尹鳳福,莊虔曉,常天浩,孫啟坤
外賣塑料包裝熱解動力學研究——基于無模型和模型擬合法
尹鳳福*,莊虔曉,常天浩,孫啟坤
(青島科技大學機電工程學院,山東 青島 266100)
在非等溫條件下對外賣包裝中的塑料組分進行熱重實驗,結(jié)果顯示單組分聚丙烯(PP)、高密度聚乙烯(HDPE)和聚苯乙烯(PS)及其混合物(PP/HDPE/PS)的熱解過程一步完成.針對混合塑料的復雜熱解反應(yīng)過程,提出了一種無模型方法和模型擬合法結(jié)合逐步獲得完整動力學參數(shù)的方法,使結(jié)果更具可信度.采用無模型方法(K-A-S、F-W-O和Starink)研究了單組分及其混合物熱解過程的動力學參數(shù),得到PP、HDPE、PS和PP/HDPE/PS熱解過程的平均活化能()分別為224.7, 238.5, 194.1和179.3kJ/mol.在升溫速率為20K/min條件下,以無模型方法得到的活化能和模型擬合法(Malek和C-R)結(jié)果作為邏輯判定依據(jù),總結(jié)了單組分及其混合物的熱解機理均屬于隨機成核隨后生長.分析了動力學參數(shù)間存在的補償效應(yīng),并構(gòu)建了補償效應(yīng)方程.本論文的研究可為外賣塑料垃圾熱解工藝參數(shù)的優(yōu)化和熱解反應(yīng)器的設(shè)計提供有力的支撐.
外賣垃圾;熱解特性;動力學參數(shù);熱解機理;補償效應(yīng)
2018年,全球塑料產(chǎn)量接近3.6億t,其中包裝在塑料消費中占最大份額[1-3].隨著互聯(lián)網(wǎng)與電商平臺的迅速發(fā)展,外賣逐漸成為一種新的消費方式,外賣包裝中的餐具和打包袋大多為塑料制品,餐盒中聚丙烯(PP)和聚苯乙烯(PS)材質(zhì)使用比例在70%以上,兩種材質(zhì)餐盒以絕對性優(yōu)勢占據(jù)市場,打包袋中HDPE以95%以上的使用比例占有主導地位.每單外賣中塑料制品一般包括:1個塑料袋,3.27個一次性塑料餐盒(杯),1個塑料湯勺[4-5],每人每天在線購買一份外賣,將會產(chǎn)生2萬t的廢塑料垃圾[6].外賣包裝壽命短,使用完大多與生活垃圾混合在一起,使回收利用過程更困難[7].另外,由于其材料成分復雜、包裝物中常殘留雜質(zhì)等原因,回收率很低[8].傳統(tǒng)的熱處理手段(如燃燒或焚燒)產(chǎn)生的有害排放物對環(huán)境造成污染,而物理回收方法想做到完全分離這些塑料組分在技術(shù)上有較大難度,成本也較高[9-10].熱解作為塑料廢棄物處理的最后手段,是一種非??尚星铱沙掷m(xù)的方法,將廢棄物在惰性氣體環(huán)境下加熱到中等溫度(670~970K)分解,生產(chǎn)高經(jīng)濟效益的化工原料,這將很大程度上緩解外賣垃圾對城市固體廢棄物處理系統(tǒng)造成的壓力[11-12].
隨著環(huán)保意識的提高,垃圾分類逐漸成為人們的共識,大多情況下,外賣包裝和生活垃圾會被分開單獨回收,這為外賣垃圾的處理提供了極大的方便[13-14].本文以外賣中常用的塑料制品為實驗對象,對外賣包裝中的3種塑料單組分及其混合物進行熱重實驗,研究各組分及其混合組分的熱解特性和動力學參數(shù),這對外賣垃圾處理設(shè)備及工藝的設(shè)計具有重要意義.
