方彥玲 許麗萍 連超煒 張浩
【摘要】 目的:探究西格列汀對(duì)糖尿病大鼠胰島β細(xì)胞CXC趨化因子10(chemokine ligand-10,CXCL10)及其受體表達(dá)的影響。方法:將90只SD大鼠按照隨機(jī)數(shù)字表法分為干預(yù)組30只(高脂高糖飼料喂養(yǎng)+西格列汀灌胃)、模型組30只(高脂高糖飼料喂養(yǎng)+生理鹽水灌胃)和空白組30只(普通飼料喂養(yǎng)+生理鹽水灌胃)。檢測(cè)兩組大鼠給藥前后血糖指標(biāo)變化,蘇木精-伊紅(hematoxylin-eosin,HE)染色觀察胰島細(xì)胞組織學(xué)改變,并比較兩組大鼠胰島β細(xì)胞CXCL10及其受體mRNA和蛋白水平。結(jié)果:治療前,干預(yù)組及模型組FPG、FINS、HOMAIR均明顯高于空白組,ISI均明顯低于空白組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);治療8周后,干預(yù)組FPG、FINS、HOMAIR均明顯低于模型組,ISI明顯高于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。干預(yù)組細(xì)胞數(shù)少于空白組,但多于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。干預(yù)組CXCL10及CXCL3的mRNA、蛋白表達(dá)水平均明顯低于模型組,均高于空白組;干預(yù)組TLR4的mRNA、蛋白表達(dá)水平均顯著高于模型組和空白組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論:西格列汀能夠明顯降低糖尿病大鼠的FPG、FINS水平,并下調(diào)糖尿病大鼠胰島β細(xì)胞CXCL10及其受體的表達(dá)量。
【關(guān)鍵詞】 糖尿病 西格列汀 胰島β細(xì)胞 CXC趨化因子10 CXC趨化因子3
[Abstract] Objective: To investigate the effect of sitagliptin on the expression of CXC chemokine 10 (CXCL10) and its receptor in pancreatic beta cells of diabetic rats. Method: A total of 90 SD rats were divided into 30 intervention group (high-fat high-sugar diet feeding with siglitine gavage), 30 model group (high-fat high-sugar diet feeding with normal saline gavage) and 30 blank group (general feed feeding with normal saline gavage).Hematoxylin-eosin (HE) staining was used to observe the histological changes of islet cells, and the mRNA and protein levels of CXCL10 and its receptor were compared between the two groups. Result: Before treatment, FPG, FINS and HOMAIR in the intervention group and model group were significantly higher than those in the blank group, and ISI were significantly lower than that in the blank group, with statistically significant differences (P<0.05); 8 weeks after treatment, FPG, FINS and HOMAIR in the intervention group were significantly lower than those in the model group, and ISI was significantly higher than that in the model group, with statistically significant differences (P<0.05). The number of cells in the intervention group was less than that in the blank group, but more than that in the model group, the differences were statistically significant (P<0.05). The mRNA, protein expression levels of CXCL10 and CXCL3 in the intervention group were significantly lower than those in the model group, and higher than those in the blank group, and the mRNA, protein expression level of TLR4 in the intervention group were significantly higher than those in the model group and the blank group (P<0.05). Conclusion: Siglitine can significantly reduce the FPG and FINS levels of diabetic rats, and down-regulate the expression of CXCL10 and its receptor in the pancreatic islet of diabetic rats.
