国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

半滑舌鰨hsd11b1l和hsd11b2基因的克隆及其溫度響應(yīng)的表達(dá)規(guī)律*

2021-03-06 03:02郝先才邵長偉
漁業(yè)科學(xué)進(jìn)展 2021年2期
關(guān)鍵詞:雄魚皮質(zhì)醇結(jié)構(gòu)域

郝先才 馮 博 邵長偉 王 倩

半滑舌鰨和基因的克隆及其溫度響應(yīng)的表達(dá)規(guī)律*

郝先才1,2馮 博1,2邵長偉1,2王 倩2①

(1. 上海海洋大學(xué)水產(chǎn)與生命學(xué)院 上海 201306;2. 中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 青島海洋科學(xué)與技術(shù)試點(diǎn)國家實驗室海洋漁業(yè)科學(xué)與食物產(chǎn)出過程功能實驗室 青島 266071)

皮質(zhì)醇在魚類應(yīng)對外界環(huán)境壓力的過程中起到重要調(diào)控作用,而和具有調(diào)節(jié)體內(nèi)皮質(zhì)醇濃度的重要功能。本研究克隆了半滑舌鰨()和基因的cDNA全長序列,分析了其序列特征,研究了其時空表達(dá)特征及溫度響應(yīng)的表達(dá)規(guī)律。結(jié)果顯示,cDNA全長為1650 bp,開放性閱讀框長度為864 bp,編碼287個氨基酸;cDNA全長為4526 bp,開放性閱讀框長度為1209 bp,編碼402個氨基酸。半滑舌鰨不同組織和性腺發(fā)育時期的表達(dá)分析結(jié)果顯示,在肝臟中表達(dá)量最高,在卵巢的表達(dá)量是精巢的2倍,且在6月齡和3齡魚的卵巢中呈現(xiàn)較高表達(dá);而主要在精巢中表達(dá),在6月齡魚的精巢中表達(dá)量最高,隨后表達(dá)量急劇降低,在卵巢中各個時期幾乎不表達(dá)。半滑舌鰨溫度響應(yīng)的表達(dá)結(jié)果顯示,高溫(28℃)處理2個月后,與正常溫度(22℃)對照組相比,和在雄魚中的表達(dá)量均顯著降低(<0.05);高溫短期應(yīng)激48 h,表達(dá)在雌魚和雄魚中均顯著降低,表達(dá)僅在雄魚中有顯著下調(diào)(<0.05)。本研究探討了和基因在半滑舌鰨性別分化過程中的表達(dá)規(guī)律,為研究環(huán)境溫度與半滑舌鰨性別分化之間的關(guān)系奠定了基礎(chǔ)。

半滑舌鰨;性別決定;溫度;基因;基因

脊椎動物的性別通常由基因型決定,其性別一旦形成就很難發(fā)生改變,這種性別決定方式稱為遺傳型性別決定(Genetic sex determination, GSD)。但在一些爬行類、兩棲類、魚類等相對低等的脊椎動物中,外界環(huán)境因素,諸如溫度、pH、密度及社會性等都有可能影響性別,而這種性別決定方式稱為環(huán)境型性別決定(Environmental sex determination, ESD) (Francis 1984; Rubin, 1985; Francis, 1993; Tabata, 1995)。前期研究發(fā)現(xiàn),皮質(zhì)醇在ESD型物種響應(yīng)外界環(huán)境壓力方面起到重要作用(Sadoul, 2019)。在魚類中,溫度是主要的外界壓力源,外界溫度的變化會顯著增加機(jī)體或細(xì)胞的皮質(zhì)醇水平,從而對魚類生殖生長、性別分化等產(chǎn)生影響(Wendelaar Bonga, 1997; Mommsen, 1999)。在大西洋鮭()幼魚時期,注射皮質(zhì)醇后發(fā)現(xiàn),雄魚的比例增加并且卵巢生長受到抑制(van den Hurk, 1985)。在牙鲆()性別決定時期,高溫引起皮質(zhì)醇的增加,進(jìn)而導(dǎo)致雄性比例升高(Yamaguchi, 2010)。截至目前,皮質(zhì)醇介導(dǎo)溫度進(jìn)而影響性別決定的機(jī)制尚不完全清楚。

