孟建,劉勝堯,范鳳翠*,乜蘭春,李燕,侯大山,王靜,韓江偉
根域限制對(duì)溫室膜下滴灌網(wǎng)紋甜瓜耗水特征與果實(shí)品質(zhì)的影響
孟建1,2,劉勝堯3,范鳳翠3*,乜蘭春1*,李燕4,侯大山5,王靜2,韓江偉5
(1.河北農(nóng)業(yè)大學(xué) 園藝學(xué)院,河北 保定 071001;2.河北省農(nóng)業(yè)技術(shù)推廣總站,石家莊 050000;3.河北省農(nóng)林科學(xué)院 農(nóng)業(yè)信息與經(jīng)濟(jì)研究所,石家莊 050051;4.石家莊市農(nóng)林科學(xué)研究院,石家莊 050021;5.石家莊市農(nóng)業(yè)技術(shù)推廣中心,石家莊 050051)
【】利用根域限制技術(shù)調(diào)節(jié)溫室網(wǎng)紋甜瓜生長(zhǎng)及耗水特性,研究適宜的根域限制方式和限根深度。以西州蜜25號(hào)為試材,設(shè)置2種限根方式(紗網(wǎng)布和塑料布)和6種限根深度(10、20、30、40、50、60 cm)組合的根域限制處理,研究了限根對(duì)溫室膜下滴灌甜瓜耗水特性、干物質(zhì)積累、果實(shí)產(chǎn)量和品質(zhì)的影響。與常規(guī)種植相比,紗網(wǎng)布限根對(duì)甜瓜植株干物質(zhì)積累量、果實(shí)產(chǎn)量和果實(shí)外觀品質(zhì)影響不顯著(>0.05);塑料布限根顯著降低了甜瓜植株干物質(zhì)積累量、果實(shí)產(chǎn)量、果實(shí)橫縱經(jīng)和果形指數(shù)(<0.05)。適度根域限制顯著提高了甜瓜的水分利用效率,10 cm和20 cm紗網(wǎng)布限根甜瓜的水分利用效率分別比CK提高了10.90%和5.47%,10 cm和20 cm塑料布限根甜瓜的水分利用效率分別比CK提高了8.06%和4.39%,限根深度過深水分利用效率顯著降低。限根顯著影響了果實(shí)營(yíng)養(yǎng)品質(zhì),限根深度為10、20、30 cm的紗網(wǎng)布限根和限根深度為20、30、40 cm的塑料布限根提高了甜瓜果實(shí)可溶性總糖、可溶性固形物量和酸糖比。溫室膜下滴灌條件下,限根深度10~20 cm的紗網(wǎng)布限根對(duì)溫室網(wǎng)紋甜瓜的營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng)影響不顯著,可提高水分利用效率和果實(shí)品質(zhì),是適宜根域限制方式。
網(wǎng)紋甜瓜;根域限制;水分利用效率;品質(zhì);膜下滴灌
【研究意義】根是作物發(fā)育的基礎(chǔ)和中心,影響根系生長(zhǎng)的措施可對(duì)植株地上部生長(zhǎng)和產(chǎn)量品質(zhì)造成影響[1],常規(guī)設(shè)施栽培中,過于龐大的根系會(huì)消耗大量光合產(chǎn)物和水分[2],連作障礙給有限耕地資源的高效利用和作物品質(zhì)提高造成威脅。適度根系限制栽培可以有效克服常規(guī)設(shè)施蔬菜生產(chǎn)中存在的土壤鹽漬化、連作障礙等問題,減少肥料滲漏對(duì)地下水的污染[3],提高作物產(chǎn)量和品質(zhì)[4-6]。但重度限根會(huì)降低作物干物質(zhì)積累量[7]、導(dǎo)致產(chǎn)量品質(zhì)顯著下降[6]。作物耗水量與根系下扎深度密切相關(guān)[8],小定額高頻灌較常規(guī)灌溉表層土壤含水率高,深層根分布少,根系所占空間小,耗水量低,土壤硝態(tài)氮積累量降低[9],水分利用效率提高[10]?!狙芯窟M(jìn)展】李素美等[11]、崔曉明等[12]、張亞如等[13]采用網(wǎng)袋法對(duì)花生進(jìn)行研究,得出適宜的根際空間(限根深度60 cm),既能滿足作物對(duì)氮、磷、鉀的吸收,保證作物足夠的生長(zhǎng)量,又能減少冗余生長(zhǎng),增加中前期開花結(jié)果數(shù),減少后期無效果針數(shù)量,提高籽仁產(chǎn)量;根土空間過小花生根系生長(zhǎng)受阻,水分養(yǎng)分吸收不足,生物量和產(chǎn)量降低;限根深度超過60 cm后,冗余生長(zhǎng)增加,影響花生產(chǎn)量提高。師愷等[14]采用營(yíng)養(yǎng)液水培方式,得出高度為14 cm尼龍網(wǎng)袋根系限制處理顯著抑制了番茄根系生長(zhǎng)。