国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

黃海溶解無機氮時空變化及其水團對DIN總量的影響

2021-04-30 03:46金春潔張傳松王麗莎石曉勇韓秀榮唐洪杰
中國環(huán)境科學 2021年4期
關鍵詞:營養(yǎng)鹽黃海底層

金春潔,張傳松,王麗莎*,石曉勇,3,韓秀榮,唐洪杰

黃海溶解無機氮時空變化及其水團對DIN總量的影響

金春潔1,2,張傳松1,2,王麗莎1,2*,石曉勇1,2,3,韓秀榮1,2,唐洪杰1,2

(1.中國海洋大學化學化工學院,山東 青島 266100;2.中國海洋大學海洋化學理論與技術教育部重點實驗室,山東 青島 266100;3.自然資源部海洋減災中心,北京 100194)

本文根據(jù)2013~2016年4個航次調(diào)查資料,研究了黃海水體中溶解無機氮(DIN)的時空變化及其總量影響因素.結果表明:春、夏、秋和冬季黃海調(diào)查海域DIN平均濃度分別為(5.43±4.02),(4.47±3.16),(7.46±3.56)和(5.09±2.59)μmol/L.其中,秋季濃度最高,夏季最低;黃海調(diào)查海域各季節(jié)DIN的分布呈現(xiàn)近岸高、外海低的變化規(guī)律,近岸高值點多集中在長江口以北、山東半島和遼東半島等處.春~秋季影響DIN分布的因素主要是陸源輸入和浮游植物的生長繁殖,冬季則主要是河流輸入和沉積物再懸浮作用.四季在中央海域底層還存在一個高值區(qū)(>6μmol/L),主要受黃海冷水團和黃海暖流等共同影響;通過聚類分析法對黃海四季水團進行了基本劃分,調(diào)查海域主要包括5個水團:黃海混合水團、黃海冷水團、黃海暖流水、沿岸水團和黃東?;旌纤畧F,除黃海混合水團終年存在外,其他水團均為季節(jié)性存在;調(diào)查海域DIN總量四季差異不大,整體含量介于1.0×106~1.5×106t,春、夏、秋和冬季DIN總量分別約為1.2×106,1.0×106,1.5×106和1.3×106t.春季和夏季受浮游植物吸收影響,DIN總量略低,從水團對DIN總量的貢獻上來看,春季以黃海暖流為主,夏季以黃海冷水團為主,秋、冬季以黃海混合水團為主.

DIN;黃海;季節(jié);分布;總量

黃海是典型的半封閉陸架邊緣海,長期受人類活動和自然環(huán)境的雙重影響,現(xiàn)已成為世界上近海研究中具有典型意義的研究對象之一.黃海終年存在著復雜的水團,對于營養(yǎng)鹽的來源、分布和運移有重要作用[1-2].有研究表明,黃海環(huán)流、水體內(nèi)部循環(huán)都會影響著黃海營養(yǎng)鹽時空分布[2-8].

營養(yǎng)鹽是海水中最基礎的要素,同時也是維持海洋生物生命活動的重要生源要素[9],在一定條件下,營養(yǎng)鹽的濃度、組成及分布的變化是導致藻華暴發(fā)的重要基礎[10-13].其含量和比例的改變會影響浮游植物和藻類的群落結構及生長[14-15],現(xiàn)場調(diào)查結果顯示營養(yǎng)鹽的輸入為大型藻類生長和暴發(fā)提供物質(zhì)基礎[16],而營養(yǎng)鹽分布受環(huán)流、陸源輸入和浮游植物消耗共同影響.氮是海洋中營養(yǎng)鹽主要組成元素之一,海洋中總溶解氮(TDN)由溶解無機氮(DIN)和溶解有機氮(DON)組成,他們占總氮庫的絕大部分[17].DIN作為溶解態(tài)氮的重要賦存形態(tài),在藻類植物生命活動中占據(jù)重要地位,近年來黃海大面積暴發(fā)的滸苔綠潮災害,與DIN濃度逐年上升有關[18-24].黃海滸苔綠潮藻類更傾向于吸收無機態(tài)氮鹽,尤其是硝酸鹽[25-26],DIN為綠潮發(fā)展提供了近87%的氮支撐[27],在綠潮暴發(fā)期間DIN濃度呈降低趨勢[28].所以,DIN是支撐滸苔生長最重要的營養(yǎng)鹽[29-33].因此,研究氮營養(yǎng)鹽的變化規(guī)律并厘清其來源,對了解海洋氮循環(huán)、碳循環(huán)、生態(tài)系統(tǒng)變化以及海洋環(huán)境狀況評估具有重要意義.

目前對黃海營養(yǎng)鹽的研究多局限于南黃?;虮秉S海的討論,且多以季節(jié)或短期變化為主.針對整個黃海DIN的較長期變化趨勢及黃海環(huán)流和水團對其含量的貢獻尚未見報道.本文以整個黃海DIN為研究對象,2013~2016年在黃海海域進行的4個航次調(diào)查數(shù)據(jù)為依據(jù),闡述了近年來黃海海域DIN的分布特征和季節(jié)變化,并結合歷史數(shù)據(jù)分析了DIN近40a的年際變化,探討黃海DIN發(fā)生變化的原因和黃海環(huán)流及水團對DIN總量貢獻的調(diào)控作用,為厘清黃海DIN來源、氮的地球化學循環(huán)和滸苔綠潮的防治提供一定的科學依據(jù)和理論支撐.

1 研究區(qū)域及分析方法

1.1 研究區(qū)域和站位

2013年6月22日~7月6日、11月6~21日、2014年4月28日~5月18日、2016年1月15~30日搭載“東方紅2”號科考船對黃海進行綜合性大面站調(diào)查,采樣站位基本涵蓋整個黃海125°E以西海域.各航次采樣站位如圖1所示.

圖1 黃海研究區(qū)域調(diào)查站位

◆為采樣站位

1.2 采樣及分析方法

現(xiàn)場調(diào)查采用直讀式溫鹽深儀(Seabird 911-plus CTD)對溫度和鹽度進行測定.使用12L Niskin采水器分別采集標準層水樣(表層,10m,20m, 30m,中層一般取10m層,底層離海底2m).水樣經(jīng)GF/F濾膜(預先450℃溫度下灼燒4h)過濾用聚乙烯瓶貯存,-20℃冷凍保存.使用SEAL-AA3流動分析儀測定,NO3--N,NO2--N,NH4+-N均按照海洋調(diào)查規(guī)范方法(GB/T 12763.6-2007)[34]測定,其中NO3--N (銅-鎘還原)和NO2--N采用重氮-偶氮法,NH4+-N使用靛酚藍法,檢出限分別為0.02,0.02,0.04μmol/L,其測量精度分別是:99.41%、99.05%和99.69%;DIN= NO3--N+NO2--N+NH4+-N.

