馮嵐 嚴(yán)巖 閆興成 韓建剛
摘 要:為揭示除草劑乙草胺脅迫下不同水位對(duì)濕地植物蘆葦生長(zhǎng)發(fā)育的影響及土壤酶的響應(yīng),為濕地生態(tài)恢復(fù)提供科學(xué)依據(jù),本文通過室內(nèi)模擬試驗(yàn)研究乙草胺脅迫下水位在0、 5、 10、15 cm時(shí),對(duì)濕地蘆葦生長(zhǎng)發(fā)育及土壤酶活性的影響。結(jié)果表明:在水深15 cm時(shí),除草劑乙草胺降解速率較快,乙草胺脅迫下水位波動(dòng)對(duì)濕地蘆葦?shù)闹旮呱L(zhǎng)量、莖粗和干重?zé)o顯著影響,濕地蘆葦?shù)纳L(zhǎng)不受影響,在生理特性方面水深10 cm時(shí),蘆葦葉片葉綠素含量最高,為0.36 mg/g,顯著高于水深0 cm時(shí)的含量,而此時(shí),可溶性糖含量最大為42.17 mg/g;在水深15 cm時(shí),蘆葦葉片可溶性糖含量較低,顯著低于其他處理;乙草胺脅迫下隨著水位的加深,土壤過氧化氫酶和堿性磷酸酶活性在各個(gè)處理水平間差異不顯著,水深10 cm時(shí),蔗糖酶活性最大,為0.19 mg/g。因此,除草劑乙草胺質(zhì)量分?jǐn)?shù)為139.88 μg/kg,水深10 cm時(shí),土壤酶活性較高,可增強(qiáng)土壤中相關(guān)營(yíng)養(yǎng)元素的轉(zhuǎn)化效率,促進(jìn)濕地蘆葦生長(zhǎng)發(fā)育。
關(guān)鍵詞:水位;乙草胺;濕地;蘆葦;土壤酶
中圖分類號(hào):S154; X52; X826?? 文獻(xiàn)標(biāo)識(shí)碼:A? 文章編號(hào):1006-8023(2021)02-0024-06
Effects of Water Levels on Wetland Reed Growth and Soil
Enzyme Activities Under Acetochlor Stress
FENG Lan1,2, YAN Yan3*, YAN Xingcheng4, HAN Jiangang5,6,7
(1.College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China;2.Ecological Complexity and Modeling
Laboratory, Department of Botany and Plant Sciences, University of California, Riverside CA, 92521, USA; 3.Ecological Center,
Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; 4.Sorbonne Université,
UMR 7619 METIS,? Paris 75005, France; 5.College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
6.Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
7.National Positioning Observation Station of Hungtse Lake Wetland Ecosystem in Jiangsu Province, Hongze 223100, China)
Abstract:In order to reveal the effect of water level on the growth of wetland plant reeds and the response of soil enzymes under herbicide acetochlor stress, and to provide a scientific basis for wetland ecological restoration, this paper conducted indoor simulation experiments to studied the impact of different water levels on the growth of wetland reed and soil enzyme activity at the water depth of 0, 5, 10 and 15cm under acetochlor stress. The results showed that the degradation rate of acetochlor was fast at water depth of 15 cm. Under the stress of acetochlor with increasing water depths, the plant height, stem diameter and dry weight of reed were not significant, indicating the growth was not affected. In terms of physiological characteristics, chlorophyll content in reed leaves was the highest at water depth of 10 cm and was 0.36 mg/g higher than water depth of 0 cm. And soluble sugar content was 42.17 mg/g. The soluble sugar content in reed leaves at water depth of 15 cm was significantly lower than other treatments. However, effects of catalase and alkaline phosphatase activities in wetland soil were not significant between any treatments with the increase of water level under herbicide acetochlor stress. Sucrase activity was highest with 0.19 mg/g when water depth was 10 cm. Therefore, the concentration of herbicide
收稿日期:2020-10-24
基金項(xiàng)目:國家自然科學(xué)基金(42007151);國家重點(diǎn)研發(fā)計(jì)劃課題(2017YFC0505803);江蘇省高校自然科學(xué)研究面上項(xiàng)目(19KJB610015);南京林業(yè)大學(xué)青年科技創(chuàng)新基金(CX2017027);南京林業(yè)大學(xué)大學(xué)生實(shí)踐創(chuàng)新訓(xùn)練計(jì)劃項(xiàng)目(2019NFUSPITP0473)
第一作者簡(jiǎn)介:馮嵐,博士,講師。研究方向?yàn)楣こ汰h(huán)境和森林生態(tài)。E-mail: fenglan0108@126.com
通信作者:嚴(yán)巖,博士,助理研究員。研究方向?yàn)樯鷳B(tài)學(xué)。E-mail: jshayanyan@163.com
引文格式:馮嵐, 嚴(yán)巖,閆興成,等. 乙草胺脅迫下水位對(duì)濕地蘆葦生長(zhǎng)及土壤酶活性的影響[J].森林工程,2021,37(2):24-29.
