国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于模糊邏輯NSGA-Ⅲ的開關(guān)磁阻發(fā)電機多目標(biāo)優(yōu)化算法*

2021-04-06 11:34:22李藝輝劉作軍
計算機工程與科學(xué) 2021年3期
關(guān)鍵詞:參考點決策者轉(zhuǎn)矩

李藝輝,劉作軍,李 潔

(河北工業(yè)大學(xué)人工智能與數(shù)據(jù)科學(xué)學(xué)院,天津 300132)

1 引言

開關(guān)磁阻發(fā)電機SRG(Switched Reluctance Generator)因具有結(jié)構(gòu)簡單、堅固,成本低,低速運行性能好,可控參數(shù)多,高容錯性等諸多優(yōu)點,在風(fēng)力發(fā)電[1]、航空航天[2]等領(lǐng)域具有十分廣闊的應(yīng)用前景[3]。

由于轉(zhuǎn)矩脈動大、噪聲大等問題,SRG的實際應(yīng)用受到限制。為解決SRG轉(zhuǎn)矩脈動較大的問題,國內(nèi)外學(xué)者在SRG本體設(shè)計參數(shù)[4]、控制參數(shù)[5]優(yōu)化等方面進(jìn)行了大量研究。在解決SRG轉(zhuǎn)矩脈動問題的基礎(chǔ)上,為了保證發(fā)電機全面高效的運行性能,需對SRG多個性能指標(biāo)進(jìn)行優(yōu)化,因此多目標(biāo)優(yōu)化方法的引入對SRG的優(yōu)化研究具有重要意義[5]。目前,在智能優(yōu)化算法的研究領(lǐng)域,電機多目標(biāo)優(yōu)化方法主要分為傳統(tǒng)多目標(biāo)優(yōu)化方法和多目標(biāo)進(jìn)化算法[6]。其中,傳統(tǒng)多目標(biāo)優(yōu)化方法主要通過評價函數(shù)法[7,8]、目標(biāo)規(guī)劃[9]等方法將多目標(biāo)問題轉(zhuǎn)化為單目標(biāo)問題求解。多目標(biāo)進(jìn)化算法通過尋優(yōu)得到一個Pareto解集?;谶z傳算法的多目標(biāo)優(yōu)化方法具備遺傳算法較強的全局搜索能力和魯棒性[10]。其中,快速非支配排序遺傳算法NSGA-Ⅱ[11]通過引入擁擠度和精英策略保持了種群的多樣性,提高了電機優(yōu)化的精度和效率[12,13],可以高效率處理多目標(biāo)優(yōu)化問題,而改善了種群分布的改進(jìn)NSGA-Ⅱ[14]無法正確估量3目標(biāo)及3目標(biāo)以上優(yōu)化問題的擁擠程度,在優(yōu)化3個及以上目標(biāo)的電機優(yōu)化設(shè)計中存在不足。因此,文獻(xiàn)[15,16]提出一種基于參考點的非支配排序遺傳算法NSGA-Ⅲ,以參考點與種群的關(guān)聯(lián)操作代替NSGA-Ⅱ的擁擠度選擇機制,可從精英策略方面更好地解決包含3~15個優(yōu)化目標(biāo)的多目標(biāo)優(yōu)化問題。

NSGA-Ⅲ可快速估計多目標(biāo)優(yōu)化問題的最優(yōu)點[15],但算法本身無法幫助決策者確定滿足自身偏好需求的最優(yōu)方案。目前,已有研究將后驗偏好信息[13]、交互偏好信息[17]和先驗偏好信息[18]引入多目標(biāo)優(yōu)化方法,幫助決策者依據(jù)偏好選擇Pareto解集中的最優(yōu)方案。

本文提出一種基于模糊邏輯NSGA-Ⅲ的SRG多目標(biāo)優(yōu)化算法,將偏好信息引入SRG多目標(biāo)優(yōu)化。利用RSM對SRG的優(yōu)化目標(biāo)進(jìn)行回歸建模,在保證擬合精度的基礎(chǔ)上,采用基于模糊邏輯NSGA-Ⅲ的SRG多目標(biāo)優(yōu)化算法對SRG結(jié)構(gòu)參數(shù)和控制參數(shù)同時進(jìn)行優(yōu)化,即搭建基于模糊邏輯的模糊推理系統(tǒng),在NSGA-Ⅲ中引入決策者的偏好信息指導(dǎo)NSGA-Ⅲ的尋優(yōu)方向,通過尋優(yōu)得到考慮偏好的Pareto最優(yōu)解集,解集中的各個解附加了相對強度值,決策者選取相對強度值最大的解作為SRG多目標(biāo)優(yōu)化的最優(yōu)方案。