[Key words] Diabetes Sitagliptin Islet β cells CXC chemokine ligand-10 CXC chemokine ligand-3
糖尿病是常見的一種代謝疾病,是由環(huán)境和遺傳因素共同導(dǎo)致的,該病病程長、病情復(fù)雜、并發(fā)癥多[1]。二肽基肽酶4(dipeptidyl peptidase 4 inhibitor,DPP-4)抑制劑是一種新型降糖藥,其能夠抑制胰島素降解,增加餐后胰島素水平[2-3],其中西格列汀是最常用的一種藥物。有研究顯示,西格列汀通過抑制DPP-4,上調(diào)胰高血糖素樣肽-1基因表達(dá),增加胰島細(xì)胞增殖分化,進(jìn)而降低甘油三酯,改善血糖[4]。CXC趨化因子10(chemokine ligand-10,CXCL10)是趨化因子的一個(gè)亞族組成部分,其與受體結(jié)合,具有趨化炎性反應(yīng)的作用,與多種疾病發(fā)生均相關(guān)[5]。文獻(xiàn)[6-7]研究顯示,CXCL10參與胰島β細(xì)胞凋亡。目前,有關(guān)DPP-4抑制劑西格列汀對(duì)糖尿病的治療效果及糖尿病患者血清中CXCL10的表達(dá)意義研究較多[8],有關(guān)DPP-4抑制劑對(duì)胰島β細(xì)胞CXCL10及其受體表達(dá)的影響研究較少。本研究旨在探討DPP-4抑制劑西格列汀對(duì)CXCL10及其受體表達(dá)的影響。
1 對(duì)象與方法
1.1 實(shí)驗(yàn)對(duì)象 6周齡的無特定病原體(specific pathogen free,SPF)雄性斯?jié)娎鄹瘛ざ嗬祝⊿prague Dawley,SD)大鼠90只,體質(zhì)量180~220 g,購于XX醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心,在恒溫(22±2)℃恒濕(55±15)%無菌屏障中進(jìn)行飼養(yǎng),12 h明暗循環(huán),所有的大鼠均在正常飼養(yǎng)條件下分籠飼養(yǎng),可自由獲取食物和水。大鼠經(jīng)適應(yīng)性喂養(yǎng)1周,采用隨機(jī)數(shù)字表法分為干預(yù)組、模型組和空白組,各30只。本研究經(jīng)醫(yī)院倫理委員審核并批準(zhǔn)。
1.2 實(shí)驗(yàn)試劑 高脂高糖飼料,購自北京博泰宏達(dá)生物技術(shù)有限公司;普通飼料,購自遼寧長生生物技術(shù)股份有限公司;聚合酶鏈反應(yīng)(polymerase chain reaction,PCR)分析儀,山東高密彩虹分析儀器有限公司;PCR試劑盒,上海將來實(shí)業(yè)股份有限公司;磷酸西格列汀片(生產(chǎn)廠家:杭州默沙東制藥有限公司,批準(zhǔn)文號(hào):國藥準(zhǔn)字J20140095,規(guī)格:50 mg);胰島素試劑盒,上??祈樕锟萍加邢薰?血糖儀及配套試紙條,德國羅氏公司。
1.3 建立動(dòng)物模型 干預(yù)組和模型組采用高脂高糖飼料,空白組采用普通飼料,均喂養(yǎng)8周。干預(yù)組和模型組給予腹腔注射(0.25%,30 mg/kg)鏈脲佐菌素(USP級(jí),STZ,生產(chǎn)廠家:Sigma公司,規(guī)格:1 g︰5 g),72 h后測(cè)尾靜脈血糖,血糖>16.7 mmol/L即造模成功。干預(yù)組給予西格列汀100 mg/kg治療,模型組和空白組給予同體積生理鹽水,1次/d,灌胃[9],待建模成功后,進(jìn)行后續(xù)實(shí)驗(yàn)。
1.4 血糖指標(biāo)檢測(cè) 治療前和治療8周后,禁食12 h,抽取大鼠尾靜脈血3 mL,放置30 min,以3 000 r/min離心15 min,放置至分層,取上清液,置于冰箱(-20 ℃),保存待測(cè)。采用血糖分析儀檢測(cè)空腹血糖(fasting plasma glucose,F(xiàn)PG),采用酶聯(lián)免疫吸附測(cè)定法(enzyme-linked immuno sorbent assay,ELISA)檢測(cè)空腹胰島素(fasting serum insulin,F(xiàn)INS),計(jì)算胰島素抵抗指數(shù)(homostatic model assessment of insulin resistance,HOMAIR)、胰島素敏感性指數(shù)(insulin sensitivity index,ISI);操作按照試劑盒說明書完成;HOMAIR=FPG×FINS/22.5;ISI=ln[(FPG×FINS)-1]。