本文選用文獻[35-36]提出的系統(tǒng)聚類法對整個黃海水團進行劃分,采用歐氏平方距離——重心法作為劃分水團的依據(jù).采用SPSS 18.0軟件,對2013~ 2016年4個航次的所有水層(2m/層)CTD實測溫鹽值進行標準化處理,并根據(jù)T-S點聚圖結合水團“內(nèi)同性和外異性”的原則[37],對水團劃分的結果進行調(diào)整,并將調(diào)整后結果與參考文獻相對比.

1.2.1 數(shù)據(jù)標準化處理

1.2.2 聚類參數(shù)和方法 本文以溫度和鹽度作為參數(shù)指標對觀測站位的所有水層樣品進行聚類分析,以歐幾里德平方和距離為計算各樣本之間的距離,采用此距離可以使誤差縮減到最小.其歐式平方距離(2個指標值)的計算公式如下:

式中:,=1,2,3,…,,≠代表樣品數(shù);=1,2,3,…,代表變量個數(shù);ZX為標準化后的數(shù)據(jù).

最后,選擇計算結果與T-S點聚圖最相近的質(zhì)心法(也叫重心法)作為劃分水團的聚類方法.

式中:n=n+n,即類和類合并為類,n為該類的站數(shù).

類與類的類間距離為:

類與類合并后的重心為:

為指標值,溫度鹽度兩個指標值分別為:

在計算中,*為臨界值,當<*時繼續(xù)合并,檢驗值計算公式:

水團體積通過克里格-網(wǎng)格化法,采用Surfer 8.0軟件進行計算[38],其中 1 °E=91.1km,1 °N=111.2km.假設各水團在相應季節(jié)DIN濃度基本不變,各水團DIN含量計算公式如下:

(t)=摩爾質(zhì)量(g/mol)×濃度(μmol/L)

×水團體積(km3)(9)

2 結果與討論

2.1 黃海DIN分布特征及組成

2.1.1 黃海DIN分布特征 春、夏、秋和冬季整個調(diào)查海域DIN濃度在0.24~18.01mmol/L之間,平均濃度分別為(5.43±4.02),(4.47±3.16),(7.46±3.56), (5.09± 2.59)μmol/L.從平面分布來看(圖2),表、中層海水中DIN的分布在4個航次中均呈現(xiàn)近岸高、外海低的分布趨勢,這與文獻[2,39-43]結論一致.底層水體DIN分布特征與表層不同,在黃海近岸和中央海區(qū)存在2個高值區(qū)(>6μmol/L),與王保棟等[3,28,44-46]分析結果一致.表、中層水體DIN高值區(qū)分布在黃海近岸,主要集中在長江口以北、蘇北沿岸、山東半島和遼東半島附近[2,39],結合鹽度分布特征可知其主要受陸源輸入的影響[31,47-48];其中2014年4月調(diào)查海區(qū)長江口以北和山東半島以南海區(qū)高值區(qū)DIN濃度高于15μmol/L,超過了國家一類海水水質(zhì)標準(DIN=14.29μmol/L),已成為南黃海近岸水質(zhì)的污染物之一.春、夏季表中層水體中央海區(qū)DIN濃度較低的主要原因是浮游植物生長旺盛消耗所致[16];底層近岸和中央海域兩個高值區(qū)結合鹽度分布特征推測分別受河流輸入和黃海暖流及黃海冷水團的影響[3,44-46].

垂直方向上(圖2),除冬季外,DIN濃度均表現(xiàn)為底層>表層>中層.冬季調(diào)查海區(qū)受強烈的垂直混合擾動影響[49],導致淺水區(qū)上、下水體中DIN濃度相近.DIN實際水平將取決于DIN的補充與生物活動消耗過程的消長和平衡[50],春季~秋季底層海水中存在一個DIN含量較高的黃海冷水團,為DIN的儲庫[3];表層海水既有浮游植物的生命活動消耗,又有富含高DIN的沖淡水和大氣沉降補充[51],而中層水樣處于真光層,該層浮游植物生長繁殖消耗了大量的DIN,加之調(diào)查期間溫躍層的存在[52],致使底層高濃度的DIN無法上升至表中層水體[2,52],因此該層DIN濃度比表層低.冬季在中央深水區(qū)濃度稍高,推測其原因是底層受冬季強風垂直擾動影響較小且有黃海暖流的補充所致[3,44,46].

S:表層, M:中層, B:底層

季節(jié)變化上(圖2),DIN濃度整體表現(xiàn)為秋季最高、夏季最低,秋、冬季高于春、夏季的變化規(guī)律,這與蔣昊等[53]研究一致.秋季DIN濃度最高可能是該季浮游植物消耗減少,加之河流輸入和水團環(huán)流等外源輸入的補充作用所致[7];夏季DIN濃度最低可能是浮游植物大量繁殖消耗增加,加之近年來滸苔綠潮頻發(fā),且水體層化現(xiàn)象顯著[52],水體底層的DIN無法對表層水體進行補充所致[2,52,54].

圖3 黃海DIN形態(tài)組成的季節(jié)變化

2.1.2 黃海DIN形態(tài)組成 調(diào)查海域春、夏、秋和冬季DIN的主要存在形態(tài)均為NO3--N,分別占DIN總量的比例為58.10%、60.01%、80.70%和86.47%,其次為NH4+-N分別占37.64%、33.71%、12.96%和9.92%,最少的是NO2--N分別占4.26%、6.28%、6.34%和2.85%(圖3).從春季到冬季,NO3--N占DIN的比例逐漸升高;NH4+-N所占比例逐漸降低;NO2--N所占比例相對穩(wěn)定,均小于7%.有研究表明滸苔在硝酸鹽和銨鹽同時存在時,會優(yōu)先吸收NH4+-N[55].NH4+-N可以被海藻直接吸收利用,NH4+- N的吸收效率遠遠大于NO3--N[56-57],且NH4+-N對NO3--N的吸收有抑制作用[58-61].黃海調(diào)查海域NH4+-N在春、夏季所占比例高達37.64%和33.71%,較高比例的NH4+-N可能為黃海滸苔綠潮暴發(fā)提供物質(zhì)保證[58].