實驗用的3種原料(PP,HDPE和PS)是購買自中國石油化工股份有限公司北京燕山分公司生產(chǎn)的塑料顆粒.將PP、HDPE和PS塑料原材料在106℃的環(huán)境下干燥8h,脫除原料中含有的水分,使用800Y高速多功能粉碎機打碎,經(jīng)研磨后過80目標準分樣篩.一般情況下每份外賣訂單包括:2個PP餐盒和1個PP湯勺,重量總計約為40g,1個PS餐盒約為5g,1個塑料袋5g左右.PP/HDPE/PS混合組分的制備:研磨后的塑料組分用Precisa XB 220A天平稱重, PP、HDPE和PS按質(zhì)量比8:1:1混合均勻后裝入離心管中待用.
試驗采用德國NETZSCH公司的TG 209F3,實驗前2h打開機器,待設(shè)備穩(wěn)定后通入N2吹掃10min,吹掃氣流量設(shè)置為20mL/min,熱解反應(yīng)氣氛為99.9999%高純度氮氣,流量設(shè)置為50mL/min,反應(yīng)容器選用氧化鋁坩堝.實驗溫度從313K升到973K,升溫速率分別取10, 20, 30和40K/min.每組實驗重復做3次以上,以消除環(huán)境或人為因素的干擾,保證實驗曲線的再現(xiàn)性.
在固相體系熱解動力學分析過程中,多重掃描速率法是一種較為常用的方法.通過不同升溫速率下測得的多條TG曲線上同一轉(zhuǎn)化率處的數(shù)據(jù),在不涉及動力學模式的前提下獲得較為可靠的活化能值[15].
在熱重法分析固體熱解過程中,非等溫條件下的動力學方程:
式中:為轉(zhuǎn)化率,%;為升溫速率,K/min;為指前因子;為氣體常數(shù),取值8.314J/(mol·K);為活化能, kJ/mol;為反應(yīng)溫度,K;()為微分形式的機理函數(shù).
熱重曲線的數(shù)據(jù)處理方法分為積分法和微分法,其中積分法以Flynn-Wall-Ozawa(F-W-O)法[16-18]為代表,微分法則有Kissinger-Akahira- Sunose(K-A-S)法和Starink法[19-21].在不假設(shè)機理函數(shù)的前提下,積分法和微分法互補可提高分析結(jié)果的可靠性,并且3種方法的方程可用通式(2)表示:
式中:參數(shù),C可視作方程的斜率和截距,對K-A-S方程,=2,=1,=ln[/G()];對Starink方程,=1.8,=1.0037,=ln[/G()];對F-W-O方程,=0,=1.052,=ln[α/()].表示不同轉(zhuǎn)化率()下的活化能;()為積分形式的機理函數(shù).
將4個升溫速率下獲得的熱重實驗數(shù)據(jù)帶入K-A-S、Starink和F-W-O方程中,分別以ln(/2)、ln(/1.8)和ln()對溫度倒數(shù)1/做曲線,用origin軟件對曲線進行線性回歸,得到9條擬合曲線的斜率和截距,通過直線的斜率和相關(guān)系數(shù)可計算得到不同轉(zhuǎn)化率下的活化能[22-23].
混合物的理論活化能(E)為混合物中各組分活化能的加權(quán)平均,計算公式為:
式中:E為混合物中各組分在相同轉(zhuǎn)化率下的活化能,kJ/mol;Z為混合物中各組分所占比例,%.
在非等溫動力學分析中,不同研究者在相同實驗條件下總結(jié)出同一物質(zhì)的動力學參數(shù)可能出現(xiàn)較大偏差,其原因之一就是選擇的機理函數(shù)形式不能完全解釋實際的反應(yīng)過程,因此邏輯選擇較為合理的最概然機理函數(shù)就顯得十分重要[24].本文采用Coats-Redfern(C-R)和Malek結(jié)合的方法,可以避免機理函數(shù)逐一嘗試的麻煩[25].
