[65] Faridnia F, Ma Q L, Bremer P J, et al. Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles[J]. Innovative Food Science and Emerging Technologies, 2015, 29: 31-40. DOI:10.1016/j.ifset.2014.09.007.
[66] WEI Jingni, ZENG Xinan, TANG Ting, et al. Unfolding and nanotube formation of ovalbumin induced by pulsed electric field[J]. Innovative Food Science and Emerging Technologies, 2018, 45: 249-254. DOI:10.1016/j.ifset.2017.10.011.
[67] Via s, Alan c, Remy v d v, et al. Effect of pulsed electric field treatment on hot-boned muscles of different potential tenderness[J]. Meat Science, 2015, 105: 25-31. DOI:10.1016/j.meatsci.2015.02.009.
[68] Alahakoon A U, Oey I, Silcock P, et al. Understanding the effect of pulsed electric fields on thermostability of connective tissue isolated from beef pectoralis muscle using a model system[J]. Food Research International, 2017, 100: 261-267. DOI:10.1016/j.foodres.2017.08.025.
[69] Arroyo c, Eslami S, Brunton N P, et al. An assessment of the impact of pulsed electric fields processing factors on oxidation, color, texture, and sensory attributes of Turkey breast meat[J]. Poultry Science, 2015, 94(5): 1088-1095. DOI:10.3382/ps/pev097.
[70] Ma q l, Hamid n, Oey i, et al. Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats[J]. Innovative Food Science and Emerging Technologies, 2016, 37: 359-374. DOI:10.1016/j.ifset.2016.04.009.
[71] STEEN L, NEYRINCK E, MEY E D, et al. Impact of raw ham quality and tumbling time on the technological properties of polyphosphate-free cooked ham[J]. Meat Science, 2020, 164: 108093. DOI:10.1016/j.meatsci.2020.108093.
[72] DONG Ming, XU Yujuan, ZHANG Yumei, et al. Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: effects of pulsed electric field (PEF)[J]. Innovative Food Science and Emerging Technologies, 2020, 59: 102277. DOI:10.1016/j.ifset.2019.102277.
[73] Barba F J, Parniakov O, Pereira S A, et al. Current applications and new opportunities for the use of pulsed electric fields in food science and industry[J]. Food Research International, 2015, 77: 773-798. DOI:10.1016/j.foodres.2015.09.015.
[74] YUSOP S M, OSULLIVAN M G, KERRY J F, et al. Influence of processing method and holding time on the physical and sensory qualities of cooked marinated chicken breast fillets[J]. Food Science and Technology, 2012, 46(1): 363-370. DOI:10.1016/j.lwt.2011.08.007.
[75] Siró I, VéN C, Balla C, et al. Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat[J]. Journal of Food Engineering, 2009, 91(2): 353-362. DOI:10.1016/j.jfoodeng.2008.09.015.
[76] MIRADE P S, PORTANGUEN S, SICARD J, et al. Impact of tumbling operating parameters on salt, water and acetic acid transfers during biltong-type meat processing[J]. Journal of Food Engineering, 2020, 265: 109686. DOI:10.1016/j.jfoodeng.2019.109686.
[77] 馮婷, 孫京新, 徐幸蓮, 等. 超聲波輔助變壓滾揉對雞肉腌制品質(zhì)的影響[J]. 現(xiàn)代食品科技, 2015, 31(5): 248-254. DOI:10.13982/j.mfst.1673-9078.2015.5.039.
[78] INGUGLIA E S, BURGESS C M, KERRY J P, et al. Ultrasound-assisted marination: role of frequencies and treatment time on the quality of sodium-reduced poultry meat[J]. Foods, 2019, 8(10): 473. DOI:10.3390/foods8100473.
[79] 李鵬, 王紅提, 孫京新, 等. 超聲輔助變壓滾揉對雞肉蛋白質(zhì)結(jié)構(gòu)及含水量的影響[J]. 農(nóng)業(yè)工程學(xué)報, 2017, 33(16): 308-314. DOI:10.11975/j.issn.1002-6819.2017.16.040.
[80] LI Yan, FENG Ting, SUN Jingxin, et al. Physicochemical and microstructural attributes of marinated chicken breast influenced by breathing ultrasonic tumbling[J]. Ultrasonics Sonochemistry, 2020, 64: 105022. DOI:10.1016/j.ultsonch.2020.105022.
[81] 李鵬, 孫京新, 馮婷, 等. 不同滾揉腌制對鴨肉蛋白及水分分布的
影響[J]. 中國食品學(xué)報, 2019, 19(10): 163-170. DOI:10.16429/j.1009-7848.2019.10.019.
[82] HUANG Yuru, HUNG Y C, HSU S Y, et al. Application of electrolyzed water in the food industry[J]. Food Control, 2008, 19: 329-345. DOI:10.1016/j.foodcont.2007.08.012.
[83] WANG Huhu, DUAN Debao, WU Zhongyuan, et al. Primary concerns regarding the application of electrolyzed water in the meat industry[J]. Food Control, 2019, 95: 50-56. DOI:10.1016/j.foodcont.2018.07.049.
[84] LI Zhihao, ZHOU Bin, LI Xiuting, et al. Effect of alkaline electrolyzed water on physicochemical and structural properties of apricot protein isolate[J]. Food Science and Biotechnology, 2018, 28(1): 15-23. DOI:10.1007/s10068-018-0439-5.
[85] ATHAYDE D R, MARTINS F D R, DA S J S, et al. Application of electrolyzed water for improving pork meat quality[J]. Food Research International, 2017, 100(1): 757-763. DOI:10.1016/j.foodres.2017.08.009.
[86] Jadeja r, Hung y. Efficacy of near neutral and alkaline pH electrolyzed oxidizing waters to control Escherichia coli O157:H7 and Salmonella typhimurium DT 104 from beef hides[J]. Food Control, 2014, 41: 17-20. DOI:10.1016/j.foodcont.2013.12.030.
[87] LEES Y S V, PINTON M B, ROSA C T D A, et al. Ultrasound and basic electrolyzed water: a green approach to reduce the technological defects caused by NaCl reduction in meat emulsions[J]. Ultrasonics Sonochemistry, 2019, 61: 104830. DOI:10.1016/j.ultsonch.2019.104830.
[88] LIN Huimin, HUNG Y C, DENG Shanggui. Effect of partial replacement of polyphosphate with alkaline electrolyzed water (AEW) on the quality of catfish fillets[J]. Food Control, 2020, 112: 107117. DOI:10.1016/j.foodcont.2020.107117.
[89] LI Yufeng, ZENG Qiaohui, LIU Guang, et al. Effects of ultrasound-assisted basic electrolyzed water (BEW) extraction on structural and functional properties of Antarctic krill (Euphausia superba) proteins[J]. Ultrasonics Sonochemistry, 2020, 71: 105364. DOI:10.1016/j.ultsonch.2020.105364.
收稿日期:2020-12-18
基金項目:黑龍江省“百千萬”工程科技重大專項課題(2020ZX07B02)
第一作者簡介:趙宏蕾(1997—)(ORCID: 0000-0001-8566-2342),女,碩士研究生,研究方向為畜產(chǎn)品加工工程。
E-mail: zhaohonglei0829@163.com
通信作者簡介:劉騫(1981—)(ORCID: 0000-0003-1692-3267),男,教授,博士,研究方向為畜產(chǎn)品加工工程。
E-mail: liuqian@neau.edu.cn