2 SRG初始設(shè)計

本文依據(jù)SRG設(shè)計方法[19]計算得到如表1所示的1 kW四相8/6極SRG樣機的主要設(shè)計參數(shù)。

Table 1 Initial design size of four-phase 8/6 pole SRG

利用Ansoft Maxwell軟件對SRG模型進(jìn)行有限元靜態(tài)及瞬態(tài)仿真分析,得到恒功率額定工況下SRG的性能,如表2所示。

Table 2 SRG performance under rated conditions

3 SRG優(yōu)化目標(biāo)及優(yōu)化變量

3.1 優(yōu)化目標(biāo)及優(yōu)化變量

通過對SRG的參數(shù)化分析,選取對SRG效率、功率密度和轉(zhuǎn)矩脈動影響較大的參數(shù):定子極弧βs、轉(zhuǎn)子極弧βr、定子軛厚Ys、轉(zhuǎn)子軛厚Yr、定子內(nèi)徑Dsi、開通角θon和導(dǎo)通角θc組成優(yōu)化變量X,如式(1)所示。

X=[x1x2x3x4x5x6x7]T=

[βsβrYsYrDsiθonθc]T

(1)

將結(jié)構(gòu)參數(shù)和控制參數(shù)的取值范圍作為優(yōu)化變量的區(qū)間約束條件;此外,考慮到定子極磁密對SRG運行鐵耗的影響,鐵心軛部的結(jié)構(gòu)強度以及發(fā)電機運行過程中的溫升和銅耗等因素,將發(fā)電機定子極磁密、定子軛部磁密和定子繞組電流密度作為性能約束條件。

為減小SRG轉(zhuǎn)矩脈動、提高運行效率和功率密度,滿足發(fā)電機高效穩(wěn)定的運行需求,SRG多目標(biāo)優(yōu)化問題可表示為:

(2)

3.2 SRG優(yōu)化目標(biāo)的響應(yīng)面建模

由于SRG的非線性,優(yōu)化目標(biāo)η(x)、ρm(x)和KTr(x)無顯式表達(dá),本文采用響應(yīng)面法RSM(Response Surface Methodology)對SRG優(yōu)化目標(biāo)函數(shù)進(jìn)行回歸建模。利用中心復(fù)合實驗設(shè)計CCD(Central Composite experiment Design)[20]方法進(jìn)行優(yōu)化變量的5水平采樣,通過Expert Design軟件得到采樣結(jié)果,如表3所示。

待優(yōu)化因素數(shù)目為n,則采用CCD方法進(jìn)行的總實驗次數(shù)為:

m=no+2n+2n

(3)

Table 3 Factor and level reference table

其中,no為中心點數(shù)目,2n為軸向點數(shù)目,2n為析因點數(shù)目。本文設(shè)置待優(yōu)化因素數(shù)即優(yōu)化變量數(shù)為7,取中心點數(shù)目為1,總實驗次數(shù)為143次。利用Maxwell軟件對不同水平下的參數(shù)組合進(jìn)行有限元仿真分析得到143組對應(yīng)響應(yīng)值,如表4所示。

對表4中的實驗數(shù)據(jù)進(jìn)行多元二次回歸擬合,得到SRG優(yōu)化目標(biāo)轉(zhuǎn)矩脈動KTr、發(fā)電機效率η和功率密度ρm響應(yīng)面模型的函數(shù)表達(dá)分別如式(4)~式(6)所示:

KTr(x)=fKTr(x1,x2,x3,x4,x5,x6,x7)

(4)

η(x)=fη(x1,x2,x3,x4,x5,x6,x7)

(5)

ρm(x)=fρm(x1,x2,x3,x4,x5,x6,x7)

(6)

SRG響應(yīng)面模型分別如式(7)~式(9)所示。

Table 4 Factor and response test data

(7)

(8)

ρm(x)=185.17473-31.53661x1-11.11662x2-1.81560x3-0.73350x4-0.42486x5-0.015081x6+0.00626168x7