2.2 黃海DIN的年際變化

圖4 1980~2010年黃海春季表層DIN的年際變化特征

根據(jù)歷史資料對春季表層海水中DIN的年際變化進行分析[3-4,62-63],近40a春季整個黃海表層水體中DIN濃度呈現(xiàn)波動式的變化特征(圖4),在2005年之前,DIN呈現(xiàn)逐漸增長的變化特征,2006~2007年略有下降, 2009年急劇上升達到近40a來最大值12.40μmol/L,2009年以后呈現(xiàn)波動式下降的變化趨勢,2010年濃度水平降至1984年濃度水平.實驗室培養(yǎng)結果表明,DIN的濃度水平是制約滸苔生長的主要因素[64-65],2009年DIN的峰值恰逢滸苔綠潮在黃海近岸大面積暴發(fā),最大分布面積達58000km2[66],推測DIN輸入的逐年增加是導致滸苔綠潮大面積暴發(fā)的重要因素,這與Keesing等[19]、Lin等[18]和Li等[25]的研究結果一致.隨著國家對海洋環(huán)境污染的重視與治理,2009年以后,DIN開始波動式下降,使氮營養(yǎng)鹽的輸入得以控制.

2.3 水團對DIN含量的貢獻分析

通過聚類分析和T-S點聚圖(圖6)對調(diào)查海域四季水團進行劃分(圖5),黃海主要存在黃?;旌纤畧F(Y)、黃海冷水團(YC)、黃海暖流水(YW)、沿岸水團(CW)和黃東?;旌纤畧F(YE)5個水團(臺灣暖流TW并非黃海特征水團,故本文不作討論),結果與邱道立等[35]和劉樹勛等[67]水團劃分較為一致.邱道立等[35]提出除了Y終年存在外,其它均是季節(jié)性水團.各水團水文特征如表1所示, Y溫度、鹽度均存在明顯的季節(jié)變化,從溫鹽特性上看,具備中鹽的特征[68],溫度在6.1~23.3℃之間,鹽度在29.91~33.37之間.YC溫度鹽度特性是低溫中鹽,溫度在3.8~13.2℃之間,鹽度在30.75~33.30之間,是溫度最低的水團. YW溫度鹽度特性為中溫高鹽,溫度在8.3~17.2℃之間,鹽度在31.72~33.85之間. CW最大的溫度鹽度特性是低鹽,溫度在11.0~23.0℃之間,鹽度在28.71~ 30.85之間,均<31.YE水文特性是中溫中鹽,溫度在9.0~23.8℃之間,鹽度在31.19~33.42之間.

表1 黃海各水團的水文特征

注: /表示該水團在該季節(jié)不明顯或者影響很小.

圖5 四季黃海表、底層水團分布

由于4個調(diào)查航次站位不完全相同,因此本文只討論125°E以西調(diào)查海域,根據(jù)上述已劃分的水團,采用Surfer 8.0軟件克里格-網(wǎng)格化法對水團體積進行計算,并根據(jù)式9分別計算各水團中DIN含量,其結果如表2所示.各季節(jié)不同水團對DIN總量的貢獻大小如圖7所示.

Y由進入黃海的沿岸水和外海水混合而成,常年占據(jù)調(diào)查海區(qū)表、中層絕大部分海域,底層面積較小,多集中于南黃海西側(圖5). Y是四季體積最大且DIN濃度最低的非季節(jié)性水團,春、夏、秋和冬季Y水團體積分別約為6.8×103,6.0×103,9.1×103,9.2× 103km3;DIN平均濃度約為(4.36±3.60),(3.17±2.38), (6.84±3.37),(4.71±1.87)μmol/L;對DIN總量的貢獻比例分別為33.6%,26.4%,57.7%,78.8%(圖7),由此可知,秋、冬季以Y對DIN總量的貢獻為主.春季Y多分布于表中層水體;夏季Y的范圍縮小至四季最小(圖5),春季~夏季DIN濃度隨著浮游植物生長繁殖的消耗越來越低[16],且因溫躍層的存在,底層水體高濃度DIN無法對表中層水體進行補充[2,52,54],因此Y在春、夏季對DIN總量的貢獻較小.而秋季浮游植物活動開始減弱,伴隨著降溫和大風的垂直擾動影響,Y占據(jù)調(diào)查海區(qū)大部分海域(圖5),由于溫躍層的逐漸消失和垂直擾動作用的影響,底層高濃度DIN對表層水體進行補充,使得DIN濃度達到全年最高,因此,秋季Y對DIN總量貢獻最大.冬季隨著垂直混合作用加強和YW、YE北上,Y整體向北擴展,體積增至最大,因而對調(diào)查海域該季節(jié)DIN總量貢獻最大.

YC是黃海最保守的季節(jié)性水團,主要盤踞在黃海中央底層水體(圖5),其形成與黃海海底地形、溫躍層和深度相關[69]. YC在春、夏和秋季體積分別約為3.7×103,9.3×103,2.0×103km3;DIN濃度分別約為(5.52 ± 3.39),(5.57 ± 2.91),(10.50 ± 4.00) μmol/L;對DIN總量的貢獻比例分別為23.4%,71.5%,19.6%.因此,夏季以YC對DIN總量的貢獻最大,其DIN含量為7.24×105t. YC于春季黃海北部開始形成,前一年冬季冷水有助于春季YC的形成[70],雖然DIN濃度高于Y,但是規(guī)模尚小,體積約為Y的1/2,因而貢獻也相對Y較小.夏季YC規(guī)模最大[2],受南風作用南下[70]延伸至濟州島附近,幾乎覆蓋整個南北黃海中央底層區(qū)域.此時,底層浮游植物殘體被分解成DIN重新回到水體中,加之水體的層化作用使得YC中高濃度DIN無法擴散進入上層水體[2,52,54],YC中DIN濃度在該季最高,體積較其他季節(jié)也最大,因此,對DIN總量貢獻最高,進而YC成為整個黃海DIN的主儲備庫,這與王保棟等[3]研究結論一致.秋季隨著降溫和垂直擾動作用的增強,YC向西北方向回縮至黃海中央海域[70],貢獻比例與春季接近.冬季隨著降溫和垂直混合作用的進一步加強,YC消失.