Malek法是將實驗數(shù)據(jù)轉(zhuǎn)化成定義函數(shù)(),若實驗曲線與標準曲線重疊,或?qū)嶒灁?shù)據(jù)點大部分落在某一標準曲線上,則可確定該標準曲線所對應(yīng)的()或()就是熱解過程的最概然機理函數(shù)[26].其中定義函數(shù)()的表達式為:
式中:50%, (d/d)50%,(50%)和(50%)分別是轉(zhuǎn)化率為50%時的反應(yīng)溫度(K),失重速率(min-1),機理函數(shù)的積分形式和微分形式.
選用表1中所列20種常用的機理函數(shù),將理論數(shù)據(jù):α(=10,20,……,90%)和50%,帶入定義函數(shù)()方程的左側(cè)等式,做出20條標準曲線,其中有多條同族曲線重合.將兩種混合物樣品的熱重實驗數(shù)據(jù):α,T,(dd)(=10,20,……,90%)和50%,50%,(d/d)50%帶入定義函數(shù)()方程的右側(cè)等式,做出兩步熱解過程的實驗曲線.
C-R法是熱分析曲線的動力學分析過程中常用方法,其積分形式的表達式為[25]:
對于塑料的熱解溫度區(qū)間和活化能來說,式中 ln[/(1-2/)]接近于固定常數(shù)[24],故方程(5)可用線性方程表示,其中1/,ln[/(1-2/)].
表1 常用的固體熱解動力學機理函數(shù)
在已有的文獻中可以發(fā)現(xiàn),無模型法不能同時獲得動力學三參數(shù)(活化能、指前因子和機理方程),且一個參數(shù)出現(xiàn)偏差會影響另外兩者的準確性[27-28].模型擬合法又需提前假設(shè)機理函數(shù),如很多文獻都將熱解機理看作一級反應(yīng),然而對于組分復雜固體聚合物單品或混合物,一級反應(yīng)模型不能完全解釋熱解的過程,這將會導致動力學參數(shù)存在較大誤差[29-31].因此本研究通過無模型法獲得較為可靠的活化能,將其作為模型擬合法確定機理函數(shù)的依據(jù)之一,從而獲得能解釋反應(yīng)過程的動力學參數(shù).但是,這種方法雖然避免了假設(shè)機理函數(shù)可能引起的誤差,獲得了更為可靠的活化能值,但忽略了升溫速率對熱解機理的影響,因此需要對獲得的動力學參數(shù)的準確性做進一步驗證.
動力學補償效應(yīng)通常是指ln與呈現(xiàn)線性關(guān)系的現(xiàn)象[25],其數(shù)學表達式為;
式中:和為補償參數(shù),的單位為mol/kJ.
PP、HDPE、PS聚合物單品及PP/HDPE/PS混合物具有相似的熱解行為,熱解過程均為一步完成,主要與它們分子結(jié)構(gòu)相似有關(guān),這與已有文獻中的研究結(jié)果一致[32-34].
如表2所示,當升溫速率為10K/min時,3種聚合物單組分及其混合物的TG曲線上均存在一個劇烈失重階段.其中,PP的熱解區(qū)間為706.65~741.15K,樣品的質(zhì)量損失為76.05%, HDPE熱解區(qū)間為733.85~ 762.35K,對應(yīng)的質(zhì)量損失為77.75%,而PS相應(yīng)的熱解區(qū)間為667.55~697.55K,質(zhì)量損失為74.44%.在此階段PP、HDPE和PS分子鏈隨機斷裂而開始分解,導致聚合物重量的劇烈降低,熱解過程中還會發(fā)生一些二次縮合反應(yīng)[32-34].高分子材料熱解失重的溫度可以表示其化學穩(wěn)定性,可以發(fā)現(xiàn)3種聚合物單品的初始熱解溫度排序PS 表2 PP, HDPE, PS和PP/HDPE/PS混合物的熱解特性 注:o1/f1為熱解的起始/結(jié)束溫度;p為最大失重速率對應(yīng)的溫度. 2.2.1 無模型法分析 在轉(zhuǎn)化率為10%~90%時,分別采用3種無模型法(K-A-S、F-W-O和Starink)得到PP、HDPE和PS的活化能變化趨勢(圖1).3種方法獲得的活化能隨轉(zhuǎn)化率變化趨勢基本一致,且活化能大小排序為F-W-O>Starink>K-A-S.PP的活化能在221.0~229.1kJ/mol范圍內(nèi)變化,HDPE的活化能在214.5~246.5kJ/mol范圍內(nèi)變化,PS的活化能在189.4~206.0kJ/mol范圍內(nèi)變化,PP/HDPE/PS混合物的活化能在173.1~190.6kJ/mol范圍內(nèi)變化,活化能的差異主要在于聚合物分子鏈中化學鍵的數(shù)目和類型的不同,分子結(jié)構(gòu)的支化度不同會改變化學鍵分布,從而影響熱解過程中的動力學參數(shù)[40].其次,可以發(fā)現(xiàn)在不同的轉(zhuǎn)化率條件下,聚合物的活化能值在一定的范圍內(nèi)浮動變化,PP熱解初始和結(jié)束階段,活化能值較為平穩(wěn),但中期出現(xiàn)了向下的突變,這可能與聚合物熱解過程中反應(yīng)速率的變化有關(guān)[41].對于HDPE和PS聚合物,在熱解過程初始階段時,活化能的變化幅度比較顯著,中后期逐漸趨于平穩(wěn),這可以歸因于等轉(zhuǎn)化率法處理低轉(zhuǎn)化率水平的實驗數(shù)據(jù)時,熱解初始階段產(chǎn)生的氣體引起儀器內(nèi)部氣流的浮動,天秤測量值可能出現(xiàn)的微小變化,會對參數(shù)的計算造成極大影響[42].由圖1(d)可知,混合物的實驗值低于理論值,說明混合物間存在明顯的協(xié)同作用,各組分間的復雜反應(yīng)有利于混合物的熱解過程. 