冀笑偉 李莉 魏爽 張銘
摘 ?要: 大規(guī)模多輸入多輸出(MIMO)系統(tǒng)中,大型天線陣列之間的強天線相關性會導致系統(tǒng)性能降低. 針對下行鏈路場景,提出基于最大比傳輸預編碼的聯(lián)合天線分組和天線選擇算法,把大規(guī)模天線陣列劃分為若干組,在每組中基于信道矩陣最大列范數(shù)選擇天線,構造所選天線與接收天線間的信道矩陣,并計算對應的預編碼矩陣.建立能效模型,分析聯(lián)合天線分組和天線選擇算法對系統(tǒng)能效的影響. 仿真結果表明,在基站天線數(shù)為200、發(fā)射功率為10 dB、天線相關因子為0.8的假設下,當分組數(shù)為24時,與最大范數(shù)天線選擇算法相比,該算法使系統(tǒng)能效提高了約24.4%.
關鍵詞: 大規(guī)模多輸入多輸出(MIMO); 最大比傳輸預編碼; 天線分組; 天線選擇; 能效
中圖分類號: TN 911.7 ????文獻標志碼: A ????文章編號: 1000-5137(2021)01-0062-07
Abstract: In massive MIMO systems,the strong antenna correlation among large antenna arrays would lead to system performance degradation. In this paper a joint antenna grouping and antenna selection algorithm based on maximum ratio transmission precoding was proposed in regard to the downlink scenario in which the large-scale antenna array was divided into several groups. In each group,the antenna was selected based on the maximum column norm of the channel matrix. The channel matrix between the selected antenna and the receiving antenna was constructed,and the corresponding precoding matrix was calculated. Finally,an energy efficiency model was established to analyse the influence of both joint antenna grouping and antenna selection algorithm on energy efficiency of the system. The simulation results showed that under the assumption that the number of base station antennas was 200,the transmission power was 10 dB,and the antenna correlation factor was 0.8,when the number of packets was 24,comparing with the maximum norm antenna selection algorithm,the proposed algorithm was able to improve the system energy efficiency nearly by 24.4%.
Key words: massive multiple input multiple output(MIMO); maximum ratio transmission precoding; antenna grouping; antenna selection; energy efficiency
0 ?引 言
近年來,大規(guī)模多入多出(MIMO)技術成為第五代通信網(wǎng)絡中最有前途的技術之一,具有超大規(guī)模天線陣列的MIMO系統(tǒng)能夠獲得較高的吞吐量.然而,在大規(guī)模MIMO系統(tǒng)中,總功率消耗與發(fā)射天線的數(shù)量成正比,考慮到經(jīng)濟和可持續(xù)發(fā)展問題,能效已經(jīng)成為綠色通信系統(tǒng)設計的重要指標.為了保證大規(guī)模MIMO系統(tǒng)吞吐量的優(yōu)勢,同時避免大規(guī)模天線陣列高成本、高功耗的問題,天線選擇技術應運而生[1].
LI等[2]推導了基于最大比傳輸(maximum ratio transmission,MRT)預編碼的下行速率和閉式容量下限,并建立以能效最大化為目標的優(yōu)化模型,推導出固定發(fā)射功率下,最大化能效的最優(yōu)發(fā)射天線數(shù)目;LI等[3]提出了一種聯(lián)合天線選擇和功率分配方案,基于迫零預編碼建立能效優(yōu)化模型,利用拉格朗日對偶分析法求解最優(yōu)發(fā)射天線數(shù)目和功率分配;BEREYHI等[4]提出了基于線性預編碼的發(fā)送天線選擇和發(fā)射功率控制迭代算法,不僅降低了射頻成本,還提高了系統(tǒng)性能.但是上述研究并未考慮大規(guī)模MIMO系統(tǒng)強天線相關性造成的系統(tǒng)容量降低問題,而天線分組技術可以將相關性較強的天線分為一組,從不同組中選擇能夠優(yōu)化系統(tǒng)性能的天線,從而避免強天線相關性的影響.