FENG L, YAN Y, YAN X C, et al. Effects of water levels on wetland reed growth and soil enzyme activities under acetochlor stress[J]. Forest Engineering,2021,37(2):24-29.
acetochlor was 139.88 μg/kg at water depth of 10 cm, reed growth and soil enzyme activity in wetland were better, as well as enhance the conversion efficiency of related nutrients in soil and promote the growth and development of wetland reeds.
Keywords:Water level; acetochlor; wetland; reed; soil enzyme
0 引言
近年來,濕地生態(tài)需水研究已成為生態(tài)水資源研究的熱點(diǎn)問題,濕地植物生長(zhǎng)需水規(guī)律和濕地土壤環(huán)境受水質(zhì)影響是濕地生態(tài)需水研究的重要組成部分。農(nóng)田退水是濕地可利用水資源的重要補(bǔ)給方式之一[1-2],而農(nóng)田在退水中的污染物是影響濕地水質(zhì)的主要原因[3]。中國是水稻生產(chǎn)大國,水稻種植面積占全國耕地面積的23%[4]。為了提高作物單產(chǎn),農(nóng)藥的施用量逐年增加,在此過程中除草劑的殘留尤為嚴(yán)重,它們通常會(huì)通過大氣干濕沉降和農(nóng)田退水等方式進(jìn)入濕地中,威脅著濕地生態(tài)安全[5]。
水是濕地生態(tài)系統(tǒng)中最為敏感的環(huán)境因子,其中水位的變化影響著濕地空間分布和植物生長(zhǎng)[6],以及濕地土壤酶活性的變化[7]。受自然汛期和農(nóng)田退水等因素影響,濕地水域的水位及水體常常表現(xiàn)為時(shí)間和空間上的梯度性和斑塊性[8]。但針對(duì)除草劑脅迫下不同水位變化對(duì)濕地植物生長(zhǎng)及土壤酶活性的影響鮮有報(bào)道。除草劑乙草胺是一種苗前選擇性除草劑,多用于清除一年生禾本科雜草及部分闊葉雜草,因此使用范圍廣泛[9],目前已有研究表明乙草胺對(duì)一些植物和水生生物有致命性風(fēng)險(xiǎn)[10-11]。蘆葦作為典型且分布廣泛的濕地優(yōu)勢(shì)植物種群,具有良好的生態(tài)功能和廣泛的抗逆性,同時(shí)具有良好的經(jīng)濟(jì)價(jià)值。本文研究乙草胺脅迫下水位變化對(duì)濕地植物蘆葦生長(zhǎng)發(fā)育及土壤酶的影響,有助于評(píng)價(jià)農(nóng)田在退水中除草劑在濕地不同水位下對(duì)濕地植物和土壤的生態(tài)風(fēng)險(xiǎn),也可以為生態(tài)環(huán)境保護(hù)與恢復(fù)退化濕地生態(tài)系統(tǒng)提供科學(xué)理論基礎(chǔ)。
1 材料與方法
1.1 試驗(yàn)材料
試驗(yàn)試劑為99.9%乙草胺乳油(大連越達(dá)農(nóng)藥化工有限公司)。甲醇為色譜級(jí),購于J.T Baker (美國)。
1.2 試驗(yàn)方法
本實(shí)驗(yàn)的采集地為洞庭湖濕地,在蘆葦濕地土層中采集0~20 cm土壤,并將其中的植物殘?bào)w去除,而后將新鮮土樣風(fēng)干,過2 mm篩后均勻混合待用。供試驗(yàn)的土壤分別放置在試驗(yàn)桶中,并確保無除草劑乙草胺殘留。