2.2.2 模型擬合分析 如圖2(a),(b)所示,通過熱解反應(yīng)數(shù)據(jù)的實驗曲線和標準曲線對比,可以發(fā)現(xiàn)3種聚合物單品PP、HDPE和PS熱解實驗的數(shù)據(jù)點與4, 5, 6 , 7, 8, 9, 10和11號方程貼合度更好,符合隨機成核隨后生長機理;而混合物PP/HDPE/PS在熱解前、中期實驗曲線接近4, 5, 6, 7, 8, 9, 10和11號方程,符合隨機成核隨后生長機理,但在熱解后期更傾向于16和19號方程,符合三維擴散3和三維收縮球體3機理,熱解的整體過程更傾向于隨機成核隨后生長機理.可以發(fā)現(xiàn)PS組分的整個熱解過程與標準曲線的擬合度均較高,PP和PP/HDPE/PS反應(yīng)前、中期擬合度較高,后期出現(xiàn)了輕微的偏離現(xiàn)象,而HDPE數(shù)據(jù)的實驗曲線和標準曲線的擬合程度稍差.然而,由于每條標準曲線所代表的熱解機理模型可能對應(yīng)多個方程,所以仍需對機理方程的形式做進一步確定. 分別將4, 5, 6, 7, 8, 9, 10和11號待定方程對應(yīng)的積分形式()和熱重實驗數(shù)據(jù)帶入C-R方程,采用origin軟件對所得的8條曲線進行最小二乘法擬合,擬合結(jié)果顯示曲線的線性相關(guān)系數(shù)均高于0.99.綜合考慮曲線的線性相關(guān)度和無模型法獲得的平均活化能值,得到PP、HDPE和PS實驗數(shù)據(jù)與最概然機理函數(shù)()在C-R方程下的曲線(圖3),最終確定PP、HDPE和PS熱解機理均屬于隨機成核隨后生長,其中PP和PS熱解反應(yīng)符合3/2方程,而HDPE熱解反應(yīng)與2方程擬合度較高.同樣地,分別將4, 5, 6, 7, 8, 9, 10, 11, 15和18號待定方程對應(yīng)的積分形式()和熱重數(shù)據(jù)帶入C-R方程,得到PP/HDPE/PS混合物實驗數(shù)據(jù)與最概然機理函數(shù)()在C-R方程下的曲線,其擬合結(jié)果和活化能值如圖2(d)所示,從而確定混合物熱解過程更貼近于4/3.對比3種聚合物單品及其混合物的機理擬合結(jié)果,可以發(fā)現(xiàn)具有相同成核機理(A)的聚合物組成的混合物,其熱解機理并未發(fā)生改變,且機理方程中的值介于其組分之間.本研究中所有的反應(yīng)機理都是根據(jù)熱重實驗數(shù)據(jù)來選擇的,然而,在熱解過程中反應(yīng)機理相當復雜,對比無模型方法得到的平均活化能可以發(fā)現(xiàn), 模型擬合法得到PS的活化能與無模型法接近,而PP、HDPE和PP/HDPE/PS的活化能偏低,這也與C-R法中的擬合結(jié)果相一致.因此,合理選擇能夠完全解釋熱解過程的反應(yīng)機理,對動力學參數(shù)的準確性具有重要意義. 將模型法確定的機理函數(shù)的()帶入K-A-S、F-W-O和Starink法的方程中,分別得到PP、HDPE、PS和PP/HDPE/PS的指前因子,由表3可以看出,K-A-S和Starink法得到的指數(shù)前因子比較接近,而F-W-O法的結(jié)果與前者表現(xiàn)為數(shù)量級的差異.由于原料來源和實驗條件等因素的影響,本文總結(jié)動力學結(jié)果與已有的文獻研究可能存在一些差異[43-44]. 圖1 PP, HDPE, PS和PP/HDPE/PS混合物在轉(zhuǎn)化率為10%~90%范圍的活化能 圖1(a),(b)和(c)中,誤差棒上/下限分別對應(yīng)F-W-O和K-A-S法下的活化能;圖1(d)中活化能的c和i代表混合物活化能的理論值和實驗值 1~20對應(yīng)表1中的20個函數(shù) 圖3 PP, HDPE, PS和PP/HDPE/PS混合物在C-R法下的擬合結(jié)果 2.2.3 動力學補償效應(yīng) 無模型法采用了4個升溫速率下的等轉(zhuǎn)化率法得到活化能,而模型擬合法僅僅使用20K/min時機理函數(shù)來確定指前因子,一些研究者認為升溫速率的改變可能會導致熱解機理的變化,而同一反應(yīng)采用不同機理函數(shù)處理的系統(tǒng)中確實存在動力學補償效應(yīng),所以有必要對兩參數(shù)間的關(guān)系做進一步研究. 分別繪制兩種混合物的活化能和指前因子的關(guān)系曲線,并對曲線進行線性回歸,得到3種無模型方法的動力學補償效應(yīng)方程和相關(guān)系數(shù)如表4所示.由結(jié)果可以看出, 3種聚合物單組分和混合物的參數(shù)和ln的間相關(guān)系數(shù)均在0.98以上,可以說明兩種間存在補償效應(yīng)[45]. 表3 通過無模型方法(K-A-S,Starink和F-W-O)在不同加熱速率下獲得的動力學參數(shù) 注:表中AV表示各項參數(shù)的平均值. 表4 PP, HDPE, PS和PP/HDPE/PS混合物的動力學補償方程 3.1 在4個升溫速率下(10,20,30,40K/min)對外賣包裝中的塑料組分進行熱重實驗,結(jié)果顯示PP、HDPE和PS組分和混合物(PP/HDPE/PS)熱解過程一步完成,混合物熱解過程中各組分間協(xié)同作用占主導地位. 3.2 采用無模型方法(K-A-S、F-W-O和Starink)研究了各組分及其混合物熱解過程的活化能,得到PP、HDPE、PS和PP/HDPE/PS熱解過程的活化能()范圍為221.0~229.1,214.5~246.5,189.4~206.0和173.1~190.6kJ/mol. 3.3 總結(jié)了升溫速率為20K/min時各組分及其混合物熱解機理函數(shù): PP和PS熱解反應(yīng)符合3/2方程, HDPE與2方程擬合度較高,而PP/HDPE/PS混合物更貼近于4/3.具有相同成核機理(A)的塑料混合物,熱解機理與其組分相同,且機理方程的值介于其組分之間. 