YW是由黃海暖流與黃海水混合而成,受北風作用驅動形成[72-77],多分布于底層水體(圖5), YW在秋、冬和春季體積分別約為0.5×103,0.2×103,4.7× 103km3;DIN濃度分別約為(9.98±5.92),(12.19± 1.76), (8.01±3.83) μmol/L;對DIN總量的貢獻比例分別為4.3%,3.6%,42.8%.由此可知,春季以YW對DIN總量的貢獻最為突出,其DIN含量為5.3×105t,且YW所攜帶的DIN濃度較高,這與Jin等[44]、Fu等[46]和Guo等[78]研究結論一致.秋季隨著降溫和季風作用的加強YW攜帶高濃度DIN從黃海東南端開始入侵,冬季隨著季風作用進一步加強,YW進一步向西北方向迅速擴展[73,79-81],延伸至黃海中部海域,強度達到全年最高,雖然DIN濃度較高,體積卻較小.因此,秋、冬季YW對DIN總量貢獻不大.春季YW繼續(xù)北上擴張至36.5°N[82-83],影響范圍全年最大[84],且在34°N以南123.5°E以東海域表層呈舌狀向西北方向擴張,體積達四季最大,加上攜帶較高濃度DIN,因而對春季DIN總量貢獻最大.夏季YW消失.

表2 研究海域不同季節(jié)各水團體積、DIN濃度和含量

注:1./代表可以忽略不計.2.*代表冬季補足缺失部分后總量.

圖7 各水團對DIN含量貢獻比例的季節(jié)變化

CW是由黃海沿岸徑流與黃海水混合而成,分布于黃海沿岸區(qū)域(圖5).因本研究近岸調(diào)查站位較少,故根據(jù)實際站位進行討論,本研究CW存在于春、夏季.春季CW分布在長江口以北的表底層和鴨綠江口附近表層海域,夏季隨著河流徑流量的增大, CW在長江口明顯呈舌狀向東北方向擴展,在山東半島和遼東半島表層水體也開始向外擴展,其分布面積達到最大.秋季隨著徑流量減少僅分布在鴨綠江口附近,冬季隨著河流枯水期的到來,CW消失. CW在春、夏季體積分別約為0.01×103,0.2×103km3; DIN濃度分別約為(14.13±4.70),(5.28±4.26)μmol/L;對DIN總量的貢獻比例分別為0.2%,1.8%,貢獻較小,幾乎可忽略不計.

YE是由東海水北上與黃海水混合而成,主要分布于研究海域南部(圖5),存在于夏、冬季, YE在夏、冬季體積分別約為0.3×103,1.0×103km3;DIN濃度分別約為(0.62±0.10),(5.20±2.77)μmol/L;對DIN總量的貢獻比例分別為0.3%,9.2%.由此可見,YE對DIN總量的貢獻冬季比夏季高.夏季YE分布于34°N以北123.5°E以東小部分海域,水團體積和DIN濃度均較小,其貢獻可忽略不計.冬季表層分布于34°N以南海域,底層移至33.5°N以南海域,水團體積和DIN濃度較夏季均增大,因而對DIN總量貢獻較夏季大.

綜上所述,調(diào)查海域春季~冬季黃海各水團DIN總量分別為1.2×106,1.0×106,1.5×106和0.8× 106t.由于各個航次調(diào)查海域的區(qū)域性差別(冬季航次東至124°E以西,北至39°N;其他季節(jié)東至125°E,北約至40°N),為了更好的比較DIN總量的季節(jié)變化,本文估算了冬季航次缺失部分的DIN總量,冬季航次水體體積為1.6×104km3,冬季DIN總量為1.3×106t.由此可以看出,夏季DIN總量略低,受浮游植物消耗作用較為明顯.從不同季節(jié)水團對DIN含量貢獻比例來看,春季以YW為主,高達42.8%;夏季以YC為主,高達71.5%;秋冬季以Y為主,貢獻比例分別為57.7%和78.8%.

3 結論

3.1 2013~2016年黃海DIN的濃度在0.24~ 18.01μmol/L之間,平均值在4.47~7.46μmol/L之間,春、夏、秋和冬季DIN平均值分別為(5.43±4.02), (4.47±3.16),(7.46±3.56)和(5.09±2.59)μmol/L.DIN濃度平均值季節(jié)變化整體表現(xiàn)為秋季最高、夏季最低,秋、冬季高于春、夏季.其平面分布規(guī)律基本上呈現(xiàn)近岸高、外海低的分布特征.表層水體DIN濃度高值區(qū)主要集中在遼東半島、山東半島、蘇北沿岸及長江口以北近岸海區(qū),底層水體高值區(qū)多集中在中央海域;垂直方向上,除冬季外,黃海DIN濃度均表現(xiàn)為底層>表層>中層.

3.2 DIN的主要形態(tài)為NO3--N,春季~冬季, NO3--N所占DIN比例逐漸升高.NH4+-N所占DIN比例逐漸降低,其中春、夏季NH4+-N所占比例是秋、冬季的近3倍.

3.3 調(diào)查海域主要分布著5個水團:黃?;旌纤畧F、黃海冷水團、黃海暖流、沿岸水和黃東海混合水.其中黃?;旌纤畧F終年存在,而黃海冷水團和黃海暖流是典型的季節(jié)性水團.

3.4 黃海各水團DIN含量和對DIN總量貢獻因季節(jié)而異,春、夏、秋和冬季黃海所有水團中DIN總量分別為1.2×106,1.0×106,1.5×106和1.3×106t,夏季總量最低.從水團對DIN總量的貢獻分析,春季以黃海暖流為主,夏季以黃海冷水團為主,秋、冬季以黃?;旌纤畧F為主.

[1] 米鐵柱,姚慶禎,孟 佳,等.2011年春、夏季黃海、東海營養(yǎng)鹽分布特征研究[J]. 海洋與湖沼, 2012,43(3):678-688. Mi T Z, Yao Q Z, Meng J, et al. Distributions of nutrients in the Southern Yellow Sea and East China Sea in spring and summer 2011 [J]. Oceanologia et Limnologia Sinica, 2012,43(3):678-688.

[2] Wei Q S, Yu Z G, Wang B D, et al, Coupling of the spatial–temporal distributions of nutrients and physical conditions in the southern Yellow Sea [J]. Journal of Marine Systems, 2016,156:30-45.

[3] 王保棟,王桂云,鄭昌洙,等.南黃海營養(yǎng)鹽的平面分布及橫向輸運[J]. 海洋學報, 1999,21(6):124-129. Wang B D, Wang G Y, Zheng C Z, et al. Horizontal distributions and transportation of nutrients in the southern Huanghai Sea [J]. Haiyang Xuebao, 1999,21(6):124-129.