在實(shí)驗(yàn)室將蘆葦種子育苗,蘆葦株高長(zhǎng)至5 cm時(shí)移栽到試驗(yàn)桶中,每個(gè)試驗(yàn)桶中存放10 kg已篩選好的土壤。待蘆葦株高長(zhǎng)勢(shì)穩(wěn)定并到達(dá)統(tǒng)一高度時(shí)施用乙草胺,質(zhì)量分?jǐn)?shù)為139.88 μg/kg。設(shè)置不同的淹水深度,分別為0 cm(水面與土面持平且保持表面濕潤(rùn),形成氣生環(huán)境)、5 cm(形成挺水環(huán)境)、10 cm(形成沉水環(huán)境)、15 cm(形成沉水環(huán)境),共4個(gè)處理水平,每個(gè)處理重復(fù)3次。
試驗(yàn)安排在常德職業(yè)技術(shù)學(xué)院的溫室大棚,試驗(yàn)從2018年9月10日至10月1日,在此期間蘆葦一直保持設(shè)定的淹水深度,且保證生長(zhǎng)條件一致。
1.3 測(cè)定項(xiàng)目與方法
(1)有關(guān)蘆葦生長(zhǎng)指標(biāo)的測(cè)定。
株高:在每個(gè)試驗(yàn)桶中隨機(jī)選擇3株蘆葦并標(biāo)記其株高,待試驗(yàn)結(jié)束時(shí)計(jì)算每個(gè)試驗(yàn)桶中蘆葦?shù)脑鲩L(zhǎng)量。
莖粗:用游標(biāo)卡尺測(cè)量蘆葦?shù)幕壳o粗。
干質(zhì)量:試驗(yàn)結(jié)束后將試驗(yàn)桶中的蘆葦采集,裝入信封袋進(jìn)行105 ℃進(jìn)行1 h殺青,再80 ℃干燥24 h,最后稱取質(zhì)量。
(2)葉綠素含量的測(cè)定。采用分光光度法[12]。
(3)可溶性糖含量的測(cè)定。采用蒽酮比色法[12]。
(4)土壤酶活性的測(cè)定。土壤堿性磷酸酶采用磷酸苯二鈉比色法[13],土壤蔗糖酶采用3,5-二硝基水楊酸比色法[14],土壤過氧化氫酶采用高錳酸鉀滴定法[14]。
(5)乙草胺的測(cè)定。
采用高效液相色(HPLC)譜法測(cè)定[15],對(duì)樣品量取 100 mL 水樣,用濾紙過濾入500 mL 分液漏斗中,在濾液中加入10%NaCl 水溶液100 mL,加入0.5 mL 6 mol/L 鹽酸,分別用40、40、20 mL二氯甲烷萃取3 次,二氯甲烷液經(jīng)無水硫酸鈉脫水后,在40 ℃下減壓蒸干,用10 mL 甲醇定容,供液相色譜測(cè)定。色譜柱為Hypersil ODS 4.6 mm×250 mm;流動(dòng)相為甲醇∶水為40∶60;檢測(cè)波長(zhǎng)為220 nm;流速為1.0 mL/min;柱溫為30 ℃;進(jìn)樣量為20 μL。
1.4 數(shù)據(jù)處理
本文研究中試驗(yàn)結(jié)果的顯著性分析,采用鄧肯氏新復(fù)極差多重比較法(DMRT);數(shù)據(jù)分析、作圖采用SPSS 13.0和Origin 7.5。
2 結(jié)果與分析
2.1 乙草胺在不同水位深度中的降解規(guī)律
由圖1可知,試驗(yàn)初期(7 d),乙草胺在不同水位深度下降解速率較快,在5、10、15 cm不同水位深度下乙草胺的降解速率分別為98.87%、89.99%、90.74%。隨著時(shí)間的增加,乙草胺在不同水位深度下降解速率趨于平穩(wěn),試驗(yàn)結(jié)束時(shí)(28 d),不同水位深度下均無乙草胺檢出。
2.2 乙草胺脅迫下不同水位深度對(duì)濕地蘆葦生長(zhǎng)發(fā)育的影響
本研究中,隨著水位不斷加深,蘆葦株高呈現(xiàn)出先增長(zhǎng)后降低的趨勢(shì)。由圖2(a)可知,在水深10 cm時(shí),蘆葦株高增長(zhǎng)量出現(xiàn)最大值,為4.55 cm,但與各個(gè)處理水平間未達(dá)到顯著差異水平(P>0.05)。由圖2(b)可知,蘆葦莖粗在5 cm和10 cm水深下顯著高于其他水位深度處理,且10 cm時(shí)蘆葦莖粗最大。由圖2(c)可知,隨著水位深度的增加,蘆葦干質(zhì)量呈先增加后降低的趨勢(shì),在10 cm深度時(shí)干質(zhì)量最高為0.26 g,但各個(gè)處理水平間未達(dá)到差異顯著水平(P>0.05)。