3.4 分析了各組分及其混合物活化能與指前因子間的補償效應(yīng),并構(gòu)建了補償效應(yīng)方程. [1] Chen W Q, Ciacci L, Sun N N, et al. Sustainable cycles and management of plastics: A brief review of RCR publications in 2019 and early 2020 [J]. Resources, Conservation and Recycling, 2020, 159.https://doi.org/10.1016/j. resconrec.2020.104822. [2] 鄭 仲,何品晶,邵立明.塑料包裝物中鄰苯二甲酸酯的分布統(tǒng)計分析[J]. 中國環(huán)境科學, 2006,(5):637-640. Zheng Z, He P J, Shao L M. Statistical analysis of the distribution of phthalates in plastic packaging [J]. China Environmental Science, 2006,(5):637-640. [3] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017,3(7):e1700782- e1700782. [4] 張清安,祁美琪.外賣餐具所致垃圾發(fā)展現(xiàn)狀及治理對策[J]. 農(nóng)產(chǎn)品加工, 2018,(17):77-78. Zhang Q A, Qi M Q. The development status and treatment countermeasures of garbage caused by take-out tableware [J]. Processing of Agricultural Products, 2018,(17):77-78. [5] 岳 倩.外賣餐盒回收帶來雙重命題[N]. 中國質(zhì)量報, 2018,(4). Yue Q. Takeaway lunch box recycling brings double proposition [N]. China Quality News, 2018,(4). [6] 溫宗國,張宇婷,傅岱石.基于行業(yè)全產(chǎn)業(yè)鏈評估一份外賣訂單的環(huán)境影響[J]. 中國環(huán)境科學, 2019,39(9):4017-4024. Wen Z G, Zhang Y T, Fu D S. Evaluate the environmental impact of a takeaway order based on the entire industry chain [J]. China Environmental Science, 2019,39(9):4017-4024. [7] Sommerhuber P F, Welling J, Krause A. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in woodeplastic composites [J]. Waste Management, 2015,46:76-85. [8] 楊 凱,徐啟新,林逢春,等.包裝廢物減量及回收體系構(gòu)建研究[J]. 中國環(huán)境科學, 2001,21(2):94-97. Yang K, Xu Q X, Lin F C, et al. Research on the construction of packaging waste reduction and recycling system [J]. China Environmental Science, 2001,21(2):94-97. [9] 謝明輝,李 麗,喬 琦,等.塑料牛奶包裝及處置方式生命周期環(huán)境影響研究 [J]. 中國環(huán)境科學, 2011,31(11):1924-1930. Xie M H, Li L, Qiao Q, et al. Study on the life cycle environmental impact of plastic milk packaging and disposal methods [J]. China Environmental Science, 2011,31(11):1924-1930. [10] Liu G, Liao Y, Guo S, et al. Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process [J]. Applied Thermal Engineering, 2016,98:400–408. [11] Xue Y, Kelkar A, Bai X. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer [J]. Fuel, 2016,166:227-23. [12] Chattopadhyay J, Pathak T S, Srivastava R, et al. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high densitypolyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis [J]. Energy, 2016,103:513-521. [13] Oyedun A O, Lam K L, Gebreegziabher T, et al. Optimization of multi-stage pyrolysis [J]. Applied Thermal Engineering, 2013,61(1): 123-127. [14] Yin S, Rajarao R, Gong B, et al. Thermo-delamination of metallised composite plastic: An innovative approach to generate Aluminium from packaging plastic waste [J]. Journal of Cleaner Production, 2019,211:321-329. [15] Das P, Tiwari P. Valorization of packaging plastic waste by slow pyrolysis [J]. Resources Conservation and Recycling, 2018,128:69-77. [16] Zhou R, Huang B Q, Ding Y M, et al. Thermal decomposition mechanism and kinetics study of plastic waste chlorinated polyvinyl chloride [J]. Polymers, 2019,11(12).https://doi.org/10.3390/polym11122080. [17] Cafiero L, Castoldi E, Tuffi R, et al. Identification and characterization of plastics from small appliances and kinetic analysis of their thermally activated pyrolysis [J]. Polymer Degradation and Stability, 2014,109:307-318. [18] Liu H, Chen B, Wang C. Pyrolysis kinetics study of biomass waste using shuffled complex evolution algorithm [J]. Fuel Processing Technology, 2020,208.https://doi.org/10.1016/j.fuproc.2020.106509. [19] Rasam S, Haghighi A M, Azizi K. Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis [J]. Fuel, 2020,280.https: //doi.org/10.1016/j.fuel.2020.118665. [20] Guida M Y, Bouaik H, El Mouden L, et al. Utilization of starink approach and avrami theory to evaluate the kinetic parameters of the pyrolysis of Olive Mill Solid Waste and Olive Mill Wastewater [J]. Journal of Advanced Chemical Engineering, 2017,7(1):1-8. [21] Chen L, Wang S Z, Meng H Y. Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste [J]. Applied Thermal Engineering, 2017,111:834-846. [22] Conesa J A, Marcilla A, Caballero J A, et al. Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data [J]. Analytical and Applied Pyrolysis, 2001,58:617-633. [23] Branca C, Albano A, Di Blasi C. Critical evaluation of global mechanisms of wood devolatilization [J]. Thermochim. Acta, 2005, 429(2):133-141. [24] 劉振海,張洪林.分析化學手冊[M]. 北京:化學工業(yè)出版社, 2016,64: 56-79. Liu Z H, Zhang H L. Thermal analysis and calorimetry [M]. Beijing: Chemical Industry Press, 2016,64:56-79. [25] 胡榮祖,高勝利,趙鳳起,等.熱分析動力學 [M]. 北京:科學出版社, 2008. Hu R Z, Gao S L, Zhao F Q, et al. Thermal analysis kinetics [M]. Beijing: Science Press, 2008. [26] Zhu Y L, An J, Chang H. An analytical method for overlapping of the melting and decomposition of 2-oximemalononitrile [J]. Journal of Thermal Analysis and Calorimetry, 2020.https://doi.org/10.1007/ s10973-020-10141-y. [27] Chen J B, Wang Y H, Lang X M, et al. Comparative evaluation of thermal oxidative decomposition for oil–plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics [J]. Bioresource Technology, 2017,243:37-46. [28] Yun Y M, Seo M W, Koo G H, et al. Pyrolysis characteristics of GFRP (Glass Fiber Reinforced Plastic) under non-isothermal conditions [J]. Fuel, 2014,137:321-327. [29] Yu B, Vallée T, Thomas K. Modeling of thermo-physical properties for FRP composites under elevated and high temperature [J]. Composites Science and Technology, 2007,67(15/16):3098-3109. [30] Mishra G, Bhaskar T. Non isothermal model free kinetics for pyrolysis of rice straw [J]. Bioresource Technology, 2014,169:614-621. [31] Tondl G, Bonell L, Pfeifer C. Thermogravimetric analysis and kinetic study of marine plastic litter [J]. Marine Pollution Bulletin. 2018,133: 472-477. [32] Hu Q, Tang Z Y, Yao D D. Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes [J]. Journal of Cleaner Production. 260.https://doi.org/ 10.1016/j.jclepro.2020.1211.02. [33] Tuffi R, D'Abramo S, Cafiero L M, et al. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics [J]. Polymer Science. 2018,7:82-99. [34] Westerhout R W J, Waanders J, Kuipers J A M, et al. Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data [J]. Industrial & Engineering Chemistry Research, 1997,36(6):1955-1964. [35] 劉義彬,馬曉波,陳德珍,等.廢塑料典型組分共熱解特性及動力學分析[J]. 中國電機工程學報, 2010,30(23):56-61. Liu Y B, Ma X B, Chen D Z, et al. Co-pyrolysis characteristics and kinetic analysis of typical components of waste plastics [J]. Chinese Society for Electrical Engineering, 2010,30(23):56-61. [36] Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data [J]. Thermochimica Acta, 2011,520:1-19. [37] Diaz Silvarrey L S, Phan A N. Kinetic study of municipal plastic waste [J]. International Journal of Hydrogen Energy, 2016,41(37):16352- 16364. [38] 馬大朝,高偉康,孫 翔,等.稻殼與聚氯乙烯共熱解的特性及動力學[J]. 環(huán)境工程, 2020,38(1):135-140. Ma D C, Gao W K, Sun X, et al. The characteristics and kinetics of co-pyrolysis of rice husk and polyvinyl chloride [J]. Environmental Engineering, 2020,38(1):135-140. [39] Chowlu A C K, Reddy P K, Ghoshal A K. Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low- density polyethylene (LDPE) [J]. Thermochimica Acta, 2009,485:20-25. [40] Xu F F, Wang B, Yang D, et al. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis [J]. Energy Conversion and Management, 2018, 171:1106-1115. [41] Slopieca K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis [J]. Applied Energy, 2012, 97:491-497. [42] Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data [J]. Thermochimica Acta, 2011,520:1-19. [43] Das P, Tiwari P. Thermal degradation kinetics of plastics and model selection [J]. Thermochimica Acta, 2017,654:191-202. [44] 張大磊,李公偉,李衛(wèi)華,等.