[4] 王保棟.黃海和東海營養(yǎng)鹽分布及其對浮游植物的限制[J]. 應用生態(tài)學報, 2003,14(7):1122-1126. Wang B D. Nutrient distributions and their limitation on phytoplankton in the Yellow Sea and the East China Sea [J]. Chinese Journal of Applied Ecology, 2003,14(7):1122-1126.

[5] Liu S M, Hong G H, Zhang J, et al. Nutrient budgets for large Chinese estuaries [J]. Biogeosciences, 2009,6(10):2245-2263.

[6] 韋欽勝,于志剛,冉祥濱,等.黃海西部沿岸流系特征分析及其對物質(zhì)輸運的影響[J]. 地球科學進展, 2011,26(2):145-156. Wei Q S, Yu Z G, Ran X B, et al. Characteristics of the Western Coastal Current of the Yellow Sea and its impacts on material transportation [J]. Advances in Earth Science, 2011,26(2):145-156.

[7] 韋欽勝,臧家業(yè),魏修華,等.秋季南黃海西部營養(yǎng)鹽的分布及其與環(huán)流場的關系[J]. 海洋學報, 2011,33(1):74-82. Wei Q S, Zang J Y, Wei X H, et al. The distribution of nutrients and the relationship of them with the circulation condition in the western southern Huanghai Sea in autumn [J]. Haiyang Xuebao, 2011,33(1): 74-82.

[8] Zheng L W, Zhai W D, Wang L F, et al. Improving the understanding of central Bohai Sea eutrophication based on wintertime dissolved inorganic nutrient budgets: Roles of North Yellow Sea water intrusion and atmospheric nitrogen deposition [J]. Environmental Pollution, 2020,267:115626.

[9] Abal E G, Bunn S E, Dennison W C. Healthy waterways healthy catchments: Making the connection in South East Queensland [M]. Moreton Bay Waterways and Catchments Partnership, Brisbane, Australia, 2005:240.

[10] Wang J J, Yu Z G, Wei Q S, et al. Long-term nutrient variations in the Bohai Sea over the past 40years [J]. Journal of Geophysical Research: Oceans, 2018,124(1):703-722.

[11] Wei Q S, Wang B D, Yao Q Z, et al. Hydro-biogeochemical processes and their implications for Ulva prolifera blooms and expansion in the world's largest green tide occurrence region (Yellow Sea, China) [J]. The Science of the Total Environment, 2018,645(DEC.15):257-266.

[12] Gilbert P M. Eutrophication, harmful algae and biodiversity — Challenging paradigms in a world of complex nutrient changes [J]. Marine Pollution Bulletin, 2017,124(2):591-606.

[13] Ferreira J G, Bricker S B, Simas T C. Application and sensitivity testing of a eutrophication assessment method on coastal systems in the United States and European Union [J]. Journal of Environmental Management, 2007,82(4):433-445.

[14] Jackson C, Preston N, Thompson P J, et al. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm [J]. Aquaculture, 2003,218(1-4):397-411.

[15] Naylor R L, Goldburg R J, Mooney H. Natures subsidies to shrimp and salmon farming [J]. Science, 1998,282:883-884.

[16] 王俊杰,于志剛,韋欽勝,等.2017年春、夏季南黃海西部營養(yǎng)鹽的分布特征及其與滸苔暴發(fā)的關系[J]. 海洋與湖沼, 2018,49(5):1045- 1053. Wang J J, Yu Z G, Wei Q S, et al. Distributions of nutrients in the Western South Yellow Sea in spring and summer of 2017 and their relationship with Ulva prolifera outbreaks [J]. Oceanologia et Limnologia Sinica, 2018,49(5):1045-1053.

[17] 李緒錄,張軍曉,史華明,等.深圳灣及鄰近沿岸水域總溶解氮的分布、組成和來源及氮形態(tài)的轉化[J]. 環(huán)境科學學報, 2014,34(8): 2027-2034. Li X L, Zhang J X, Shi 11M, et al. Transformation of nitrogenous forms, and composition, sources and distributions of total dissolved nitrogen in the Shenzhen Bay and adjacent coastal waters [J]. Acta Scientiae Circumstantiae, 2014,34(8):2027-2034.

[18] Lin A, Shen S, Wang G, et al. Comparison of chlorophyll and photosynthesis parameters of floating and attached Ulva prolifera [J]. Journal of integrative plant biology, 2011,53(1):25-34.

[19] Keesing J K, Liu D, Fearns P, et al. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007~2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China [J]. Marine Pollution Bulletin, 2011,62(6):1169- 1182.

[20] Li H M, Zhang C S, Han X R, et al. Changes in concentrations of oxygen, issolved nitrogen, phosphate, and silicate in the southern Yellow Sea, 1980~2012: sources and seaward gradients [J]. Estuarine Coastal and Shelf Science, 2015,163(20):44–55.

[21] Perrot T, Rossi N, Ménesguen A, et al. Modelling green macroalgae blooms on the coasts of Brittany, France to enhance water quality management [J]. Journal of Marine Systems, 2014,132(4):38–53.

[22] Liu D Y, Keesing J K, Dong Z, et al. Recurrence of Yellow Sea green tide in June 2009 confirms coastal seaweed aquaculture provides nursery for generation of macroalgae blooms [J]. Marine Pollution Bulletin, 2010,60(9):1423–1432.

[23] Liu D Y, Keesing J K, Xing Q, et al. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China [J]. Marine Pollution Bulletin, 2009,58(6):888–895.

[24] Nelson T A, Nelson A V, Tjoelker M. Seasonal and spatial patterns of Green Tides (ulvoid algal blooms) and related water quality parameters in the coastal waters of Washington State, USA [J]. Botanica Marina, 2003,46(3):263-275.

[25] Li H M, Zhang Y Y, Chen J, et al. Nitrogen uptake and assimilation preferences of the main green tide alga Ulva prolifera in the Yellow Sea, China [J]. Journal of Applied Phycology, 2019,31(1):625-635.

[26] 吳老五,韓秀榮,吳 婷,等.重金屬對滸苔吸收硝酸鹽的動力學特性影響 [J]. 中國環(huán)境科學, 2016,36(4):1173-1180. Wu L W, Han X R, Wu T, et al. Effects of heavy metals on the uptake of nitrate by Ulva prolifera. [J]. China Environmental Science, 2016, 36(4):1173-1180.

[27] 張海波,王 爽,尹 航,等.2018年南黃海滸苔綠潮發(fā)展規(guī)律及氮組分的作用探究 [J]. 海洋學報, 2020,42(8):40-49. Zhang H B, Wang S, Yin H, et al. The development of Ulva prolifera green tide and the roles of nitrogen nutrients in it in the southern Yellow Sea in 2018 [J]. Haiyang Xuebao, 2020,42(8):40-49.