2.3 乙草胺脅迫不同水位深度對(duì)濕地蘆葦生理的影響
乙草胺脅迫下水位深度對(duì)濕地蘆葦葉片葉綠素含量的影響如圖3(a)所示,隨著水位不斷加深,蘆葦葉片的葉綠素含量出現(xiàn)了與株高一樣的發(fā)展趨勢(shì),呈先增加后降低的趨勢(shì)。在5 cm和10 cm水深時(shí)葉綠素含量高于0 cm水深,高出的值分別為0.27 mg/g和0.36 mg/g,且在水深10 cm時(shí)葉綠素含量最高。由圖3(b)可知,蘆葦可溶性糖含量呈先增加后減小的趨勢(shì),在15 cm水深時(shí)顯著低于其他處理,且10 cm水深時(shí)最大值是42.17 mg/g。
2.4 乙草胺脅迫下不同水位深度對(duì)濕地土壤酶的影響
乙草胺脅迫下不同水深對(duì)濕地土壤酶的影響如圖4所示。由圖4(a)可知,土壤過氧化氫酶隨著水位深度的增加呈先增加后減少的趨勢(shì),且10 cm水深時(shí),土壤過氧化氫酶活性顯著高于其他處理水平(P<0.05)。由圖4(b)可知,0 cm水深時(shí)堿性磷酸酶活性最大為0.12 mL/g,但各個(gè)處理水平間差異不顯著(P>0.05)。由圖4(c)可知,土壤蔗糖酶活性在5 cm和10 cm水深時(shí)顯著高于其他水深處理(P<0.05),且10 cm時(shí)蔗糖酶活性最大為0.19 mL/g。
3 討論與結(jié)論
水文過程是濕地的基本生態(tài)過程,水位的變化會(huì)對(duì)濕地植物生長(zhǎng)發(fā)育產(chǎn)生明顯的影響[16]。濕地植物對(duì)水位變化的響應(yīng)可以直觀地反映在植物的地上部分,隨著水位的不斷增加,植物裸露在水面以上的部分就會(huì)逐漸減少,隨著植物的光合作用就會(huì)受到抑制,同樣也會(huì)阻礙其正常生長(zhǎng)[16]。挺水植物大多會(huì)分配更多的生物量到地面上的部分,增加株高以伸出水面[17],從而自身獲取更多有利的光合條件或生存條件[18-19]。本研究中乙草胺脅迫下濕地蘆葦隨著水深的增加,株高增長(zhǎng)量和莖粗呈增加趨勢(shì),但各處理水平間差異不顯著。水位深度增加會(huì)促進(jìn)植物體內(nèi)乙烯迅速聚集[20-21],促使植物增加節(jié)長(zhǎng)度和減少分枝數(shù)等方式來增加株高和提高光能利用率,與此同時(shí),植物體內(nèi)乙烯能夠提高葉綠素酶基因表達(dá)和酶活性,從而降低自身葉綠素含量[22],這是濕地植物受到水深脅迫的策略。植物體中可溶性糖是光合作用的主要產(chǎn)物,乙草胺脅迫下水深最深時(shí),蘆葦葉片可溶性糖含量最低,而蘆葦葉片葉綠素含量則呈現(xiàn)先增加后降低的趨勢(shì),這兩種物質(zhì)含量的變化也是植物自身生理過程與外在環(huán)境條件綜合作用的結(jié)果。作為電子傳遞鏈的抑制劑與解偶聯(lián)劑,乙草胺對(duì)一年生禾本科植物及某些闊葉植物的光合作用會(huì)產(chǎn)生一些影響[23],但本研究顯示乙草胺脅迫下不同水深對(duì)蘆葦?shù)纳硖匦圆o顯著影響,主要原因可能是乙草胺在濕地中降解速度較快。