1.5 組織病理學(xué)蘇木精-伊紅(hematoxylin-eosin,HE)染色 SD大鼠麻醉成功后,取出胰腺組織,甲醛固定,石蠟包埋,切片,二甲苯脫蠟,乙醇脫水,蘇木素染色5 min,沖洗,伊紅染色1 min,乙醇脫水,透明,中性樹脂封片,用顯微鏡觀察。
1.6 逆轉(zhuǎn)錄-聚合酶鏈反應(yīng)(reverse transcription-polymerase chain reaction,RT-PCR)法檢測(cè)CXCL10及其受體mRNA水平 總RNA提取和mRNA逆轉(zhuǎn)錄為cRNA均按照試劑盒說明書進(jìn)行。CXCL10 mRNA引物序列:上游:5-CCAAGTGCTGCCGTCATTTTC-3,下游:5-GGCTCGCAGGGATGATTTCAA-3。PCR反應(yīng)條件:90 ℃ 5 min、80 ℃ 20 s、70 ℃ 30 s,45個(gè)循環(huán),70 ℃ 30 s收集信號(hào);解離曲線分析:溫度75~90 ℃。由DNA擴(kuò)增儀計(jì)算mRNA表達(dá)水平。
1.7 蛋白質(zhì)印跡法(Western Blot,WB)檢測(cè)CXCL10及其受體蛋白水平 將胰腺組織裂解,加熱,冷卻,離心,去除沉淀,分離,進(jìn)行電泳,溫育,洗滌,發(fā)光檢測(cè),分析CXCL10及其受體蛋白表達(dá)水平。
1.8 統(tǒng)計(jì)學(xué)處理 采用SPSS 25.0軟件進(jìn)行統(tǒng)計(jì)學(xué)數(shù)據(jù)處理。符正態(tài)分布的計(jì)量資料采用(x±s)表示,兩組間比較采用t檢驗(yàn),組內(nèi)比較采用配對(duì)t檢驗(yàn),多組間比較采用方差分析,采用Bonferroni法進(jìn)行組間兩兩比較,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 三組一般資料比較 干預(yù)組,平均體質(zhì)量(215.00±12.32)g;模型組,平均體質(zhì)量(213.00±10.68)g;空白組,平均體質(zhì)量(214.00±11.74)g。三組平均體質(zhì)量比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05),具有可比性。
2.2 三組給藥前后大鼠血糖指標(biāo)比較 治療前,干預(yù)組及模型組FPG、FINS、HOMAIR均明顯高于空白組,ISI均明顯低于空白組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);治療8周后,干預(yù)組FPG、FINS、HOMAIR均明顯低于模型組,ISI均明顯高于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表1。
2.3 HE染色光鏡下觀察胰腺組織 HE染色結(jié)果顯示,空白組胰腺組織形狀規(guī)則,分布較均勻,界限清晰,胰島β細(xì)胞形態(tài)正常,排列整齊,細(xì)胞數(shù)目(89.57±8.36)個(gè);模型組胰腺組織形狀不規(guī)則,分布較散,結(jié)構(gòu)界限模糊,胰島β細(xì)胞胞核皺縮,體積縮小,細(xì)胞數(shù)目(34.57±20.12)個(gè);干預(yù)組胰腺組織形狀明顯改善,體積有所增加,細(xì)胞數(shù)量(56.25±19.34)個(gè)。見圖1。三組細(xì)胞數(shù)目比較,差異有統(tǒng)計(jì)學(xué)意義(F=62.144,P<0.05);此外,干預(yù)組細(xì)胞數(shù)少于空白組,但多于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。