[28] Shi X Y, Qi M Y, Tang H J, et al. Spatial and temporal nutrient variations in the Yellow Sea and their effects on Ulva prolifera blooms [J]. Estuarine, Coastal and Shelf Science, 2015,163:36-43.

[29] Morand P, Merceron M. Coastal eutrophication and excessive growth of macroalgae [J]. Recent Research Developments in Environmental Biology, 2004,1:395-449.

[30] Teichberg M, Fox S E, Olsen Y S, et al. Eutrophication and macroalgae blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp [J]. Global Change Biology, 2010,16:2624-2637.

[31] Liu D Y, Keesing J K, He P M, et al. The world's largest macroalgae bloom in the Yellow Sea, China: formation and implications. Estuarine [J]. Coastal and Shelf Science, 2013,129:2-10.

[32] Chen L, Li C, Zhou K, Shi Y, et al. Effects of nutrient limitations on three species of zooplankton [J]. Haiyang Xuebao, 2018,37:58–68.

[33] Li H M, Zhang Y Y, Tang H J, et al. Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea [J]. Harmful Algae, 2017,63:164-172.

[34] GB/T. 12763.3-2007 海洋調(diào)查規(guī)范[S]. GB/T. 12763.3-2007 Specification of oceanographic investigation [S].

[35] 邱道立,周詩賚,李昌明.應用聚類分析法劃分黃海水團的初步研究[J]. 海洋學報(中文版), 1984,(3):281-292. Qiu D L, Zhou S L, Li C M. Application of cluster analysis method in determining water mass of the Huanghai Sea [J]. Haiyang Xuebao, 1984,(3):281-292.

[36] 李鳳岐,蘇育嵩,喻祖祥.聚類分析在淺海變性水團分析中的試驗[J]. 海洋學報, 1983,(6):675-686. Li F Q, Su Y S, Yu Z X. Application of cluster analysis method to modified water masses in the shallow sea [J]. Haiyang Xuebao, 1983,(6):675-686.

[37] 李鳳岐,蘇育嵩,王鳳欽,等.用模糊集合觀點討論水團的有關概念[J]. 海洋與湖沼, 1986,17(2):102-110.Li F Q, Su Y S, Wang F Q, et al. Discussion of some concepts of the water mass by the theory of fuzzy sets [J]. Oceanologia et Limnologia Sinica, 1986,17(2):102-110.

[38] 臧 璐.北黃海生源要素的季節(jié)特征及冷水團對其影響的研究[D]. 山東:中國海洋大學, 2009. Zang L. The Research of biogenic elements' seasonal characteristics in the North Yellow Sea and the contribution of the North Yellow Sea Cold water mass [D]. Shandong: Ocean University of China, 2009.

[39] Wang J J, Yu Z G, Wei Q S, et al. Intra- and inter-seasonal variations in the hydrological characteristics and nutrient conditions in the southwestern Yellow Sea during spring to summer [J]. Marine Pollution Bulletin, 2020,156(111139):1-15.

[40] 趙晨英,臧家業(yè),劉 軍,等.黃渤海氮磷營養(yǎng)鹽的分布,收支與生態(tài)環(huán)境效應[J]. 中國環(huán)境科學, 2016,36(7):2115-2127. Zhao C Y, Zang J Y, Liu J, et al. Distribution and budget of nitrogen and phosphorus and their influence on the ecosystem in the Bohai Sea and Yellow Sea [J]. China Environmental Science, 2016,36(7):2115- 2127.

[41] 王麗莎,張傳松,王 顥,等.夏季黃渤海生源要素的平面分布特征[J]. 海洋環(huán)境科學, 2015,34(3):361-366,383. Wang L S, Zhang C S, Wang H, et al. Horizontal distribution features of biogenic elements in Bohai Sea and the Yellow Sea in summer [J]. Marine Environmental Science, 2015,34(3):361-366,383.

[42] 殷京玉,金春潔,石曉勇,等.2013年夏秋季黃海溶解無機氮的分布及季節(jié)變化特征[J]. 海洋通報, 2017,36(1):74-81. Yin J Y, Jin C J, Shi X Y, et al. Distribution and seasonal variation in dissolved inorganic nitrogen of the Yellow Sea in summer and autumn of 2013 [J]. Marine Science Bulletin, 2017,36(1):74-81.

[43] 唐 永,孫語嫣,石曉勇,等.黃渤海海域秋季營養(yǎng)鹽及有色溶解有機物分布特征[J]. 環(huán)境科學, 2017,38(11):4501-4512. Tang Y, Sun Y Y, Shi X Y, et al. Distribution Characteristics of Chromophoric Dissolved Organic Matter and Nutrients from the Yellow Sea and Bohai Sea in Autumn [J]. Environmental Science, 2017,38(11):4501-4512.

[44] Jin J, Liu S M, Ren J L, et al. Nutrient dynamics and coupling with phytoplankton species composition during the spring blooms in the Yellow Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013,97:16-32.

[45] 王 婷,石曉勇,張傳松,等.2008年黃海滸苔綠潮爆發(fā)區(qū)營養(yǎng)鹽濃度變化及分布特征 [J]. 海洋通報, 2011,30(5):578-582. Wang T, Shi X Y, Zhang C S, et al. Variations in nutrient concentration and distribution for green tide of Enteromorpha prolifera occurrence areas of the Yellow Sea in 2008 [J]. Marine Science Bulletin, 2011, 30(5):578-582.

[46] Fu M, Wang Z, Li Y, et al. Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): Seasonal variability [J]. Continental Shelf Research, 2009,29(18):2178-2194.

[47] Wang B D, Wang X L, Zhan R. Nutrient conditions in the Yellow Sea and the East China Sea [J]. Estuarine Coastal and Shelf Science, 2003,58(1):127-136.

[48] Li H M, Tang H J, Shi X Y, et al. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased Harmful Algal Blooms [J]. Harmful Algae, 2014,39:92-101.

[49] 江蓓潔,鮑獻文,吳德星,等.北黃海冷水團溫、鹽多年變化特征及影響因素[J]. 海洋學報, 2007,29(4):1-10. Jiang B J, Bao X W, Wu D X, et al. Interannual variation of temperature and salinity of northern Huanghai Sea Cold Water Mass and its probable cause [J]. Haiyang Xuebao, 2007,29(4):1-10.