濕地土壤酶活性是濕地生態(tài)功能的重要指標(biāo)[24],土壤過氧化氫酶能很好地抑制土壤及生物體內(nèi)新陳代謝過程中產(chǎn)生的過氧化氫,并使土壤與生物體免受于其威脅。但在乙草胺脅迫下不同水位深度使得濕地土壤過氧化氫酶活性呈現(xiàn)先增加后降低的趨勢(shì),這與已有的研究結(jié)果一致[25-26]。土壤堿性磷酸酶可以幫助土壤中的有機(jī)磷化物轉(zhuǎn)化為植物可吸收的無機(jī)磷酸鹽,因此對(duì)于植物生長(zhǎng)具有重要作用。本研究中,乙草胺脅迫下不同水位對(duì)濕地土壤堿性磷酸酶活性未表現(xiàn)出抑制作用,這與淹水條件下酰胺類除草劑對(duì)土壤堿性磷酸酶的影響效果相似[27]。乙草胺脅迫下在水深10 cm時(shí),濕地土壤中蔗糖酶活性偏高,這與已有的研究結(jié)果相反,初步推斷產(chǎn)生這一結(jié)果的原因可能是在不同生境下,酰胺類除草劑可能對(duì)土壤微生物種群結(jié)構(gòu)產(chǎn)生了不同的影響[28],另外,這一結(jié)果也有可能與土壤中微生物的種群數(shù)量有關(guān)[29-32]。乙草胺脅迫下不同水深對(duì)濕地土壤酶活性的影響并不相同,這是由于同一底物對(duì)不同酶的響應(yīng)不同,除草劑有可能成為最適宜底物,而在另外一種酶中扮演著天然抑制劑角色。
蘆葦濕地系統(tǒng)在乙草胺的脅迫下,對(duì)不同水位深度變化的生態(tài)響應(yīng)是一個(gè)復(fù)雜過程,其中涉及許多物質(zhì)代謝和激素調(diào)節(jié)等生理生化過程。本文對(duì)乙草胺脅迫下不同水深對(duì)濕地蘆葦生長(zhǎng)發(fā)育、生理生化及土壤酶活性影響開展研究,而其對(duì)濕地蘆葦分子生物學(xué)特性的影響還有待進(jìn)一步研究。
【參考文獻(xiàn)】
[1]JIA Z, LUO W, XIE J, et al. Salinity dynamics of wetland ditches receiving drainage from irrigated agricultural land in arid and semiarid regions[J]. Agricultural Water Management, 2011, 100(1): 9-17.
[2]SCHOCK N T, MURRY B A, UZARSKI D G. Impacts of agricultural drainage outlets on great lakes coastal wetlands[J]. Wetlands, 2014, 34(2): 297-307.
[3]MAGNER J, ALEXANDER S C. Drainage and nutrient attenuation in a riparian interception-wetland: southern Minnesota, USA[J]. Environmental Geology, 2007, 54(7): 1367-1376.
[4]劉珍環(huán),楊鵬,吳文斌,等.近30年中國農(nóng)作物種植結(jié)構(gòu)時(shí)空變化分析[J].地理學(xué)報(bào),2016,71(5):840-851.
LIU Z H, YANG P, WU W B, et al. Spatio-temporal changes in Chinese crop patterns over the past three decades[J]. Acta Geographica Sinica, 2016, 71(5):840-851.
[5]章光新.東北糧食主產(chǎn)區(qū)水安全與濕地生態(tài)安全保障的對(duì)策[J].中國水利,2012,62(15):9-11.
ZHANG G X. Measures for securing water safety of main grain production base and wetland ecological safety in Northeast China[J]. China Water Resources, 2012, 62(15): 9-11.