劉俊波等[15]用塑料布設(shè)置隔根深度,得出黃瓜和結(jié)球甘藍(lán)的產(chǎn)量不顯著降低的隔根深度分別為10 cm和20 cm?!厩腥朦c(diǎn)】不同作物實(shí)現(xiàn)節(jié)水優(yōu)質(zhì)高產(chǎn)目標(biāo)所需要的根際空間不同,目前關(guān)于網(wǎng)紋甜瓜節(jié)水優(yōu)質(zhì)生產(chǎn)所需根際空間的研究仍未見報(bào)道?!緮M解決的關(guān)鍵問題】利用深度不同的紗網(wǎng)布和塑料布限制網(wǎng)紋甜瓜根系生長(zhǎng)空間,研究限根方式和限根深度對(duì)甜瓜耗水特征、干物質(zhì)積累量和果實(shí)產(chǎn)量品質(zhì)的影響,以期為確定網(wǎng)紋甜瓜節(jié)水優(yōu)質(zhì)生產(chǎn)的灌溉濕潤(rùn)層提供理論依據(jù)。
試驗(yàn)于2014年3月在河北省農(nóng)林科學(xué)院大河綜合農(nóng)業(yè)試驗(yàn)園區(qū)(38°14′N、114°22′)進(jìn)行。試驗(yàn)地區(qū)屬溫帶半濕潤(rùn)大陸性季風(fēng)氣候區(qū),年均氣溫13.3 ℃,年日照時(shí)間1 776.9 h,年均無霜期205 d,年均降水量536 mm,海拔92 m。試驗(yàn)在下沉式日光溫室內(nèi)進(jìn)行,溫室長(zhǎng)100 m,寬度7 m,種植寬6 m,東西走向,覆蓋無滴聚乙烯薄膜。供試土壤為黏壤質(zhì)洪積石灰性褐土,0~100 cm土壤體積質(zhì)量1.38 g/cm3,田間持水率22.1%(質(zhì)量含水率),地下水埋深大于20 m。0~20 cm土壤養(yǎng)分狀況為:有機(jī)質(zhì)量17.8 g/kg,堿解氮量81.7 mg/kg,速效磷量81.6 mg/kg,速效鉀量109.2 mg/kg,pH值7.6。
供試甜瓜品種為西州蜜25號(hào),穴盤基質(zhì)育苗,2014年2月17日進(jìn)行種子催芽,2月19日播種于50孔穴盤中。3月24日幼苗長(zhǎng)至3葉1心時(shí)定植于溫室試驗(yàn)地壟上,單蔓整枝,第10節(jié)位子蔓留瓜,每株留1個(gè)瓜,20節(jié)位打頂,6月12日收獲。
試驗(yàn)分別采用透水但根系不能穿透的200目紗網(wǎng)布設(shè)置不隔水限根處理(N)和不透水且根系不能穿透的塑料布設(shè)置隔水限根處理(P)。每種限根方式各設(shè)置6種限根深度,即設(shè)置距離土表10、20、30、40、50、60 cm紗網(wǎng)布隔層,分別用N1、N2、N3、N4、N5、N6表示;設(shè)置距離土表10、20、30、40、50、60 cm塑料布隔層,分別用P1、P2、P3、P4、P5、P6表示;同時(shí)設(shè)置常規(guī)種植處理(CK),共13個(gè)處理,每個(gè)處理設(shè)3次重復(fù),共39個(gè)小區(qū)。每小區(qū)面積為2.4 m×5.8 m=13.92 m2,隨機(jī)區(qū)組設(shè)計(jì)。各處理分層挖土,按照限根深度要求,在底層鋪設(shè)紗網(wǎng)布或塑料布,然后不破壞原樣土,分層回填,小區(qū)間用埋深100 cm的塑料布在定值槽兩側(cè)隔離防止水肥測(cè)滲,夯實(shí)平整土體,施肥翻耕起壟鋪設(shè)滴灌管后,覆膜待甜瓜定植。
試驗(yàn)田采用膜下滴灌灌溉方式。灌溉設(shè)備采用文丘里滴灌水肥一體化灌溉系統(tǒng),滴灌管直徑12 mm,壁厚0.6 mm,額定流速2 L/h,滴頭間距30 cm。覆蓋白色透光高壓低密度聚乙烯地膜,地膜厚度為0.014 mm。等行種植,行距為80 cm,壟寬為30 cm,甜瓜種植密度為24 000株/hm2。整地時(shí)施入腐熟雞糞30 000 kg/hm2,氮、磷、鉀(15-15-15)復(fù)合肥900 kg/hm2,甜瓜生育期間不追肥,其他管理措施與常規(guī)種植相同。3月24日、4月4日、4月27日、5月13日、5月24日分別灌水23.0、23.0、16.5、16.5、16.5 mm,總計(jì)95.5 mm。
1)土壤含水率的測(cè)定
采用取土烘干法測(cè)定。分別在甜瓜定植前和收獲時(shí),每小區(qū)在滴灌線上2個(gè)滴頭中間位置處[16]各選3個(gè)點(diǎn)測(cè)定土壤含水率,紗網(wǎng)布限根處理和CK取土深度為0~60 cm,塑料布限根處理取土深度為限根深度,每10 cm土層為1層。