(9)

SRG優(yōu)化目標(biāo)響應(yīng)面模型(式(3)~式(5))的回歸分析如表5所示。

Table 5 SRG optimization target response surface model regression analysis table

有效信號與噪聲比值A(chǔ)deq.Precision>4,變異系數(shù)C.V.<10,響應(yīng)面模型有較高的可信度和精度;P值(Model Prob>F)均小于0.01,響應(yīng)面模型顯著,擬合度好,具有高度統(tǒng)計學(xué)意義;多元相關(guān)系數(shù)R2及校正系數(shù)Adj.R2均大于0.9,各響應(yīng)面模型預(yù)測精度較高。因此,通過響應(yīng)面法構(gòu)造的SRG優(yōu)化目標(biāo)模型擬合度好,可信度與精度較高。

4 基于模糊邏輯NSGA-Ⅲ的SRG多目標(biāo)優(yōu)化算法

4.1 模糊推理系統(tǒng)

由于決策者對不同優(yōu)化目標(biāo)重要程度的判定以及解改進(jìn)程度的大小無法做出定量的描述,因此本文引入模糊推理系統(tǒng),建立種群個體間的“強度優(yōu)于”關(guān)系[17]以比較個體的優(yōu)劣。首先,建立模糊推理系統(tǒng),通過相對強度值的比較判斷Pareto前沿解之間的優(yōu)劣,用于指導(dǎo)算法的尋優(yōu)方向?;谀:壿嫿㈦p輸入、單輸出的Mamdani模糊推理系統(tǒng),利用模糊語言描述決策者的偏好信息,定量輸出相對強度值Si,如圖1所示。

Figure 1 Fuzzy reasoning system of Mamdani

圖1中優(yōu)化目標(biāo)fi(i=1,2,3)的重要性因子Pi由式(10)和式(11)計算得到。

(10)

(11)

其中,cij為優(yōu)化目標(biāo)fi對優(yōu)化目標(biāo)fj的相對重要程度。本文采用5級標(biāo)度賦值,并設(shè)定3個優(yōu)化目標(biāo)的相對重要程度:SRG效率和功率密度同等重要,轉(zhuǎn)矩脈動比效率、功率密度重要。

Table 6 5-level scale assignment of relative importance between optimization goals

由表6得到SRG多目標(biāo)優(yōu)化中3個優(yōu)化目標(biāo)相對重要程度的賦值矩陣C如式(12)所示:

(12)

圖1中Di為2個解x、x′相對于優(yōu)化目標(biāo)的改進(jìn)程度,由式(13)得到:

Di=fi(x′)-fi(x)

(13)

Mamdani模糊推理系統(tǒng)輸出變量Si作為解x對于x′在優(yōu)化目標(biāo)fi(i=1,2,3)上的相對強度值,對輸出變量Si采用常用反模糊化方法重心法得到Mamdani模糊推理系統(tǒng)輸出的精確強度值S′。因此,x對優(yōu)化目標(biāo)的綜合相對強度值如式(14)所示:

(14)

4.2 模糊邏輯NSGA-Ⅲ算法的主要操作

模糊邏輯NSGA-Ⅲ創(chuàng)建15條模糊規(guī)則的雙輸入、單輸出Mamdani模糊推理系統(tǒng),并預(yù)定義一組與種群規(guī)模相近的參考點,將種群規(guī)模為N的第t代父代種群Pt與經(jīng)過交叉、變異生成的子代種群Qt合并,對種群數(shù)量為2N的合并種群Rt=Pt∪Qt進(jìn)行相對強度值的比較。同時,對種群個體與參考點進(jìn)行關(guān)聯(lián)操作,建立關(guān)于種群個體到參考點距離的適應(yīng)度函數(shù),以保證改進(jìn)NSGA-Ⅲ的種群多樣性,最終將相對強度值篩選出新的種群數(shù)量為N的集合作為新的父代種群。

模糊邏輯NSGA-Ⅲ算法的主要操作:

(1)創(chuàng)建Mamdani模糊推理系統(tǒng)。

依據(jù)輸入變量Pi、Di和輸出變量Si的隸屬度函數(shù)及規(guī)則搭建Mamdani模糊推理系統(tǒng),設(shè)置SRG優(yōu)化目標(biāo)相對重要程度的賦值矩陣C以模糊化決策者對于優(yōu)化目標(biāo)重要程度的偏好信息。