[50] 張傳松.長江口及鄰近海域赤潮生消過程特征及其營養(yǎng)鹽效應分析[D]. 山東:中國海洋大學, 2008. Zhang C S. The Characteristic and Effects of Nutrient during the Process of HAB in Changjiang River Estuary and its Adjacent Area [D]. Shandong: Ocean University of China, 2008.

[51] Zhang H B, Su R G, Shi X Y, et al. Role of nutrients in the development of floating green tides in the Southern Yellow Sea, China, in 2017 [J]. Marine Pollution Bulletin, 2020,156:111197.

[52] Yang F X, Wei Q S, Chen H T, et al. Long-term variations and influence factors of nutrients in the western North Yellow Sea, China [J]. Marine Pollution Bulletin, 2018,135:1026-1034.

[53] 蔣 昊,趙 亮,張 晶.黃海溶解無機氮及顆粒有機氮收支與轉化模型 [J]. 中國環(huán)境科學, 2020,40(9):3981-3991. Jiang H, Zhao L, Zhang J. Budgets and transformation of dissolved inorganic and particulate organic nitrogen in the Yellow Sea: A model study [J]. China Environmental Science, 2020,40(9):3981-3991.

[54] 韋欽勝,劉 璐,戰(zhàn) 閏,等.夏季南黃海海水化學要素的分布特征及影響因素[J]. 中國海洋大學學報(自然科學版), 2010,40(1):82-88. Wei Q S, Liu L, Zhan R, et al. Distribution Features of the Chemical Parameters in the Southern Yellow Sea in Summer [J]. Journal of Ocean University of China, 2010,40(1):82-88.

[55] Flynn K J. Algal carbon-nitrogen metabolism: a biochemical basis for modelling the interactions between nitrate and ammonium uptake [J]. Journal of Plankton Research, 1991,(2):373-387.

[56] Hanisak M D. The Nitrogen Relationships of Marine Macroalgae [J]. Nitrogen in the Marine Environment, 1983:699-730.

[57] Maestrini S Y, Robert J M, Leftley J W, et al. Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae [J]. Journal of Experimental Marine Biology & Ecology, 1986, 102(1):75-98.

[58] 田千桃,霍元子,王陽陽,等.滸苔對NH4+-N與NO3--N吸收的相互作用[J]. 海洋科學, 2010,(7):41-45. Tian Q T, Huo Y Z, Wang Y Y, et al. The interaction between NH4+-N and NO3--N in nitrogen uptaking by Ulva prolifera [J]. Marine Sciences, 2010,(7):41-45.

[59] 何 潔,劉 瑀,張立勇,等.三種大型海藻吸收營養(yǎng)鹽的動力學研究[J]. 漁業(yè)現(xiàn)代化, 2010,37(1):1-5. He J, Liu Y, Zhang L Y, et al. Study on the nutrient uptake kinetics of three kinds of macro_alga [J]. Fishery Modernization, 2010,37(1):1-5.

[60] 吳 婷,田小亭,劉召輝,等.滸苔對不同氮源吸收特性的初步研究[J]. 海洋科學, 2011,35(4):51-54. Wu T, Tian X T, Liu Z H, et al. Absorption of different nitrogen species by[J]. Marine Sciences, 2011,35(4): 51-54.

[61] 李儉平.滸苔對氮營養(yǎng)鹽的響應及其氮營養(yǎng)鹽吸收動力學和生理生態(tài)研究[D]. 北京:中國科學院研究生院(海洋研究所), 2011. Li J P. The response to nitrogen nutrient, and the uptake kinetics mechanism of nitrogen and ecophysiaiagical analysis of[D]. Beijing: University of Chinese Academy of Sciences, 2011.

[62] 海洋化學圖集編委會.渤海黃海東海海洋圖集--化學卷[M].北京:海洋出版社, 1991:99-103. Editorial board for the atlas of marine chemistry. Marine atlas of Bohai Sea Yellow Sea East Sea—Chemistry [M]. Beijing: China Ocean Press, 1991:99-103.

[63] 高生泉,林以安,金明明,等.春、秋季東、黃海營養(yǎng)鹽的分布變化特征及營養(yǎng)結構[J]. 東海海洋, 2004,22(4):38-50. Gao S Q, Lin Y A, Jin M M, et al. Distribution features of nutrients and nutrient structure in the East China Sea and the Yellow Sea in spring and autumn [J]. Donghai Marine Science, 2004,22(4):38-50.

[64] 李瑞香,吳曉文,韋欽勝,等.不同營養(yǎng)鹽條件下滸苔的生長[J]. 海洋科學進展, 2009,(2):211-216. Li R X, Wu X W, Wei Q S, et al. Growth ofunder different nutrient conditions [J]. Advances in Marine Science, 2009,(2):211-216.

[65] 李儉平,趙衛(wèi)紅,付 敏,等.氮磷營養(yǎng)鹽對滸苔生長影響的初步探討[J]. 海洋科學, 2010,34(4):45-48. Li J P, Zhao W H, Fu M, et al. Preliminary study on the effects of nitrogen and phosphorus on the growth of[J]. Marine Sciences, 2010,34(4):45-48.

[66] 國家海洋局.2009年中國海洋災害公報[J]. 海洋開發(fā)與管理, 2010,(2):70. State Oceanic Administration (SOA). 2009 China marine disaster bulletin [J]. Ocean Development and Management, 2010,(2):70.

[67] 劉樹勛,沈新強,王幼琴,等.渤、黃、東海水團多年月平均分布與變化的初步分析[J]. 海洋學報(中文版), 1993,15(4):1-11. Liu S X, Shen X Q, Wang Y Q, et al. Preliminary analysis on the monthly mean distribution and variation of water masses in the Bohai Sea, Yellow Sea and East China Sea over the years [J]. Haiyang Xuebao, 1993,15(4):1-11.

[68] 張啟龍,翁學傳,楊玉玲.南黃海春季水團分析[J]. 海洋與湖沼, 1996,(4):421-428. Zhang Q L, Weng X C, Yang Y L. Analysis of water masses in the South Yellow Sea in spring [J]. Oceanologia et Limnologia Sinica, 1996,(4):421-428.

[69] Nakao T. Oceanic Variability in Relation to Fisheries in the East China Sea and the Yellow Sea [J]. Journal of the Faculty of Marine Science and Technology, 1977,1:199-367.

[70] Zhong Y, Qiao L, Song D, et al. Impact of cold water mass on suspended sediment transport in the South Yellow Sea [J]. Marine Geology, 2020,106244:1-20.

[71] Wang B, Hirose N, Kang B, et al. Seasonal migration of the Yellow Sea Bottom Cold Water [J]. Journal of Geophysical Research: Oceans, 2014,119(7):4430-4443.