2)作物耗水量的計(jì)算
作物生育期耗水量采用水量平衡法計(jì)算,即:
式中:1-2為耗水量(mm);為土層編號(hào);為總土層數(shù);γ為第層土壤體積質(zhì)量(g/cm3);H為第層土壤厚度(cm);1和2為第層土壤時(shí)段初和時(shí)段末的含水率,以占干土質(zhì)量百分?jǐn)?shù)計(jì)算;為時(shí)段內(nèi)的灌水量(mm);0為有效降雨量(mm),由于是溫室種植,故此項(xiàng)為0;為時(shí)段內(nèi)的地下水補(bǔ)給量(mm),當(dāng)?shù)叵滤裆畲笥?.5 m時(shí),值可以不計(jì),此項(xiàng)為0;為地表徑流和滲漏量(mm),本試驗(yàn)采用滴灌方式進(jìn)行灌溉,且紗網(wǎng)布限根處理取土深度較深(60 cm),塑料布限根處理水分不能下移,此項(xiàng)為0。
3)產(chǎn)量與干物質(zhì)量的測(cè)定
單果鮮質(zhì)量由精度為0.01 kg的電子秤稱量,由單果鮮質(zhì)量和小區(qū)面積換算單位面積產(chǎn)量。收獲后分器官取樣烘干,測(cè)定葉片干質(zhì)量、葉柄干質(zhì)量、莖蔓干質(zhì)量和果實(shí)干質(zhì)量。上述測(cè)定項(xiàng)目數(shù)值,每小區(qū)取長(zhǎng)勢(shì)均一的10株甜瓜的平均值。
4)果實(shí)形態(tài)的測(cè)定
用精確度為0.01 mm的數(shù)顯游標(biāo)卡尺,測(cè)量每個(gè)小區(qū)長(zhǎng)勢(shì)均一的10株甜瓜果實(shí)的橫徑和縱徑。
5)果實(shí)品質(zhì)的測(cè)定
每小區(qū)隨機(jī)選取4個(gè)果實(shí),每個(gè)果實(shí)采用四分法取1塊果肉,每小區(qū)4塊果肉等量混合,用榨汁機(jī)打成勻漿后測(cè)定品質(zhì)??扇苄钥偺橇坎捎幂焱噭┓╗17]測(cè)定;可溶性固形物量采用WYT-4型手持折光測(cè)糖儀測(cè)定;可滴定酸量采用氫氧化鈉滴定法(GB12293—90)測(cè)定;維生素C(Vc)量采用2,6-二氯酚靛酚鈉滴定法[17]測(cè)定;硝酸鹽量采用紫外分光光度法[20]測(cè)定。
6)水分利用效率
水分利用效率計(jì)算式為:
=, (2)
式中:為水分利用效率(kg/m3);為作物耗水量(m3/hm2);為甜瓜果實(shí)產(chǎn)量(kg/hm2)。
采用Microsoft Excel 2016進(jìn)行數(shù)據(jù)處理,采用SPASS 17.0進(jìn)行方差分析。
表1為不同限根處理甜瓜地上部干物質(zhì)量。甜瓜收獲期地上部干物質(zhì)量以CK為最高,限根處理間干物質(zhì)量隨限根深度增加而呈增加趨勢(shì)。紗網(wǎng)布限根的6個(gè)限根深度處理間及紗網(wǎng)布限根與CK間甜瓜地上部干物質(zhì)量差異不顯著(>0.05)。塑料布限根對(duì)甜瓜地上部干物質(zhì)量具有顯著抑制作用,但塑料布限根處理間差異不顯著。與CK相比,塑料布限根甜瓜的地上部營(yíng)養(yǎng)器官干物質(zhì)量和果實(shí)干物質(zhì)量分別降低了10.43%~16.76%和6.63%~10.65%,達(dá)顯著水平(<0.05)。
表1 不同限根處理甜瓜收獲期地上部干物質(zhì)量
注 表中同列不同小寫字母表示處理間差異顯著(<0.05)。下同。
限根對(duì)甜瓜產(chǎn)量和水分利用效率的影響見表2。甜瓜產(chǎn)量以CK為最高。限根處理間,甜瓜產(chǎn)量和耗水量隨限根深度增加而呈增加趨勢(shì),但限根深度對(duì)產(chǎn)量的影響不顯著。與CK相比,紗網(wǎng)布限根甜瓜產(chǎn)量降低了0.08%~4.10%,未達(dá)到顯著水平;塑料布限根甜瓜產(chǎn)量顯著降低了6.63%~10.65%。耗水量隨限根深度增加而增加,10~30 cm紗網(wǎng)布和塑料布限根甜瓜耗水量分別比CK顯著降低了3.89%~13.53%和6.24%~17.32%,40~60 cm限根甜瓜耗水量與CK差異不顯著。限根處理間,甜瓜水分利用效率隨限根深度增加而降低,10 cm紗網(wǎng)布限根和塑料布限根的水分利用效率分別比CK顯著提高10.90%和8.06%。紗網(wǎng)布限根深度增加至20 cm以上,水分利用效率與CK差異不顯著。P4、P5、P6處理的水分利用效率顯著低于CK。