JU等[5]提出了低復雜度發(fā)射天線分組廣義空間調(diào)制方案,為優(yōu)化誤碼性能,分別考慮了塊分組和交織分組方案,得到了所提方案誤碼率性能的閉式上界;ZUO等[6]提出一種天線分組輔助空間調(diào)制,根據(jù)信道特性將發(fā)射天線劃分為多個組,每個組激活單個天線進行信號傳輸,還對所用的算法誤碼率上界進行了理論分析;ZAFARI等[7]提出了一種帶雙極化天線的廣義空間調(diào)制兩級優(yōu)化天線分組方案,第一階段選擇極化的天線作為組指示符,第二階段在每個組找到可以選擇的潛在天線,算法直接選擇已激活的天線,有效降低了在大空間搜索的復雜度;BENMIMOUNE等[8]提出一種低復雜度貪婪算法,以分布式方式執(zhí)行聯(lián)合天線分組和選擇,該算法在每一組接收節(jié)點中依次運行,選擇最佳天線組,可以減少大規(guī)模MIMO系統(tǒng)中的信道狀態(tài)信息(CSI)反饋開銷,但這種增益以組間干擾為代價,在高信噪比情況下,會導致性能飽和;林振等[9]分析了幾種加權稀疏約束的Capon自適應波束成形算法的性能,利用天線陣列增益的稀疏分布特性,使得天線陣列輻射方向圖的旁瓣和干擾零陷都有所降低;JIANG等[10]利用天線分組技術在大規(guī)模MIMO系統(tǒng)中實現(xiàn)能效最大化,提出了基于二分查找每組最優(yōu)天線數(shù)目的算法,比波束形成方案具有更高的系統(tǒng)容量.
本文作者為進一步提高系統(tǒng)能效,借鑒文獻[10]天線分組的方法,考慮使用可以降低用戶間干擾的預編碼技術,提出基于MRT預編碼的天線分組算法,建立具有相關性的信道模型,并分析該算法對系統(tǒng)能效的影響.
1 ?大規(guī)模MIMO系統(tǒng)模型
假設大規(guī)模MIMO系統(tǒng)為時分雙工模式,考慮下行鏈路,基站端配備N根發(fā)送天線,接收端有K個單天線用戶,且N?K,如圖1所示.
設sk表示基站擬發(fā)送的用戶k的數(shù)據(jù)符號,且E[|sk|2]=1,符號E[?]表示求統(tǒng)計平均.K個用戶的數(shù)據(jù)符號定義為向量s=[s1,s2,…,sK]T∈CK×1.A是對應著信道矩陣G的預編碼矩陣.
對于圖1所示的N根發(fā)射天線和K根接收天線,信道矩陣G是K行×N列的矩陣.考慮到大規(guī)模MIMO系統(tǒng)發(fā)射端天線間的強相關性,根據(jù)Kronecker模型,將信道矩陣G建模為相關MIMO模型[1]:
2 ?基于MRT預編碼的天線分組和天線選擇算法
圖1所示基站端大規(guī)模天線陣列中天線間隔很小,天線之間具有很強的相關性,且相鄰天線間的相關性更高,故把發(fā)射端的N根天線按相鄰原則劃分為L組,且L≥K.具體的分組準則如下[11]:
1) 若N能夠整除L,則將N根天線劃分為L組,相鄰的N/L根天線構成一組.
2) 若N不能整除L,則先將天線劃分為N mod L組,相鄰的(?N/L?+1)根天線構成一組,再將剩余部分天線劃分為(L-N mod L)組,相鄰的(?N/L?)根天線構成一組,其中,符號mod表示求余運算,符號?·?表示向下取整運算.
分組完成后,每組內(nèi)天線與接收天線之間構成一個子信道矩陣,由于這些子信道矩陣對應的天線間相關性很高,所以從每個子信道矩陣中選出列范數(shù)最大的列,對應的該列序號即為所需天線的序號,所分的L組對應著L個子信道矩陣,最終選出L根有效發(fā)射天線.
用每個子信道矩陣中所選出來的列組成所選L根有效發(fā)射天線與用戶之間的信道矩陣,根據(jù)MRT預編碼準則[12],對應的預編碼矩陣具體為:
3 ?仿真結果分析
為驗證本文所討論的基于MRT預編碼的天線分組和天線選擇算法的有效性,針對系統(tǒng)能效性能給出仿真結果.仿真中,采用具有相關性的獨立同分布瑞利衰落信道模型,基站天線總數(shù)N=200,單天線用戶數(shù)K=8,基站處功率放大器的反效率因子ξ=2.5,發(fā)射射頻鏈功耗Qtx=0.048 W,接收射頻鏈功耗Qrx=0.048 W,本地振蕩器功耗Qsync=0.062 W.
圖3是當天線相關因子μ=0.8,發(fā)射功率pt=10 dB時,大規(guī)模MIMO系統(tǒng)能效隨分組數(shù)L的變化.結果表明,基于MRT預編碼的天線分組算法存在最優(yōu)的分組數(shù),當總發(fā)射天線N=200,分組數(shù)L=24時,系統(tǒng)的能效達到最大化.
