陳剛,曹鵬,LISS Klaus-Dieter ,曲選輝
TiH2粉末燒結(jié)研究進(jìn)展
陳剛1,曹鵬2,LISS Klaus-Dieter3,4,曲選輝1
(1. 北京科技大學(xué) 新材料技術(shù)研究院 北京材料基因工程高精尖創(chuàng)新中心,北京 100083; 2. Department of Chemical and Materials Engineering, The University of Auckland, Auckland 1142; 3. 廣東以色列理工學(xué)院 材料科學(xué)與工程系,廣東 汕頭 515063; 4. Technion-Israel Institute of Technology, Haifa 32000)
研究燒結(jié)溫度、升溫速率、壓制壓力分別對TiH2粉末壓坯脫氫相演變過程以及顯微組織的影響規(guī)律。采用氫化鈦(TiH2)粉末為原料,經(jīng)過壓制和真空燒結(jié)制備粉末冶金Ti材料,結(jié)合原位中子粉末衍射、差示掃描量熱法等技術(shù),表征TiH2粉末壓坯在燒結(jié)過程中的顯微形貌及相變過程。在真空燒結(jié)條件下,TiH2粉末壓坯的脫氫相變反應(yīng)過程為:-Ti(H)→-Ti(H)+-Ti(H)→-Ti(H)+-Ti(H)+-Ti(H)→-Ti (H)+-Ti(H)+-Ti→-Ti;升溫速率的增加會延緩TiH2的相變過程及動力學(xué)。TiH2粉末坯體的壓制壓力越大,燒結(jié)時(shí)TiH2脫氫并釋放氫氣導(dǎo)致坯體內(nèi)部的氣壓越高,從而導(dǎo)致TiH2坯體的燒結(jié)致密化程度較低。
鈦及鈦合金;粉末;燒結(jié);脫氫;相變
鈦及鈦合金具有密度低、比強(qiáng)度高、抗氧化、抗疲勞、耐腐蝕性優(yōu)良和生物相容性好等優(yōu)點(diǎn)[1],廣泛應(yīng)用于航空航天、生物醫(yī)用等高技術(shù)領(lǐng)域。為了有效解決鈦及鈦合金難加工問題,具有近凈成形特點(diǎn)的粉末冶金技術(shù)引起了廣大研究者和工業(yè)界的興趣[2]。粉末冶金技術(shù)是一種以粉末為原料,基本無需加工即能實(shí)現(xiàn)制件近凈成形的技術(shù),通常包括粉末制備、成形、燒結(jié)、后處理等工藝流程,具有短流程、低成本、節(jié)約資源等特點(diǎn)[1,3]。相對于氫化脫氫(HDH)鈦粉,氫化鈦(TiH2)粉末具有低成本、低氧、易成形等優(yōu)點(diǎn),已成為粉末冶金鈦合金中重要的基礎(chǔ)原料[1]。在燒結(jié)TiH2粉末過程中,TiH2粉末會產(chǎn)生脫氫現(xiàn)象,即發(fā)生TiH2→TiH+H2↑→Ti+H2↑的相變過程,同時(shí)釋放氫氣(H2),該過程可以凈化鈦晶格,促進(jìn)燒結(jié)進(jìn)程[4—5]。然而,TiH2粉末放氫也可作為“發(fā)泡劑”用以制備高孔隙率泡沫鋁[6—7]??梢?,TiH2脫氫是決定粉末燒結(jié)體致密度及最終性能的關(guān)鍵,而如何合理應(yīng)用和控制TiH2脫氫一直是困擾廣大粉末冶金工作者的難題。上述難題引出了如下疑問:TiH2脫氫如何影響粉末燒結(jié)致密化和相變過程。當(dāng)前針對TiH2脫氫過程對于孔結(jié)構(gòu)性能及相變過程的影響機(jī)制研究仍然十分有限,以致于無法指導(dǎo)和優(yōu)化燒結(jié)工藝。
文中采用原位高能中子粉末衍射法分析TiH2粉末燒結(jié)過程中的脫氫過程以及相變機(jī)理,并研究壓制壓力對TiH2粉末壓坯致密化的影響規(guī)律,探明TiH2脫氫對于粉末燒結(jié)致密化的影響規(guī)律及相應(yīng)機(jī)理。
采用中位徑為24.6 μm的TiH2粉末為原料,其氫和氧元素的質(zhì)量分?jǐn)?shù)分別為3.81%和0.23%,其顯微形貌如圖1所示。分別采用150 MPa和750 MPa兩種壓制壓力,將TiH2粉末壓制成形為厚度和直徑分別為4 mm和12 mm的壓坯。
圖1 采用的TiH2粉末原料顯微形貌