2.4 三組CXCL10及其受體mRNA表達(dá)比較 干預(yù)組與模型組CXCL10及其受體CXCL3的mRNA表達(dá)量均明顯高于空白組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);干預(yù)TLR4 mRNA表達(dá)量均明顯高于模型組和空白組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表2。
2.5 三組受體蛋白表達(dá)水平比較 CXCL10、CXCL3、TLR4的蛋白表達(dá)水平在干預(yù)組分別為(1.02±0.16)、(1.06±0.18)、(1.10±0.17),在模型組分別為(2.41±0.25)、(1.97±0.24)、(0.58±0.14),在空白組分別為(0.49±0.08)、(0.65±0.11)、(0.50±0.12)。三組CXCL10、CXCL3、TLR4水平比較差異均有統(tǒng)計(jì)學(xué)意義(F=8.215、6.376、4.522,P<0.05);干預(yù)組CXCL10和CXCL3的蛋白表達(dá)水平均顯著低于模型組,均高于空白組,TLR4蛋白的表達(dá)水平顯著高于模型組和空白組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。見圖2。
3 討論
糖尿病臨床表現(xiàn)主要為多食、多尿、多飲、消瘦等,若不能得到有效的控制,可出現(xiàn)各種并發(fā)癥,遍及患者全身重要器官,嚴(yán)重影響患者的生活質(zhì)量[10]。糖尿病患者機(jī)體內(nèi)的高血糖、胰島素抵抗、高血脂等病理狀態(tài)引起的炎癥反應(yīng)可導(dǎo)致糖尿病性心臟病的發(fā)生,有效改善胰島素抵抗及控制血糖水平,降低炎癥反應(yīng),是預(yù)防糖尿病性心臟疾病發(fā)病的重要途徑[11]。
胰島β細(xì)胞與糖尿病的發(fā)生與發(fā)展密切相關(guān),其功能減退,是引起糖尿病發(fā)病的主要原因,且隨著病程延長,胰島β細(xì)胞功能顯著降低[12]。DPP-4抑制劑能夠抑制β細(xì)胞凋亡,促進(jìn)其重生,增加體內(nèi)總數(shù)量,進(jìn)而控制血糖[13]。相比較傳統(tǒng)降糖藥,DPP-4抑制劑的臨床治療效果更好,且安全性高,耐受性好。西格列汀是較為常用的一種DPP-4抑制劑,能提高腸促胰島素水平,降低胰高血糖素水平,具有葡萄糖依賴性。文獻(xiàn)[14]研究顯示,采用西格列汀治療糖尿病,能顯著降低患者FPG、糖化血紅蛋白(glycosylated hemoglobin A1c,HbA1c)水平。本研究中,對(duì)糖尿病大鼠采用西格列汀干預(yù),結(jié)果顯示,干預(yù)組大鼠FPG、FINS、HOMAIR均明顯低于模型組,ISI顯著高于模型組(P<0.05),說明西格列汀能夠控制糖尿病大鼠的血糖水平。
Martinov等[15]研究表明,胰島耐受性與胰腺環(huán)境有關(guān),當(dāng)胰腺無炎癥反應(yīng)的情況下,CXCL10會(huì)缺失。炎癥反應(yīng)是造成胰島β細(xì)胞功能異常、凋亡的重要原因,長期暴露于炎癥因子,可引起β細(xì)胞基因異常表達(dá),使其功能喪失,最終凋亡[16]。趨化因子具有趨化性,其在免疫細(xì)胞募集和遷移中發(fā)揮重要。CXCL10是一種趨化因子,可介導(dǎo)炎癥反應(yīng),抑制血管生成,在許多疾病發(fā)病中具有重要作用[17]。國外有研究用CXCL10對(duì)胰島β細(xì)胞進(jìn)行干預(yù),結(jié)果顯示,干預(yù)后的胰島素mRNA表達(dá)水平明顯低于對(duì)照組,細(xì)胞凋亡明顯增加[18]。胰島β細(xì)胞可產(chǎn)生CXCL10,而CXCL10又能影響胰島細(xì)胞的胰島素分泌功能,抑制胰島β細(xì)胞的增殖,并誘導(dǎo)其凋亡,最終促進(jìn)糖尿病的發(fā)生。有研究顯示,糖尿病患者發(fā)病早期時(shí)血清CXCL10水平呈現(xiàn)高表達(dá),在抑制其內(nèi)源性表達(dá)后,糖尿病發(fā)病率明顯降低,說明CXCL10在糖尿病發(fā)病中有著重要作用[19]。在糖尿病大鼠模型中,胰島β細(xì)胞分泌CXCL10是吸引其受體CXCR3浸潤胰島的動(dòng)力。T輔助細(xì)胞高度表達(dá)CXCR3,并被CXCL10激活,產(chǎn)生免疫反應(yīng)。