[6]李文,王鑫,潘藝雯,等.不同水淹深度對(duì)鄱陽湖洲灘濕地植物生長(zhǎng)及營(yíng)養(yǎng)繁殖的影響[J].生態(tài)學(xué)報(bào),2018,38(9):3014-3021.
LI W, WANG X, PANG Y W, et al. Effects of different water depths on the growth and vegetative reproductive characteristics of wetland vegetation in Lake Poyang[J]. Acta Ecologica Sinica, 2018, 38(9): 3014-3021.
[7]萬忠梅,宋長(zhǎng)春,郭躍東,等.毛苔草濕地土壤酶活性及活性有機(jī)碳組分對(duì)水分梯度的響應(yīng)[J].生態(tài)學(xué)報(bào),2008,28(12):5980-5986.
WAN Z M, SONG C C, GUO Y D, et al. Effects of water gradient on soil enzyme activity and active organic carbon composition under Carex lasiocarpa marsh[J]. Acta Ecologica Sinica, 2008, 28(12): 5980-5986.
[8]STEINMAN A D, OGDAHL M E, WEINERT M, et al. Influence of water-level fluctuation duration and magnitude on sediment water nutrient exchange in coastal wetlands[J]. Aquatic ecology, 2014, 48(2): 143-159.
[9]TOMLIN C D S. The e-Pesticide manual. 15th edition. Version 5.2[M]. Hampshire, U.K.: BCPC, 2011.
[10]羅娜,劉欣.除草劑乙草胺的毒性及其內(nèi)分泌干擾活性研究進(jìn)展[J].環(huán)境科學(xué)導(dǎo)刊,2010,29(6):10-13.
LUO N, LIU X. Progress on toxicity and endocrine disrupting activity of herbicide acetochlor[J]. Environmental Science Survey, 2010, 29(6): 10-13.
[11]TAN W, LI Q L, ZHAI H. Photosynthesis and growth responses of grapevine to acetochlor and fluoroglycofen[J]. Pesticide biochemistry and physiology, 2012, 103(3): 210-218.
[12]張志良、李小方.植物生理學(xué)實(shí)驗(yàn)指導(dǎo).5版.[M].北京:高等教育出版社,2016.
ZHANG Z L, ZHANG X F. Plant physiology experiment guide (The 5th edition)[M]. Beijing: Higher Education Press, 2016.
[13]嚴(yán)昶升.土壤肥力研究方法[M].北京:農(nóng)業(yè)出版社,1988.
YAN C S. Soil fertility research methods[M]. Beijing: Agricultural Press, 1988.
[14]關(guān)松蔭.土壤酶及其研究法[M].北京:農(nóng)業(yè)出版社,1986.
GUAN S Y. Soil enzymes and their research methods[M]. Beijing: Agricultural Press, 1986.
[15]藍(lán)月,胡月,王琰,等.界面聚合制備乙草胺微膠囊及其雜草控制效果和環(huán)境殘留[J].中國農(nóng)業(yè)科學(xué),2017,50(14):2739-2747.
LAN Y, HU Y, WANG Y, et al. Preparation of acetochlor microcapsules by interracial polymerization and the environmental behavior and control efficacy[J]. Scientia Agricultura Sinica, 2017, 50(14): 2739-2747.
[16]徐金英,陳海梅,王曉龍.水深對(duì)濕地植物生長(zhǎng)和繁殖影響研究進(jìn)展[J].濕地科學(xué),2016,14(5):725-732.
XU J Y, CHEN H M, WANG X L. A review on water depth effect on the growth and reproduction of plants in the wetlands[J]. Wetland Science, 2016, 14(5): 725-732.
[17]WANG P, ZHANG Q, XU Y S, et al. Effects of water level fluctuation on the growth of submerged macrophyte communities[J]. Flora, 2016, 223: 83-89.
[18]BAI X, CHEN K N, ZHAO H G, et al. Impact of water depth and sediment type on root morphology of the submerged plant Vallisneria natans[J]. Journal of Freshwater Ecology, 2015, 30(1): 75-84.
[19]ZHANG X K, LIU X Q, DING Q Z. Morphological responses to water-level fluctuations of two submerged macrophytes, Myriophyllum spicatum and Hydrilla verticillata[J]. Journal of Plant Ecology, 2012, 6(1): 64-70.