表2 不同限根處理甜瓜的產(chǎn)量與水分利用效率
表3 不同限根處理甜瓜果實(shí)的外觀品質(zhì)
從表3可以看出,同一限根材料間比較,甜瓜果實(shí)橫徑、縱徑和單果鮮質(zhì)量均隨著限根深度增加而增加。紗網(wǎng)布限根處理間及紗網(wǎng)布限根處理與CK之間果實(shí)外觀品質(zhì)指標(biāo)差異不顯著。與CK相比,塑料布限根顯著降低了果實(shí)橫徑和單果鮮質(zhì)量。P1處理的果實(shí)縱徑顯著低于P6處理和CK。
不同限根處理甜瓜果實(shí)品質(zhì)特征如表4所示,適度限根可以提高甜瓜果實(shí)可溶性總糖、可溶性固形物量和糖酸比。與CK相比,N1、N3、P2、P3、P4處理甜瓜果實(shí)可溶性總糖量顯著提高,除N6處理外其他限根處理甜瓜果實(shí)可溶性固形物量顯著提高,N1、N2、N3、N4、N5處理的果實(shí)可滴定酸量顯著降低。紗網(wǎng)布限根處理間比較,果實(shí)可溶性總糖量和糖酸比隨著限根深度增加而降低,可溶性固形物量隨限根深度增加呈先增加后降低的趨勢(shì),以N2處理的可溶性固形物量為最高。塑料布限根處理間比較,果實(shí)可溶性總糖量、可溶性固形物量和糖酸比均隨著限根深度增加呈現(xiàn)先增加后降低趨勢(shì),且均以P3處理為最高??梢姡?0~30 cm紗網(wǎng)布限根和20~40 cm塑料布限根有利于甜瓜果實(shí)營(yíng)養(yǎng)品質(zhì)的提高。
表4 不同限根處理甜瓜果實(shí)的營(yíng)養(yǎng)品質(zhì)
本研究表明,限根方式對(duì)甜瓜產(chǎn)量的影響不同,透水的紗網(wǎng)布限根對(duì)產(chǎn)量及生長(zhǎng)影響不顯著,而不透水的塑料布限根對(duì)產(chǎn)量及生長(zhǎng)影響顯著。紗網(wǎng)布限根對(duì)甜瓜植株地上部干物質(zhì)積累、果實(shí)橫縱徑、單果鮮質(zhì)量和產(chǎn)量影響不顯著,與武衍等[18]在西瓜無紡布限根上的研究結(jié)果一致,這與紗網(wǎng)布和無紡布都具有透水透氣性有關(guān)。塑料布限根顯著降低了甜瓜果實(shí)的橫縱經(jīng)、單果鮮質(zhì)量和產(chǎn)量,且降幅隨限根深度的變淺而增加。究其原因,塑料布限根后引起的根際環(huán)境或根系本身產(chǎn)生的變化(根際O2量降低[19-20]、根系導(dǎo)水阻力增大[21]等)可能是影響甜瓜生長(zhǎng)的主要因素,謝恒星等[22]研究表明,加氧滴灌可以提高膜下滴灌甜瓜果實(shí)產(chǎn)量、水分利用效率和果實(shí)可溶性總糖量。雷宏軍等[23-24]研究指出,與增氧滴灌相比,曝氣可以改善土壤透氣性,對(duì)作物生長(zhǎng)、水分和養(yǎng)分利用的促進(jìn)作用較為顯著。
根域限制對(duì)不同作物生長(zhǎng)的效應(yīng)研究的結(jié)論不同,這與維持不同限根作物產(chǎn)量不顯著降低所需的根際空間大小不同有關(guān)。生育期長(zhǎng)的葡萄、芒果,常規(guī)栽培根系龐大,易產(chǎn)生根系“冗余”,限根栽培后,根系生物量降低,根系“冗余”減輕或消失,分配到地上部的光合產(chǎn)物比例增加,有利于產(chǎn)量提高。舒海波[25]研究表明,限根可以提高樹齡較小桃樹的水分利用效率,但對(duì)樹齡偏大的桃樹沒有影響。也有研究指出,適度限根桃樹受到抑制,但坐果率提高且同化物向果實(shí)中的分配增加,產(chǎn)量提高[26]。本研究中一株甜瓜植株只保留一個(gè)果實(shí),不受坐果率影響,導(dǎo)致產(chǎn)量特征不同。而對(duì)于甜瓜等短生育期作物,根系生長(zhǎng)時(shí)間短,產(chǎn)生“冗余”的可能性大為降低,限根后產(chǎn)量一般不能提高。樊懷福等[5]研究認(rèn)為,盆栽番茄單果鮮質(zhì)量隨根域容積降低而降低。對(duì)于果實(shí)數(shù)量較多的作物,適度限根后,坐果率與單果鮮質(zhì)量可以相互調(diào)節(jié),以降低限根對(duì)產(chǎn)量的影響。本研究表明,10 cm限根深度甜瓜的水分利用效率顯著提高,這與黃瓜[27]和番茄[28]等作物結(jié)果類似。