[72] Yuan D L, Hsueh Y. Dynamics of the cross-shelf circulation in the Yellow and East China Seas in winter [J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010,57(19/20):1745-1761.

[73] Tak Y J, Cho Y K, Seo G H, et al. Evolution of wind‐driven flows in the Yellow Sea during winter [J]. Journal of Geophysical Research Oceans, 2016,121(3):1970-1983.

[74] Teague, G. A. Jacobs. Current observations on the development of the Yellow Sea Warm Current [J]. Journal of Geophysical Research: Oceans, 2000,105:3401-3411.

[75] Hsueh Y, Pang I C. Coastally Trapped Long Waves in the Yellow Sea [J]. Journal of Physical Oceanography, 1989,19(5):612-625.

[76] Hsueh Y. Recent current observations in the eastern Yellow Sea [J]. Journal of Geophysical Research: Oceans, 1988,93(C6):6875-6884.

[77] Park Y H. A simple theoretical model for the upwind flow in the southern Yellow Sea [J]. Oceanological Society Korea, 1986,21:203– 210.

[78] Guo C C, Zhang G C, Sun J, et al. Seasonal responses of nutrient to hydrology and biology in the southern Yellow Sea [J]. Continental Shelf Research, 2020,206:104207.

[79] Wang F, Liu C Y, Meng Q J. Effect of the Yellow Sea warm current fronts on the westward shift of the Yellow Sea warm tongue in winter [J]. Continental Shelf Research, 2012,45:98-107.

[80] Mei X, Li R H, Zhang X H, et al. Evolution of the Yellow Sea Warm Current and the Yellow Sea Cold Water Mass since the Middle Pleistocene [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016,442:48-60.

[81] Ding Y, Bao X W, Yao Z G, et al. Effect of coastal-trapped waves on the synoptic variations of the Yellow Sea Warm Current during winter [J]. Continental Shelf Research, 2018,167:14-31.

[82] 鄒娥梅,郭炳火,湯毓祥,等.1996年春季南黃海水文特征和水團分析[J]. 海洋學報(中文版), 2000,(1):17-26. Zou E M, Guo B H, Tang Y X, et al. The hydrographic features and water masses analyses of the southern Huanghai Sea in the spring of 1996 [J]. Haiyang Xuebao, 2000,(1):17-26.

[83] 于 非,張志欣,刁新源,等.黃海冷水團演變過程及其與鄰近水團關系的分析[J]. 海洋學報(中文版), 2006,(5):26-34. Yu F, Zhang Z X, Diao X Y, et al. Analysis of evolution of the Huanghai Sea Cold Water Mass and its relationship with adjacent water masses [J]. Haiyang Xuebao, 2006,(5):26-34.

[84] 王輝武.黃海暖流季節(jié)和年際變化研究[D]. 山東:國家海洋局第一海洋研究所, 2008. Wang H W. Study on Seasonal and inter-annual variations of the Yellow Sea Warm Current [D]. Shandong: First Institute of Oceanography, State Oceanic Administration, 2008

Spatial-temporal variation of dissolved inorganic nitrogen (DIN) and impacts of water mass on the reserves estimation of the total DIN content in the Yellow Sea.

JIN Chun-jie1,2, ZHANG Chuan-song1,2, WANG Li-sha1,2*, SHI Xiao-yong1,2,3, HAN Xiu-rong1,2, TANG Hong-jie1,2

(1.College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;2.Key Laboratory of Marine Chemistry Theory and Technology,Ministry of Education, Ocean University of China, Qingdao 266100, China;3.National Marine Hazard Mitigation Service, Beijing 100194, China)., 2021,41(4):1642~1654

Based on the data of 4 curies in 2013~2016, the distribution of DIN in the Yellow Sea、nitrogen pool and its influencing factors have been studied. Results showed that the average concentrations of DIN in the Yellow Sea were (5.43±4.02) μmol/L in spring, (4.47±3.16) μmol/L in summer, (7.46±3.56) μmol/L in autumn, and (5.09±2.59) μmol/L in winter, among which DIN contents reached maximum in autumn and minimum in summer, respectively. DIN concentrations declined from coastal zones to the offshore area. The DIN-rich sites near the coast were mostly centralized in the north of the Yangtze River estuary, Shandong Peninsula and Liaodong Peninsula. The main affecting factors all the year except winter were terrigenous input and the growth of phytoplankton, as the resuspension of the riverine input and sediment were the main factors affecting the distribution of DIN in winter. There was an area with high concentration of DIN(>6μmol/L) in the central area, which was co-influenced by the Yellow Sea warm current and the Yellow Sea Cold Water Mass. Cluster analysis has been used to classified the Yellow Sea water into 5 water masses, including the Yellow Sea water masses (Y), Yellow Sea cold water mass (YC), Yellow Sea warm current water (YW), Coastal water mass (CW) and Yellow Sea-East China Sea mixed water mass (YE), which was the main water mass in the researching sea area. All these water masses except for Y were seasonal. The total DIN content in the research field showed no obvious difference in all year, and their range was 1.0×106~1.5×106t. The DIN content was slightly lower in spring and summer under the influence of phytoplankton assimilation. The total DIN contents were about 1.2×106t in spring, 1.0×106t in summer, 1.5×106t in autumn, and 1.3×106t in winter, respectively. The contributions of water masses to the total DIN content were different in the varying season. In autumn and winter, Y was dominant, while in summer and spring, YW and YC played the dominant roles, respectively.

DIN;Yellow Sea;season;distribution;total content

X55

A

1000-6923(2021)04-1642-13

金春潔(1988-),女,山東青島人,中國海洋大學博士研究生,主要從事海洋污染生態(tài)化學研究.發(fā)表論文2篇.

2020-08-04

國家重點研發(fā)計劃項目(2016YFC1402101)

* 責任作者, 高級實驗師, lishawang@ouc.edu.cn

猜你喜歡
營養(yǎng)鹽黃海底層
航天企業(yè)提升采購能力的底層邏輯
東方濕地 黃海明珠
黃海簡介
涼水河子河營養(yǎng)鹽滯留能力評估
瓊東海域冬季、夏季營養(yǎng)鹽結構特征及其對浮游植物生長的影響
2012年冬季南海西北部營養(yǎng)鹽分布及結構特征
回到現(xiàn)實底層與悲憫情懷
太湖草源性“湖泛”水域沉積物營養(yǎng)鹽釋放估算
中國底層電影研究探略
略論“底層”