CXCL10與CXCR3結(jié)合,趨化炎癥因子,至炎癥部位,在淋巴細(xì)胞、自然殺傷細(xì)胞、T輔助細(xì)胞中均有表達(dá)。由胰島β細(xì)胞產(chǎn)生的CXCL10能夠通過自分泌與其受體結(jié)合,進(jìn)而抑制胰島β細(xì)胞再生,當(dāng)CXCR3缺失時(shí),糖尿病發(fā)病率顯著降低。文獻(xiàn)[20]研究顯示,在糖尿病患者中,胰腺中表達(dá)CXCR3的細(xì)胞數(shù)量及CXCL10水平均顯著上調(diào),說明CXCL10及其受體與糖尿病發(fā)病密切相關(guān)。目前,有關(guān)DPP-4抑制劑對(duì)胰島β細(xì)胞CXCL10及其受體表達(dá)影響的相關(guān)研究較少,本研究選用DPP-4抑制劑西格列汀作為干預(yù)藥物,研究其對(duì)CXCL10及其受體表達(dá)的影響,結(jié)果顯示,干預(yù)組胰腺組織形狀不規(guī)則,界限模糊,細(xì)胞數(shù)量較空白組少,較模型組多。經(jīng)西格列汀灌胃治療后,大鼠胰島β細(xì)胞CXCL10及其受體mRNA及蛋白表達(dá)量明顯降低。說明DPP-4抑制劑能夠逆轉(zhuǎn)胰島β細(xì)胞減少,下調(diào)CXCL10及其受體的表達(dá)量。國外一項(xiàng)隨機(jī)實(shí)驗(yàn)研究顯示,西格列汀能夠顯著降低CXCL10表達(dá)[21],與本研究結(jié)果相符合。
綜上所述,DPP-4抑制劑能夠明顯降低糖尿病大鼠的FPG、FINS水平,并下調(diào)糖尿病大鼠胰島β細(xì)胞CXCL10及其受體的表達(dá)量,可為糖尿病的臨床治療提供新的靶點(diǎn)。
參考文獻(xiàn)
[1] Guasch-Ferré M,Hruby A,Toledo E,et al.Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis[J].Diabetes Care,2016,39(5):833-846.
[2] Kim N H,Choi J,Kim N H,et al.Dipeptidyl peptidase-4 inhibitor use and risk of diabetic retinopathy: A population-based study[J].Diabetes & Metabolism,2018,44(4):361-367.
[3] LONG M,CAI L,LI W,et al.DPP-4 Inhibitors Improve Diabetic Wound Healing via Direct and Indirect Promotion of Epithelial-Mesenchymal Transition and Reduction of Scarring[J].Diabetes,2018,67(3):518-531.
[4] Masuda D,Kobayashi T,Sairyou M,et al.Effects of a Dipeptidyl Peptidase 4 Inhibitor Sitagliptin on Glycemic Control and Lipoprotein Metabolism in Patients with Type 2 Diabetes Mellitus (GLORIA Trial)[J].Journal of Atherosclerosis and Thrombosis,2018,25(6):512-520.
[5] LIU B,SU X,ZHANG Y,et al.Effect of chronic intermittent hypoxia on the expression of CXC chemokine ligand-10 in rat liver and the interventional effect of N-acetylcysteine[J].Journal of Central South University Medical Sciences,2016,41(8):796-803.
[6]鄒文龍,陳克,孫春濤,等.LncRNA53106調(diào)控CXCL10影響胰島β細(xì)胞凋亡[J].中華內(nèi)分泌代謝雜志,2019,35(9):770-776.