10~30 cm紗網(wǎng)布限根和20~40 cm塑料布限根提高了甜瓜果實(shí)可溶性總糖、可溶性固形物量和糖酸比,與前人研究得出的限根可以提高果實(shí)可溶性固形物量[27,29]、可溶性糖量[30]、酸糖比[4],改善果實(shí)品質(zhì)的結(jié)果一致。這與限根抑制了甜瓜植株的生長(zhǎng)勢(shì),提高了光合產(chǎn)物向果實(shí)中轉(zhuǎn)運(yùn)的比例有關(guān),從本研究中限根處理提高了果實(shí)干物質(zhì)量占植株干物質(zhì)量的比例上可以得到佐證。
一般認(rèn)為蔬菜作物根系限制深度以20~30 cm為宜。本研究表明,在紗網(wǎng)布限根條件下,限根深度10~20 cm是網(wǎng)紋甜瓜適宜限根深度范圍,主要是因?yàn)榇嗽囼?yàn)在溫室內(nèi)膜下滴灌條件下進(jìn)行,表土水分變化較為和緩,不易造成表土含水率過低所致。同時(shí)還與甜瓜生育期較短,地表水分供應(yīng)充足,水分引導(dǎo)根系淺層化分布有關(guān)。
1)塑料布限根甜瓜收獲期地上部營(yíng)養(yǎng)器官干物質(zhì)量、果實(shí)干物質(zhì)量和果實(shí)鮮質(zhì)量顯著降低,而紗網(wǎng)布限根對(duì)其影響不顯著。甜瓜水分利用效率隨限根深度增加而降低。10 cm紗網(wǎng)布限根和塑料布限根水分利用效率分別比常規(guī)種植顯著提高10.90%和8.06%,40~60 cm塑料布限根甜瓜水分利用效率比常規(guī)種植顯著降低。
2)10~30 cm紗網(wǎng)布限根和20~40 cm塑料布限根提高了甜瓜果實(shí)可溶性總糖和可溶性固形物量,但塑料布限根處理的甜瓜果實(shí)橫徑、縱徑和單果鮮質(zhì)量顯著降低。10~30 cm紗網(wǎng)布限根是甜瓜果實(shí)外觀品質(zhì)和營(yíng)養(yǎng)品質(zhì)協(xié)同提高的限根方式。
3)溫室膜下滴灌條件下,限根深度為10~20 cm的紗網(wǎng)布限根方式,可以提高水分利用效率和果實(shí)營(yíng)養(yǎng)品質(zhì),且果實(shí)產(chǎn)量和外觀品質(zhì)未受到顯著影響,是適宜的根域限制方式。
[1] MENG T Y, WEI H H, LI C, et al. Morphological and physiological traits of large-panicle rice varieties with high filled-grain percentage[J]. Journal of Integrative Agriculture, 2016, 15(8): 1 751-1 762.
[2] 李話, 張大勇. 半干旱地區(qū)春小麥根系形態(tài)特征與生長(zhǎng)冗余的初步研究[J]. 應(yīng)用生態(tài)學(xué)報(bào), 1999, 10(1): 3-5.
[3] 舒海波, 賀超興, 張志斌, 等. 不同有機(jī)土栽培方式對(duì)溫室番茄植株生長(zhǎng)及產(chǎn)量和品質(zhì)的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2010, 19(6): 120-125.
SHU Haibo, HE Chaoxing, ZHANG Zhibin, et al. Effects of organic soils on growth, yield and quality of tomato in solar greenhouse[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(6): 120-125.
[4] 王亞萍. 根際空間與水肥供給模式對(duì)基質(zhì)培番茄生長(zhǎng)及產(chǎn)量品質(zhì)的影響[D]. 泰安:山東農(nóng)業(yè)大學(xué),2020.
WANG Yaping. Effects of root space and fertigation mode on growth, yield and fruit quality of media cultivated tomato[D]. Taian: Shandong Agricultural University, 2020.
[5] 樊懷福, 杜長(zhǎng)霞, 朱祝軍. 不同容積盆栽對(duì)櫻桃番茄果實(shí)品質(zhì)和葉片氮代謝影響[J]. 中國農(nóng)學(xué)通報(bào), 2012, 28(16): 150-154.