[20]CAO J J, WANG Y, ZHU Z L. Growth response of the submerged macrophyte Myriophyllum spicatum to sediment nutrient levels and water-level fluctuations[J]. Aquatic Biology, 2012, 17(3): 295-303.
[21]古勇波,潘艷文,陳方圓,等.水位和氮濃度對(duì)三江藨草幼苗生長(zhǎng)和生物量分配的影響[J].生態(tài)學(xué)雜志,2019,38(8):2302-2309.
GU Y B, PAN Y W, CHEN F Y, et al. Effects of water level and nitrogen concentration on growth and biomass allocation of Scirpus nipponicus seedlings[J]. Chinese Journal of Ecology, 2019, 38(8): 2302-2309.
[22]YIN X R, XIE X L, XIA X L, et al. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening[J]. The Plant Journal, 2016, 86(5): 403-412.
[23]LAWRENCE B H, BOND J A, EDWARDS H M, et al. Effect of fall-applied residual herbicides on rice growth and yield[J]. Weed Technology, 2018, 32(5): 526-531.
[24]XIAO Y, HUANG Z, LU X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China[J]. Ecological Engineering, 2015, 82: 381-389.
[25]季淮,韓建剛,李萍萍,等. 洪澤湖濕地植被類型對(duì)土壤有機(jī)碳粒徑分布及微生物群落結(jié)構(gòu)特征的影響[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021, 45(1): 141-150.
JI H, HAN J G, LI P P, et al. Effects of different vegetation types on soil organic carbon particle size distribution and microbial community structure in Hongze Lake Wetland[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(1): 141-150.
[26]荊瑞勇,王麗艷,王彥杰,等.乙草胺對(duì)土壤微生物數(shù)量和酶活性的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2010,18(6):1302-1305.
JING R Y, WANG L Y, WANG Y J, et al. Effect of acetochlor application on soil microorganism number and enzymes activities[J]. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1302-1305.
[27]RASOOL N, RESHI Z A, SHAH M A. Effect of butachlor (G) on soil enzyme activity[J]. European Journal of Soil Biology, 2014, 61: 94-100.
[28]張仕穎,夏運(yùn)生,肖煒,等.除草劑丁草胺對(duì)高產(chǎn)水稻土微生物群落功能多樣性的影響[J].生態(tài)環(huán)境學(xué)報(bào),2013,22(5):815-819.
ZHANG S Y, XIA Y S, XIAO W, et al. Effects of butachlor on the functional diversity of microbial communities in high-yield paddy soil[J]. Ecology and Environment Sciences, 2013, 22(5): 815-819.
[29]劉宇彤,霍璐陽,李志國,等.不同處理方式對(duì)土壤酶活性的影響[J].森林工程,2019,35(2):21-26.
LIU Y T, HUO L Y, LI Z G, et al. Effects of different treatments on soil enzyme activity[J]. Forest Engineering, 2019, 35(2):21-26.
[30]閆德仁,張勝男,黃海廣,等.沙地樟子松人工林土壤養(yǎng)分和酶活性變化研究[J].西部林業(yè)科學(xué),2019,48(3):10-15.
YAN D R, ZHANG S N, HUANG H G, et al. Changes of soil nutrients and enzyme activities for Pinus sylvestris var. mongolica plantation in sandy land[J]. Journal of West China Forestry Science, 2019, 48(3):10-15.
[31]曹越,趙洋毅,王克勤,等.滇中坡改梯不同種植方式對(duì)土壤酶活性的影響[J].西部林業(yè)科學(xué),2020,49(4):91-98.
CAO Y, ZHAO Y Y, WANG K Q, et al. Effects of different planting methods on soil enzyme activity in central Yunnan Province[J]. Journal of West China Forestry Science, 2020, 49(4):91-98.
[32]劉瑩瑩,蘇妮爾,趙彩鴻,等.落葉松凋落葉水提液對(duì)苗圃土壤微生物數(shù)量和土壤酶活性的影響[J].森林工程,2020,36(5):24-33.
LIU Y Y, SU N E, ZHAO C H, et al. Effects of larch litter water extract on soil microorganism quantity and soil enzyme activity in nursery[J]. Forest Engineering, 2020, 36(5):24-33.