[7] Decalf J,Tarbell K V,Casrouge A,et al.Inhibition of DPP4 activity in humans establishes its in vivo role in CXCL10 post-translational modification: prospective placebo-controlled clinical studies[J].EMBO Molecular Medicine,2016,8(6):679-683.
[8] Agarwal S,Sasane S,Kumar J,et al.Evaluation of novel TGR5 agonist in combination with Sitagliptin for possible treatment of type 2 diabetes [J].Bioorganic & Medicinal Chemistry Letters,2018,28(10):1849-1852.
[9] WU W,LIN L,LIN Z,et al.Duodenum Exclusion Alone Is Sufficient to Improve Glucose Metabolism in STZ-Induced Diabetes Rats[J].Obesity Surgery,2018,28(10):3087-3094.
[10] Cho N H,Shaw J E,Karuranga S,et al.IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J].Diabetes Res Clin Pract,2018,138:271-281.
[11] Jia G,Whaley-Connell A,Sowers J R.Diabetic cardiomyopathy: a hyperglycaemia-and insulin-resistance-induced heart disease[J].Diabetologia,2018,61(1):21-28.
[12] Motterle A,Gattesco S,Peyot M L,et al.Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes[J].Molecular Metabolism,2017,6(11):1407-1418.
[13] Tahara N,Yamagishi S I,Bekki M,et al.Anagliptin, A Dipeptidyl Peptidase-4 Inhibitor Ameliorates Arterial Stiffness in Association with Reduction of Remnant-Like Particle Cholesterol and Alanine Transaminase Levels in Type 2 Diabetic Patients[J].Current Vascular Pharmacology,2016,14(6):552-562.
[14]李志琛.西格列汀聯(lián)合阿卡波糖對(duì)2型糖尿病患者的臨床研究[J].中國臨床藥理學(xué)雜志,2019,35(20):2543-2546.
[15] Martinov T,Spanier J A,Pauken K E,et al.PD-1 pathway-mediated regulation of islet-specific CD4+ T cell subsets in autoimmune diabetes[J].Immunoendocrinology (Houston,Tex),2016,3:e1164.
[16] CHEN D,WU D,SHAO K,et al.MiR-15a-5p negatively regulates cell survival and metastasis by targeting CXCL10 in chronic myeloid leukemia[J].Am J Transl Res,2017,9(9):4308-4316.
[17] Wolf R M,Jaffe A E,Steele K E,et al.Cytokine, Chemokine, and Cytokine Receptor Changes Are Associated with Metabolic Improvements after Bariatric Surgery[J].The Journal of Clinical Endocrinology and Metabolism,2019,104(3):947-956.
[18] Schive S W,Mirlashari M R,Hasvold G,et al.Human Adipose-Derived Mesenchymal Stem Cells Respond to Short-Term Hypoxia by Secreting Factors Beneficial for Human Islets In Vitro and Potentiate Antidiabetic Effect In Vivo[J].Cell Medicine,2017,9(3):103-116.
[19] Srivastava R,Khan A A,Chilukuri S,et al.CXCL10/CXCR3-Dependent Mobilization of Herpes Simplex Virus-Specific CD8+ T(EM) and CD8+ T(RM) Cells within Infected Tissues Allows Efficient Protection against Recurrent Herpesvirus Infection and Disease[J].Journal of Virology,2017,91(14).
[20] WANG X X,WANG Q Q,WU J Q,et al.Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo[J].The British Journal of Dermatology,2016,174(6):1318-1326.
[21] Dubé M P,Chan E S,Lake J E,et al.A Randomized, Double-blinded, Placebo-controlled Trial of Sitagliptin for Reducing Inflammation and Immune Activation in Treated and Suppressed Human Immunodeficiency Virus Infection[J].Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America,2019,69(7):1165-1172.
(收稿日期:2020-05-20) (本文編輯:張爽)
中國醫(yī)學(xué)創(chuàng)新2021年2期