FAN Huaifu, DU Changxia, ZHU Zhujun. The effect of different cubage pot culture on fruit quality and leaf nitrogen metabolism of lycopersicon esculentum[J]. Chinese Agricultural Science Bulletin, 2012, 28(16): 150-154.
[6] 王偉娟, 黃遠(yuǎn), 汪力威, 等. 根域容積對(duì)甜瓜生理特性、果實(shí)產(chǎn)量和品質(zhì)的影響[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 32(6): 27-31.
WANG Weijuan, HUANG Yuan, WANG Liwei, et al. Effects of root volume on physiological characteristics, fruit yield and quality of melon[J]. Journal of Huazhong Agricultural University, 2013, 32(6): 27-31.
[7] LIU A M, LATIMER J G. Root cell volume in the planter flat affects watermelon seedling development and fruit yield[J]. HortScience, 1995, 30(2): 242-246.
[8] EHLERS W, HAMBLIN A P, TENNANT D, et al. Root system parameters determining water uptake of field crops[J]. Irrigation Science, 1991, 12(3): 115-124.
[9] 王麗娟, 孫嘉星, 韓衛(wèi)華, 等. 水肥減量對(duì)土壤硝態(tài)氮和番茄產(chǎn)量品質(zhì)的影響[J]. 灌溉排水學(xué)報(bào), 2020, 39(3): 1-7.
WANG Lijuan, SUN Jiaxing, HAN Weihua, et al. The effects of reducing irrigation and fertilization on soil nitrate, yield and quality of greenhouse tomato[J]. Journal of Irrigation and Drainage, 2020, 39(3): 1-7.
[10] 馮廣龍, 劉昌明. 人工控制土壤水分剖面調(diào)控根系分布的研究[J]. 地理學(xué)報(bào), 1997, 52(5): 461-469.
FENG Guanglong, LIU Changming. Studies on the control of soil water profile and root distribution[J]. Acta Geographica Sinica, 1997, 52(5): 461-469.
[11] 李素美, 張娜, 郭慶, 等. 根土空間對(duì)花生營(yíng)養(yǎng)器官氮、磷、鉀吸收積累變化的影響[J]. 華北農(nóng)學(xué)報(bào), 2016, 31(2): 170-175.
LI Sumei, ZHANG Na, GUO Qing, et al. Effects of soil root-growing space on absorption and accumulation of nitrogen, phosphorus and potassium in vegetative organs of peanut[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(2): 170-175.
[12] 崔曉明, 張亞如, 張娜, 等. 根土空間對(duì)花生生長(zhǎng)發(fā)育和產(chǎn)量的影響[J]. 華北農(nóng)學(xué)報(bào), 2016, 31(3): 141-146.
CUI Xiaoming, ZHANG Yaru, ZHANG Na, et al. Effects of soil root-growing space on growth and yield of peanut[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(3): 141-146.
[13] 張亞如, 張曉軍, 王銘倫, 等. 根土空間對(duì)花生結(jié)莢期營(yíng)養(yǎng)器官礦質(zhì)元素吸收積累與分配的影響[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 34(1): 1-4, 26.
ZHANG Yaru, ZHANG Xiaojun, WANG Minglun, et al. Effects of Soil root-growing space on vegetative organs absorption of mineral elements accumulation and Distribution of peanut in pod bearing stage[J]. Journal of Qingdao Agricultural University (Natural Science), 2017, 34(1): 1-4, 26.
[14] 師愷, 胡文海, 董德坤, 等. 根系限制對(duì)番茄幼苗生長(zhǎng)、根系呼吸、ATPase和PPase活性的影響[J]. 園藝學(xué)報(bào), 2006, 33(4): 853-855.
SHI Kai, HU Wenhai, DONG Dekun, et al. Effects of root restriction on plant growth, root respiration, activities of H+-ATPase and H+-PPase in tomato seedlings[J]. Acta Horticulturae Sinica, 2006, 33(4): 853-855.
[15] 劉俊波. 不同根土空間對(duì)甘藍(lán)和黃瓜生長(zhǎng)的貢獻(xiàn)率研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2014.
LIU Junbo. The study of different root-soil space on vegetables growth contribution rate of the cabbage and cucumber[D]. Baoding: Hebei Agricultural University, 2014.
[16] 劉浩. 溫室番茄需水規(guī)律與優(yōu)質(zhì)高效灌溉指標(biāo)研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院研究生院,2010.
LIU Hao. Water requirement and optimal irrigation index for effective water use and high-quality of tomato in greenhouse[D]. Beijing: Graduate School of Chinese Academy of Agricultural Sciences, 2010.
[17] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京: 高等教育出版社, 2000.
LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.
[18] 武衍, 陳佩, 王燦磊, 等. 無紡布限根栽培對(duì)西瓜果實(shí)發(fā)育及其營(yíng)養(yǎng)品質(zhì)的影響[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 18(2): 45-49.