采用Archimedes方法測定粉末壓坯及燒結(jié)坯體的密度、致密度、孔隙率等性能;用FEI Quanta 200F型掃描電子顯微鏡(SEM)表征試樣的表面形貌及孔結(jié)構(gòu);用精度為0.0001 g的電子天平稱量試樣燒結(jié)前后的質(zhì)量;用Netzsch404 F3型差示掃描量熱儀(DSC)測定TiH2粉末的相變,最終燒結(jié)溫度為1273 K,升溫速率分別為5,10,20 K/min。
在真空燒結(jié)過程中,TiH2(具有fcc結(jié)構(gòu)的-Ti(H)相)在逐漸脫氫的同時(shí),還伴隨著-Ti(H)→-Ti的相變過程。圖2為不同升溫速率下TiH2粉末壓坯的DSC測試曲線。由圖2可見,加熱過程中TiH2粉末壓坯在700~900 K溫度區(qū)間存在兩個(gè)吸熱峰,表明TiH2在該溫度區(qū)間發(fā)生了分段式的脫氫反應(yīng),這與Jiménez C和Zhang J M等[11—13]的報(bào)道結(jié)果相一致。另外,隨著升溫速率從5 K/min增大至10 K/min,其吸熱峰的位置并未發(fā)生明顯變化,即脫氫相變溫度點(diǎn)并未受升溫速率的改變而變化。當(dāng)升溫速率增至20 K/min時(shí),其脫氫溫度上升了約50 K,這是因?yàn)樯郎卦娇?,TiH2的脫氫反應(yīng)就會隨之滯后,導(dǎo)致其相變溫度上升。
圖2 不同升溫速率下TiH2粉末壓坯的DSC結(jié)果
圖3所示為TiH2粉末壓坯的中子粉末衍射圖譜,橫坐標(biāo)為散射矢量(Scattering vector),計(jì)算公式為=4π/?sin,H,H,H,分別代表-Ti(H),-Ti(H),-Ti(H),-Ti相,其中深色背底是由于中子對氫原子具有非相關(guān)散射作用[9],隨著溫度的升高,氫原子不斷脫除,背底則逐漸減弱。由圖3可見,TiH2粉末壓坯的初始相為-Ti(H)相。隨著溫度升高至約653 K時(shí),該相逐漸消失,并且開始生成hcp結(jié)構(gòu)的-Ti(H)相和bcc結(jié)構(gòu)的-Ti(H)相。這表明,約在653 K時(shí)發(fā)生了-Ti(H)→-Ti(H)+-Ti(H)的相變共析反應(yīng),這與DSC結(jié)果中的第一個(gè)反應(yīng)峰溫度點(diǎn)相吻合。其中,-Ti(H)相是一種不穩(wěn)定相,該相在降溫過程中會發(fā)生-Ti(H)→-Ti(H)+-Ti的共析反應(yīng)。通常地,常溫狀態(tài)下采用X射線粉末衍射(XRD)難以表征出-Ti(H)相的原因。隨后,當(dāng)溫度升至973 K時(shí),-Ti(H)和-Ti(H)相均消失,最終生成了-Ti相,此時(shí),圖譜中的背底已基本消失[9]。最后,在爐冷過程中,-Ti相始終沒有變化。
圖3 TiH2粉末壓坯的中子粉末衍射圖譜
TiH2的脫氫相變機(jī)理研究已有大量報(bào)道[7,11,13—14]。值得指出的是,文獻(xiàn)中均采用了氬氣氣氛燒結(jié),這會導(dǎo)致粉末的氧化,從而會影響TiH2相變過程和動力學(xué)。文中采用高真空狀態(tài)下的原位中子粉末衍射方法,實(shí)時(shí)表征TiH2燒結(jié)過程中的相演變過程,能夠很好地解決粉末氧化的問題,故而得到的結(jié)果更具說服力。根據(jù)Ti-H二元相圖[15]得知,-Ti(H),-Ti(H),-Ti(H)相中分別含有約50%~66.7%,0~50%,0~8.5%(原子數(shù)分?jǐn)?shù))的氫含量。文中初始態(tài)是-Ti(H)相,溫度的升高伴隨著氫原子的脫除,導(dǎo)致粉末的含氫量逐漸下降,所以,-Ti(H)相逐漸轉(zhuǎn)變成了-Ti(H),-Ti(H)相,直至最終演變成-Ti相。綜上所述,文中TiH2粉末壓坯在真空下的相變規(guī)律如下:-Ti (H)→-Ti(H)+-Ti(H)→-Ti(H)+-Ti(H)+-Ti(H)→-Ti(H)+-Ti(H)+-Ti→-Ti。當(dāng)然,TiH2的脫氫和相變過程及動力學(xué)與燒結(jié)氣氛、升溫速率及粉末雜質(zhì)都有一定關(guān)系[11,13—14]。