(2)預(yù)定義一組參考點。

采用Deb and Jain方法生成內(nèi)、外2層參考點,不僅減少了參考點數(shù)目,而且還保證了參考點的廣泛分布[16,21]。外層參考點uij由Das and Dennis方法生成。

(15)

其中,M為優(yōu)化目標(biāo)的個數(shù);H為歸一化各優(yōu)化目標(biāo)坐標(biāo)軸上平均分成的區(qū)域數(shù),uij是集合U1中第i行第j列元素。

基于外層參考點,由式(16)得到內(nèi)層參考點集U2:

u′ij∈U2

(16)

則(M-1)維超平面上預(yù)定義的參考點集U=U1∪U2。

(3)初始化理想點。

(17)

(4)建立適應(yīng)度函數(shù)。

為保證種群個體能夠均勻擴(kuò)展到整個Pareto搜索域中,基于參考點到種群個體間的距離建立適應(yīng)度函數(shù),如式(18)所示:

f(x)=(U(x)-Umin+1)×(dmax/d)2

(18)

其中,U(x)和Umin分別為參考點是變量的函數(shù)和參考點最小值,d為參考點到種群個體的距離。

模糊邏輯NSGA-Ⅲ算法流程圖如圖2所示。

Figure 2 Flowchart of fuzzy logic NSGA-Ⅲ algorithm

5 優(yōu)化結(jié)果及仿真分析

在Matlab軟件中,利用NSGA-Ⅲ和模糊邏輯NSGA-Ⅲ分別優(yōu)化1 kW四相8/6極SRG的轉(zhuǎn)矩脈動、效率和功率密度響應(yīng)面函數(shù),設(shè)置種群規(guī)模N=200,交叉分布參數(shù)ηc=30,變異分布參數(shù)ηm=20,最大迭代次數(shù)GMax=500。得到Pareto前沿如圖3和圖4所示。

Figure 3 Pareto front after NSGA-Ⅲ optimization

Figure 4 Pareto front after fuzzy logic NSGA-Ⅲ optimization

圖3和圖4中Pareto前沿上所有解的約束違反度為0,均為滿足SRG性能約束的可行解。SRG優(yōu)化后的模型滿足:KTr<2.0619,η>80.54%,ρm>117.2574 W/kg。圖4中采用模糊邏輯NSGA-Ⅲ優(yōu)化后的Pareto前沿上解的性能均優(yōu)于優(yōu)化前的,且標(biāo)注點為相對強度值最大的解,即為滿足決策者偏好的最優(yōu)解。而圖3中采用NSGA-Ⅲ優(yōu)化后的部分解不完全滿足優(yōu)化需求,將其剔除,決策者依據(jù)偏好從剔除后的Pareto解集中選取最優(yōu)解,在SRG功率密度約束下,取7組不同效率下的SRG可行解,其分布如圖5所示。

Figure 5 Pareto feasible solution distribution with constraints

圖5的7組優(yōu)化方案中,方案1轉(zhuǎn)矩脈動最小,方案7功率密度、發(fā)電效率最大。表7和表8為對采用NSGA-Ⅲ和模糊邏輯NSGA-Ⅲ優(yōu)化后的8組SRG優(yōu)化方案的分析結(jié)果(表7中的θon和θc均為電角度)。

表7列出的8組優(yōu)化方案的SRG參數(shù)組合均從不同程度對SRG的3個優(yōu)化目標(biāo)進(jìn)行了優(yōu)化,較好地解決了SRG的多目標(biāo)優(yōu)化問題,其中方案1~ 方案7為圖5中NSGA-Ⅲ優(yōu)化后篩選的7組解,方案8為圖4中模糊邏輯NSGA-Ⅲ優(yōu)化后相對強度值最大的解。

Table 7 SRG optimization schemes based on NSGA-Ⅲ and fuzzy logic NSGA-Ⅲ

Table 8 Results analysis of SRG optimization schemes

從表9可以看出,方案1~方案5相對于方案8的強度值均為負(fù),即考慮偏好信息時這5組解劣于通過模糊邏輯NSGA-Ⅲ優(yōu)化得到的相對強度值最大的解。方案6和方案7的相對強度值略大于方案8的,但幅度較小,認(rèn)為NSGA-Ⅲ優(yōu)化后的方案6和方案7亦可滿足決策者偏好。NSGA-Ⅲ優(yōu)化得到的190組Pareto前沿上的解相較于方案8的強度值如圖6所示。