聚乙烯塑料/鉻渣共熱解還原Cr(Ⅵ)的實驗研究[J]. 中國環(huán)境科學, 2017,37(5):1852-1857. Zhang D L, Li G W, Li W H, et al. Experimental study on reduction of Cr(Ⅵ) by polyethylene plastic/chromium slag co-pyrolysis [J]. China Environmental Science, 2017,37(5):1852-1857. [45] Qiao Y Y, Wang B, Zong P J, et al. Thermal behavior, kinetics and fast pyrolysis characteristics of palm oil: Analytical TG-FTIR and Py-GC/MS study [J]. Energy Conversion and Management, 2019, 199,111964. Pyrolysis kinetics study of takeaway plastic packaging—Based on model-free and model-fitting method. YIN Feng-fu*, ZHUANG Qian-xiao, CHANG Tian-hao, SUN Qi-kun (School of Mechanical and Electrical Engineering, Qingdao University of Science and Technology, Qingdao 266100, China)., 2021,41(4):1756~1764 Thermogravimetric analysis for components of takeaway plastic packaging was carried out under non-isothermal conditions. The results showed that the pyrolysis processes of the single components of PP, HDPE, PS, and the mixture (PP/HDPE/PS) were finished in one step. For the complex pyrolysis reaction with mixed plastics, a model-free method combined with the model-fitting method was proposed to obtain the complete set of kinetic parameters, which made the results more reliable. The kinetic parameters of a single component and the mixture in the pyrolysis process were studied with model-free methods (K-A-S, F-W-O and Starink). In pyrolysis processes, the average activation energy () of PP, HDPE, PS and PP/HDPE/PS reached 224.7, 238.5, 194.1 and 179.3kJ/mol, respectively. Based on the activation energy obtained by the model-free method and the results of model fitting (Malek and C-R), the pyrolysis mechanism of a single component and the mixture was random nucleation followed by growth when the heating rate was 20K/min. Moreover, the compensation effect between the kinetic parameters was analyzed to establish the compensation effect equations. This study can provide support for the optimization of the pyrolysis process parameters of takeaway plastic waste and the design of the pyrolysis reactor. takeaway packing;pyrolysis characteristics;kinetic parameters;pyrolysis mechanism;compensation effect X705 A 1000-6923(2021)04-1756-09 尹鳳福(1969-),男,山東濰坊人,教授,博士后,主要從事機電產(chǎn)品的綠色設(shè)計與制造、綠色環(huán)保新工藝新技術(shù)、機電產(chǎn)品循環(huán)再利用技術(shù)研究.發(fā)表論文40余篇. 2020-09-08 國家自然科學基金資助項目(51875297) * 責任作者, 教授, yinff3@126.com2.2 動力學分析
3 結(jié)論