為比較,圖3中同時顯示最大范數(shù)天線選擇和隨機天線選擇算法能效隨分組數(shù)L的變化.最大范數(shù)天線選擇是從信道矩陣G的N列中挑選出范數(shù)最大的前L列,對應的天線就是被選中的天線,隨機天線選擇算法是從N根天線中隨機選擇L根天線作為有效發(fā)射天線.因為本文所提算法分組數(shù)等于有效發(fā)射天線數(shù),所以在仿真驗證時,最大范數(shù)算法和隨機選擇算法的有效發(fā)射天線數(shù)都按照本文算法的分組數(shù)來確定.在圖3給定的仿真參數(shù)條件下,當分組數(shù)L=24時,與最大范數(shù)天線選擇算法相比,基于MRT預編碼的天線分組算法使系統(tǒng)能效提高了約24.4%.
4 ?結 論
本文作者研究了基于MRT預編碼天線分組的系統(tǒng)能效問題.一方面,使用預編碼技術通過預處理輸入信號,降低用戶間干擾,提高信息傳輸速率;另一方面,天線分組算法有效克服了天線相關性的影響,提高了大規(guī)模MIMO系統(tǒng)的能效.仿真結果表明,本文所討論的算法具有明顯的性能優(yōu)勢,在基站天線數(shù)為200,接收天線數(shù)為8的假設下,當天線分組數(shù)為24時,系統(tǒng)能效可以達到最大化.仿真過程中發(fā)現(xiàn),最優(yōu)分組數(shù)隨接收天線數(shù)的增加而增大.分析不同場景下的最優(yōu)天線分組數(shù)是未來研究重要的內(nèi)容,功率分配也是影響系統(tǒng)性能的主要因素之一,聯(lián)合天線分組和功率分配優(yōu)化算法也值得進一步研究.
參考文獻:
[1] YU Y H,CHEN H,LI Y H,et al.Antenna selection for MIMO nonorthogonal multiple access systems [J].IEEE Transactions on Vehicular Technology,2018,67(4):3158-3171.
[2] LI H,GUO J,WANG Y S,et al.Energy efficient antenna selection scheme for downlink massive MIMO systems [C]//IEEE International Symposium on Circuits and Systems (ISCAS).Florence:IEEE,2018:1-4.
[3] LI H,CHENG J L,WANG Z G,et al.Joint antenna selection and power allocation for an energy-efficient massive MIMO system [J].IEEE Wireless Communications Letters,2019,8(1):257-260.
[4] BEREYHI A,ASAAD S,M?LLER R R.Stepwise transmit antenna selection in downlink massive multiuser MIMO [C]// 22nd International ITG Workshop on Smart Antennas.Bochum:WSA,2018:1-8.
[5] JU P Z,ZHANG M,CHENG X,et al.Generalized spatial modulation with transmit antenna grouping for massive MIMO [J].IEEE Access,2017,5:26798-26807.
[6] ZUO X X,ZHANG J K,MU X M.Antenna grouping assisted spatial modulation for massive MIMO systems [C]//9th International Conference on Wireless Communications and Signal Processing (WCSP).Nanjing:IEEE,2017:1-6.
[7] ZAFARI G,KOCA M,WANG X,et al.Antenna grouping in dual-polarized generalized spatial modulation [C]//86th Vehicular Technology Conference (VTC-Fall).Toronto:IEEE,2017:1-6.
[8] BENMIMOUNE M,DRIOUCH E,AJIB W.Joint antenna selection and grouping in massive MIMO systems [C]//10th International Symposium on Communication Systems,Networks and Digital Signal Processing (CSNDSP).Prague:IEEE,2016:1-6.
[9] 林振,李莉,魏爽,等.基于加權稀疏約束的穩(wěn)健Capon波束成形性能比較[J].上海師范大學學報(自然科學版),2020,49(1):24-30.
LIN Z,LI L,WEI S,et al.Comparison of robust Capon beamforming based on weighted sparse constraints [J].Journal of Shanghai Normal University(Natrual Sciences),2020,49(1):24-30.
[10] JIANG L L,ZHANG Z,ZHANG J K,et al.Low complexity antenna grouping for energy efficiency maximization in massive MIMO systems [C]//International Conference on Communications in China (ICCC Workshops).Chengdu:IEEE,2016:1-5.
[11] 徐宇陽.大規(guī)模MIMO系統(tǒng)中的天線選擇技術研究 [D].武漢:華中科技大學,2018.
XU Y Y.A dissertation submitted in partial fulfillment of the requirements for the degree of master of philolophy in engineering [D].Wuhan:Huazhong University of Science and Technology,2018.
[12] 王明輝,金紅軍,王文勇.大規(guī)模MIMO預編碼算法研究與分析 [J].通信技術,2016,49(9):1134-1138.
WANG M H,JIN H J,WANG W Y.Research and analysis of massive MIMO precoding algorithm [J].Communication Technology,2016,49(9):1134-1138.
(責任編輯:包震宇)