Table 9 Comparison of the relative intensity values of schemes 1~7 and scheme 8

Figure 6 Comparison of the intensity values of the Pareto front of NSGA-Ⅲ and scheme 8

NSGA-Ⅲ優(yōu)化后Pareto前沿上190組解中有176組解相對于方案8的強度值為負(fù),即考慮偏好的解劣于方案8的。14組解略優(yōu)于方案8的,均能滿足決策者的偏好需求。由圖6中相對強度值的分布情況可知,NSGA-Ⅲ優(yōu)化后的Pareto前沿上有可以滿足決策者偏好的解,而模糊邏輯NSGA-Ⅲ相較于NSGA-Ⅲ的優(yōu)勢在于在算法搜索前設(shè)定模糊邏輯,界定了算法的整體尋優(yōu)方向,更有指向性地實現(xiàn)了全局尋優(yōu)。

6 結(jié)束語

本文進(jìn)行了基于模糊邏輯NSGA-Ⅲ的SRG多目標(biāo)優(yōu)化方法的研究。利用響應(yīng)面法搭建了SRG非線性模型-回歸模型;采用模糊邏輯NSGA-Ⅲ建立基于模糊邏輯的Mamdani模糊推理系統(tǒng),通過對優(yōu)化目標(biāo)重要性和解改進(jìn)程度的模糊化,在NSGA-Ⅲ的基礎(chǔ)上引入決策者的偏好信息,以實現(xiàn)Pareto解集相對強度值的量化處理,由相對強度值的大小指導(dǎo)尋優(yōu)方向;同時,建立適應(yīng)度函數(shù),以保證種群個體能夠均勻分布到整個搜索域,通過尋優(yōu)確定SRG的最優(yōu)參數(shù)組合方案。算法采用相對強度值的比較代替了NSGA-Ⅲ中基于關(guān)聯(lián)操作的非支配排序,使得算法的仿真時長略有增加,但是極大地減小了決策者的決策負(fù)擔(dān),縮短了選取最優(yōu)解的時間。通過有限元仿真對比優(yōu)化前后SRG的運行性能,強度值最大的優(yōu)化方案能在減小SRG轉(zhuǎn)矩脈動的同時,提高發(fā)電機的整體運行效率和功率密度,在滿足決策者偏好的基礎(chǔ)上有效地改善了SRG的運行性能,驗證了基于模糊邏輯NSGA-Ⅲ的SRG多目標(biāo)優(yōu)化方法的有效性。

猜你喜歡
參考點決策者轉(zhuǎn)矩
熱浪滾滾:新興市場決策者竭力應(yīng)對通脹升溫 精讀
英語文摘(2021年12期)2021-12-31 03:26:20
FANUC數(shù)控系統(tǒng)機床一鍵回參考點的方法
參考點對WiFi位置指紋算法的影響
卷取機轉(zhuǎn)矩控制技術(shù)優(yōu)化卷形
四川冶金(2018年1期)2018-09-25 02:39:26
“最關(guān)鍵”的施工力量——決策者、執(zhí)行者與實施者
數(shù)控機床返回參考點故障維修
容錯逆變器直接轉(zhuǎn)矩控制策略
FANUC數(shù)控機床回參考點故障分析與排除
基于分級變頻的高轉(zhuǎn)矩軟起動器
決策者聲望尋求行為、團(tuán)隊努力與團(tuán)隊績效
軟科學(xué)(2014年8期)2015-01-20 15:36:56
东莞市| 毕节市| 莱西市| 修水县| 东山县| 东丽区| 剑河县| 临邑县| 游戏| 太和县| 西畴县| 抚顺市| 菏泽市| 丰都县| 那曲县| 焉耆| 新兴县| 织金县| 眉山市| 永德县| 项城市| 浮梁县| 潞城市| 福海县| 泾阳县| 白玉县| 德兴市| 沙河市| 长顺县| 汤阴县| 朝阳区| 信阳市| 临潭县| 舞钢市| 辽中县| 来凤县| 仁寿县| 潼关县| 美姑县| 临澧县| 胶南市|