圖4所示為150 MPa和750 MPa壓制TiH2壓坯在燒結(jié)前后的顯微形貌。由圖4a和4c可知,TiH2生坯中存在不規(guī)則孔隙,其直徑為10~50 μm;隨著壓制壓力的升高,孔徑明顯變小,且孔隙率從(31.6± 0.1)%增加至(24.4±0.2)%(見表1)。燒結(jié)過程中,TiH2的脫氫會導(dǎo)致坯體本身的質(zhì)量下降,而且會伴隨粉末顆粒收縮和燒結(jié)致密化的現(xiàn)象[9],因此,經(jīng)過1273 K燒結(jié)后,如表1所示,150 MPa和750 MPa壓制壓坯的孔隙率分別為(21.4±1.2)%和(19.5±0.2)%,說明兩種壓力壓制的坯體都得到了不同程度的燒結(jié)致密化,但兩者孔隙率的差別變小了。另外,通過對比圖4b和4d可見,150 MPa和750 MPa燒結(jié)坯體的孔徑?jīng)]有明顯差別。這表明,雖然壓制壓力導(dǎo)致生坯孔隙率存在較大差別,但經(jīng)過燒結(jié)后,兩者的孔隙率較接近,即致密度相差不大(見表1)。這主要因?yàn)椋琓iH2坯體在脫氫過程中,氫原子大量從鈦晶格中擴(kuò)散出來,并生成氫氣后從粉末顆粒表面釋放;隨后,氫氣從坯體孔道中逐漸向外逃逸。此時(shí),如果坯體中的孔道越狹窄,氫氣則越難從坯體中釋放出來,由于不能及時(shí)逃逸而使孔道內(nèi)的氣壓增加,從而排斥周邊的粉末顆粒,進(jìn)而導(dǎo)致坯體的最終致密化程度相對下降。換言之,對于TiH2粉末坯體而言,燒結(jié)過程中由于氫氣釋放的原因,在一定條件下,坯體的壓制壓力與其最終燒結(jié)致密度并非成正比關(guān)系。這與燒結(jié)工藝也有一定關(guān)系,如果氣體無法得到及時(shí)釋放,容易造成坯體開裂等問題。當(dāng)然,一般情況下,燒結(jié)溫度越高,坯體致密化程度也就越明顯。
圖4 不同壓力壓制TiH2坯體的SEM顯微組織
表1 TiH2壓坯燒結(jié)前后的孔結(jié)構(gòu)性能與致密化程度。
Tab.1 Pore structures and densification degrees of the raw and sintered TiH2 compacts
1)原位中子粉末衍射的結(jié)果表明,在真空燒結(jié)條件下,TiH2粉末壓坯的脫氫相變反應(yīng)過程為:-Ti(H)→-Ti(H)+-Ti(H)→-Ti(H)+-Ti(H)+-Ti(H)→-Ti(H)+-Ti(H)+-Ti→-Ti。此外,TiH2的相變過程及動力學(xué)等還受加熱速率等工藝參數(shù)影響。
2)在燒結(jié)TiH2粉末壓坯過程中,由于TiH2脫氫并釋放氫氣的原因,在壓坯的壓制壓力較大的情況下,坯體內(nèi)部孔隙少且孔道窄,導(dǎo)致氫氣難以及時(shí)逃逸,使粉末顆粒間產(chǎn)生較大氣壓,從而致使坯體的燒結(jié)致密化程度較低。
[1] Fang Z Z, Paramore J D, Sun P, et al. Powder Metallurgy of Titanium-past, Present, and Future[J]. International Materials Reviews, 2018, 63(7): 407—459.
[2] 劉詠, 湯慧萍. 粉末冶金鈦基結(jié)構(gòu)材料[M]. 長沙: 中南大學(xué)出版社, 2012: 1—10.LIU Yong, TANG Hui-ping. Powder Metallurgical Titanium Base Structural Materials[M]. Changsha: Central South University Press, 2012: 1—10.
[3] 陳剛, 路新, 章林, 等. 鈦及鈦合金粉末制備與近凈成形研究進(jìn)展[J]. 材料科學(xué)與工藝, 2020, 28(3): 98—108.CHEN Gang, LU Xin, ZHANG Lin, et al. Research Progress in Green and Low-cost Ti and Its Alloys of Powder Production and Near-net-shape Manufacturing[J]. Materials Science and Technology, 2020, 28(3): 98—108.