WU Yan, CHEN Pei, WANG Canlei, et al. Effect of nonwoven faribic root restriction on watermelon quality[J]. Journal of China Agricultural University, 2013, 18(2): 45-49.
[19] 師愷. 果菜類蔬菜根系限制下能量代謝變化及其調(diào)控機(jī)制[D]. 杭州: 浙江大學(xué), 2007.
SHI Kai. The changes of energy metabolism and its regulation in response to root restriction in fruit vegetable crops[D]. Hangzhou: Zhejiang University, 2007.
[20] 劉義玲, 李天來, 孫周平, 等. 根際低氧脅迫對(duì)網(wǎng)紋甜瓜生長(zhǎng)、根呼吸代謝及抗氧化酶活性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21(6): 1 439-1 445.
LIU Yiling, LI Tianlai, SUN Zhouping, et al. Impacts of root-zone hypoxia stress on muskmelon growth, its root respiratory metabolism, and antioxidative enzyme activities[J]. Chinese Journal of Applied Ecology, 2010, 21(6): 1 439-1 445.
[21] HAMEED M A, REID J B, Rowe R N. Root confinement and its effects on the water relations, growth and assimilate partitioning of tomato (lycopersicon esculentum mill)[J]. Annals of Botany, 1987: 59:685-692.
[22] 謝恒星, 呂海波, 高志勇, 等. 加氧灌溉下溫室甜瓜生長(zhǎng)、品質(zhì)和產(chǎn)量特征研究[J]. 灌溉排水學(xué)報(bào), 2017, 36(12): 20-24.
XIE Hengxing, LYU Haibo, GAO Zhiyong, et al. The growth, quality and yield of muskmelon under oxygation in greenhouse[J]. Journal of Irrigation and Drainage, 2017, 36(12): 20-24.
[23] 雷宏軍, 肖哲元, 張振華, 等. 水肥氣耦合滴灌提高溫室番茄土壤通氣性和水氮利用[J]. 灌溉排水學(xué)報(bào), 2020, 39(3): 8-16.
LEI Hongjun, XIAO Zheyuan, ZHANG Zhenhua, et al. Integrating drip fertigation with soil aeration to improve water and nitrogen use efficiency of greenhouse tomato[J]. Journal of Irrigation and Drainage, 2020, 39(3): 8-16.
[24] 雷宏軍, 王露陽, 潘紅衛(wèi), 等. 紫茄生長(zhǎng)及養(yǎng)分利用對(duì)增氧地下滴灌的響應(yīng)研究[J]. 灌溉排水學(xué)報(bào), 2019, 38(3): 8-14.
LEI Hongjun, WANG Luyang, PAN Hongwei, et al. The efficacy of oxygenation in improving growth and nutrients use efficiency of greenhouse purple eggplant[J]. Journal of Irrigation and Drainage, 2019, 38(3): 8-14.
[25] 舒海波, 賀超興, 王懷松, 等. 園藝作物限根栽培技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)科技通訊, 2009(4): 85-88.
SHU Haibo, HE Chaoxing, WANG Huaisong, et al. Research advances of rooting-zone restricted technique in horticulture crops[J]. Bulletin of Agricultural Science and Technology, 2009(4): 85-88.
[26] 方金豹, 顧紅, 陳錦永, 等. 根域限制對(duì)幼年桃樹生長(zhǎng)發(fā)育的影響[J]. 中國農(nóng)業(yè)科學(xué), 2006, 39(4): 779-785.
FANG Jinbao, GU Hong, CHEN Jinyong, et al. Effects of restricted root volume on growth and development of young peach trees[J]. Scientia Agricultura Sinica, 2006, 39(4): 779-785.
[27] 蔡簫, 韓浩章, 王曉立. 限根栽培對(duì)黃瓜初果期生長(zhǎng)和光合特性的影響[J]. 安徽農(nóng)學(xué)通報(bào), 2012, 18(23): 54-55, 73.
CAI Xiao, HAN Haozhang, WANG Xiaoli. Effects of root restriction on the growth and photosynthetic characteristics of cucumber in early fruiting[J]. Anhui Agricultural Science Bulletin, 2012, 18(23): 54-55, 73.
[28] 張海, 李冬, 胡瑩瑩, 等. 栽培槽大小對(duì)日光溫室架式栽培番茄生長(zhǎng)發(fā)育、水肥利用和產(chǎn)量品質(zhì)的影響[J]. 中國蔬菜, 2016(8): 45-49.
ZHANG Hai, LI Dong, HU Yingying, et al. Effect of trough volume on root absorption, fruit yield and quality of elevated cultured tomato in solar greenhouse[J]. China Vegetables, 2016(8): 45-49.
[29] 葛均青, 于賢昌, 李建勇, 等. 限根程度對(duì)黃瓜生長(zhǎng)及光合特性的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2004, 13(4): 174-178.
GE Junqing, YU Xianchang, LI Jianyong, et al. Effect of root restriction on the growth and photosynthetic characteristics of cucumber[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2004, 13(4): 174-178.