[4] Bhosle V, Baburaj E G, Miranova M, et al. Dehydrogenation of TiH2[J]. Materials Science and Engineering: A, 2003, 356(1/2): 190—199.
[5] Kovalev D Y, Prokudina V K, Ratnikov V I, et al. Thermal Decomposition of TiH2: A TRXRD Study[J]. Int J Self-Propag High-Temp Synth, 2010, 19(4): 253—257.
[6] Banhart J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams[J]. Progress in Materials Science, 2001, 46(6): 559—632.
[7] Rasooli A, Divandari M, Shahverdi H, et al. Kinetics and Mechanism of Titanium Hydride Powder and Aluminum Melt Reaction[J]. Int J Miner Metall Mater, 2012, 19(2): 165—172.
[8] Chen G, Liss K D, Cao P. In Situ Observation and Neutron Diffraction of NiTi Powder Sintering[J]. Acta Materialia, 2014, 67: 32—44.
[9] Chen G, Liss K D, Auchterlonie G, et al. Dehydrogenation and Sintering of TiH2: an In-Situ Study[J]. Metallurgical and Materials Transactions A, 2017, 48(6): 2949—2959.
[10] Chen G, Liss K D, Cao P, et al. Neutron Diffraction and Neutron Radiography Investigation into Powder Sintering of Ti/Al and TiH2/Al Compacts[J]. Metallurgical and Materials Transactions B, 2019, 50(1): 429—437.
[11] Jiménez C, Garcia-Moreno F, Pfretzschner B, et al. Decomposition of TiH2Studied in Situ by Synchrotron X-ray and Neutron Diffraction[J]. Acta Materialia, 2011, 59(16): 6318—6330.
[12] Jiménez C, Garcia-Moreno F, Rack A, et al. Partial Decomposition of TiH2Studied in Situ by Energy-dispersive Diffraction and Ex Situ by Diffraction Microtomography of Hard X-ray Synchrotron Radiation[J]. Scripta Materialia, 2012, 66(10): 757—760.
[13] Zhang J M, Yi J H, Gan G Y, et al. Research on Dehydrogenation and Sintering Process of Titanium Hydride for Manufacture Titanium and Titanium Alloy[J]. Advanced Materials Research, 2013, 616/617/618: 1823—1829.
[14] Ma M W, Liang L, Wang L, et al. Phase Transformations of Titanium Hydride in Thermal Desorption Process with Different Heating Rates[J]. International Journal of Hydrogen Energy, 2015, 40: 8926—8934.
[15] Okamoto H. H-Ti (Hydrogen-Titanium)[J]. J Phase Equilib Diffus, 2011, 32(2): 174—175.
Research Progress in Powder Sintering of TiH2
CHEN Gang1, CAO Peng2, LISS Klaus-Dieter3,4, QU Xuan-hui1
(1. Beijing Advanced Innovation Centre for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; 2. Department of Chemical and Materials Engineering, The University of Auckland, Auckland 1142, New Zealand; 3. Materials and Engineering Science Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; 4. Technion-Israel Institute of Technology, Haifa 32000, Israel)
The work aims to investigate the effects of sintering temperature, heating rate, and compaction pressure on the dehydrogenation and microstructure of TiH2powder sintering. With TiH2as raw material, powder metallurgy Ti material was prepared by compaction and vacuum sintering. In-situ neutron diffraction and differential scanning calorimetry were employed to characterize the micro appearance and phase transformation of TiH2powder compacts during vacuum sintering. The results showed that the in-situ phase transformation during vacuum sintering of the TiH2powder compact was as the following sequence:-Ti(H)→-Ti(H)+-Ti(H)→-Ti(H)+-Ti(H)+-Ti(H)→-Ti(H)+-Ti(H)+-Ti→-Ti. Moreover, a higher heating rate also delayed its phase transformation procedure as well as kinetics. Besides, dehydrogenation of TiH2causes the release of H2gas. In this case, if the compaction pressure is larger, thus the gas pressure due to the H2release inside the powder compact is higher, yielding a relatively lower densification degree for the TiH2powder compact.
Ti and its alloys; powder; sintering; dehydrogenation; phase transformation
10.3969/j.issn.1674-6457.2021.02.010
TF122
A
1674-6457(2021)02-0062-05
2020-11-27
國家自然科學(xué)基金(51971036);山東省重點(diǎn)研發(fā)計(jì)劃(2019JZZY010327);中央高校基本科研業(yè)務(wù)費(fèi)(06500092);澳大利亞核科學(xué)和技術(shù)組織項(xiàng)目(P3430)
陳剛(1984—),男,博士,副研究員,主要研究方向?yàn)榉勰┮苯鸺夹g(shù)與應(yīng)用。