[30] KHARKINA T G, OTTOSEN C O, ROSENQVIST E. Effects of root restriction on the growth and physiology of cucumber plants[J]. Physiologia Plantarum, 1999, 105(3): 434-441.
The Effects of Root-zone Restriction on Water Consumption and Fruit Quality of Greenhouse Muskmelon under Mulched Drip Irrigation
MENG Jian1,2, LIU Shengyao3, FAN Fengcui3*, NIE Lanchun1*LI Yan4, HOU Dashan5, WANG Jing2, HAN Jiangwei5
(1. College of Horticulture, Hebei Agricultural University, Baoding 071001, China; 2. Hebei Agricultural Technology Popularization Station, Shijiazhuang 050022, China; 3. Institute of Agricultural Information and Economic, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; 4. Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050021, China; 5. Shijiazhuang Agriculture Technology and Popularization Center, Shijiazhuang 050051, China)
【】Improvement in living standard has shifted the demand of people for foods from quantity to quality. Given that roots not only anchor crops but also take up nutrients from soil to sustain crops growth, it has been conjectured that managing root growth and development could be an effective way to improve food nutrition while in the meantime reducing agrichemicals leaching and mitigating soil salinization in irrigated fields. Root restriction is one of such technologies, but inappropriate root restriction could impede reproductive growth of the crops, thereby reducing dry matter accumulation and leading to a decline in yield and food quality. Efficacy of root restriction is thus crop-specific.【】Taking muskmelon as an example, this paper aims to experimentally find an optimal root zone restriction that can constraint unnecessary root growth while in the meantime improving water use efficiency and fruit quality of the muskmelon.【】The experiment was conducted in a greenhouse and we used the cultivar Xizhoumi 25 as the model crop. Roots were restricted to grow by placing gauze or plastic mesh at a depth between 10~60 cm, with no root restriction as the control (CK). In each treatment, we measured the water consumption, dry matter accumulation, yield and fruit quality of the muskmelon.【】Compared with the CK, restricting root growth by the gauze mesh did not affect dry matter accumulation, yield and appearance of the fruit at significant level, as opposed to the plastic mesh that significantly reduced dry matter accumulation, yield, transverse and longitudinal size of the fruits, as well as fruit shape index. Placing the gauze mesh at depths of 10 cm and 20 cm increased water use efficiency by 10.90% and 5.47% respectively, while replacing the gauze mesh by plastic mesh increased the water use efficiency by 8.06% and 4.39% respectively. Burying either mesh too deep resulted in a significant decrease in water use efficiency, suggesting that the depth of the root restriction mesh had an impact on fruit nutrition. It was also found that placing the gauze mesh at depths of 10, 20 and 30 cm, or the plastic mesh at the depths of 20, 30 and 40 cm, significantly increased the contents of soluble sugar, soluble solids and acid sugar ratio of the fruits.【】For muskmelon grown in greenhouse, placing a gauze mesh at a depth between 10~20 cm to restrict its root growth did not have a significant impact on its vegetative and reproductive growth but could effectively improve its water use efficiency and fruit quality.
muskmelon; root zone restriction; water use efficiency; fruit quality;mulched drip irrigation
S652.4
A
10.13522/j.cnki.ggps.2020645
1672 - 3317(2021)03 - 0056 - 07
孟建, 劉勝堯, 范鳳翠, 等. 根域限制對(duì)溫室膜下滴灌網(wǎng)紋甜瓜耗水特征與果實(shí)品質(zhì)的影響[J]. 灌溉排水學(xué)報(bào), 2021, 40(3): 56-62.
MENG Jian, LIU Shengyao, FAN Fengcui, et al. The Effects of Root-zone Restriction on Water Consumption and Fruit Quality of Greenhouse Muskmelon under Mulched Drip Irrigation[J]. Journal of Irrigation and Drainage, 2021, 40(3): 55-62.
2020-11-17
河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(19227407D);河北省農(nóng)林科學(xué)院科學(xué)技術(shù)研究與發(fā)展計(jì)劃項(xiàng)目(2018090101);河北省農(nóng)林科學(xué)院財(cái)政項(xiàng)目(F16E02);河北省農(nóng)林科學(xué)院創(chuàng)新工程項(xiàng)目(2019-3-3-1);河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系蔬菜創(chuàng)新團(tuán)隊(duì)項(xiàng)目(HBCT2018030205)
孟建(1980-),男。研究員,主要從事作物高效用水技術(shù)與蔬菜栽培生理研究,E-mail: jianmeng80@126.com
范鳳翠(1971-),女。研究員,主要從事水資源高效利用研究。E-mail: njsffc@163.com。乜蘭春(1966-),女。教授,博士生導(dǎo)師,主要從事蔬菜生理生態(tài)及生長(zhǎng)調(diào)控研究。E-mail: 13784960296@ 139.com
責(zé)任編輯:陸紅飛