羥基類固醇11β脫氫酶(Hydroxysteroid 11-beta dehydrogenase, HSD11β)屬于氧化還原酶家族,調(diào)控活性和無活性皮質(zhì)酮間的相互轉(zhuǎn)化,同時,還參與類固醇代謝的生理過程(Krozowski, 1999)。在哺乳動物中,羥基類固醇11β脫氫酶存在2個亞型,分別為11β-Hydroxysteroid dehydrogenase type 1()和。的功能是將無活性的皮質(zhì)酮轉(zhuǎn)化為有活性的皮質(zhì)醇,的功能則相反(Albiston, 1994; Hu, 2019)。魚類不存在基因,而存在其同源基因Hydroxysteroid 11-beta dehydrogenase 1 like ()(Tsachaki, 2017)。在斑馬魚()和虱目魚()中,可以增加皮質(zhì)醇的水平,這與哺乳動物中的功能相似(Baker, 2010; Hu, 2019)??梢越档汪~類組織皮質(zhì)醇水平,從而保護(hù)組織免受皮質(zhì)醇的傷害,并參與雄激素的合成(Alderman, 2012; Tokarz, 2013)。研究表明,高水平的雄激素可以直接影響魚類的性別決定和分化(Miura, 2008; Hattori, 2009; Blasco, 2010)。牙漢魚()高溫誘導(dǎo)雄性化過程中,皮質(zhì)醇通過調(diào)節(jié)高表達(dá)促進(jìn)雄激素生成,從而驅(qū)動精巢發(fā)生(Fernandino, 2012)。

半滑舌鰨()是我國重要的經(jīng)濟(jì)魚類。研究表明,半滑舌鰨的性別決定類型是ZZ/ZW型,但其性別分化也受到外界環(huán)境的直接影響。在半滑舌鰨性別決定和分化的關(guān)鍵時期,高溫可以誘導(dǎo)遺傳雌性向表型雄性逆轉(zhuǎn)(Chen, 2014)。因此,半滑舌鰨是理解溫度與性別分化關(guān)系的理想模型。在本研究中,通過RACE克隆獲得半滑舌鰨和的cDNA全長,并對序列特征進(jìn)行生物信息學(xué)分析,進(jìn)而通過熒光定量PCR技術(shù),分析其時空表達(dá)特征及溫度響應(yīng)的表達(dá)規(guī)律,可為后續(xù)深入探究溫度與性別分化的關(guān)系提供基礎(chǔ)信息。

1 材料與方法

1.1 實驗材料

本實驗用半滑舌鰨均取自山東海陽黃海水產(chǎn)有限公司。隨機(jī)選取3齡半滑舌鰨雌魚和雄魚各3條,解剖后取腦、心臟、腸、鰓、脾臟、腎臟、肝臟、皮膚、精巢及卵巢。此外,取不同發(fā)育時期(30日齡、50日齡、3月齡、6月齡、2齡和3齡)半滑舌鰨性腺或性腺區(qū)域。將280尾30日齡的半滑舌鰨魚苗隨機(jī)等分為2組,分別采用高溫(28℃)及常溫(22℃)處理2個月,并在3月齡時解剖取性腺組織樣品;另取140尾3月齡半滑舌鰨魚苗,隨機(jī)等分為2組,分別進(jìn)行高溫(28℃)與常溫(22℃)處理,48 h后解剖取性腺組織樣品。將上述樣品液氮速凍后放入超低溫冰箱保存。所有半滑舌鰨同時取尾鰭組織保存于酒精中,通過實驗室前期建立的性別特異分子標(biāo)記方法進(jìn)行遺傳性別鑒定(Jiang, 2017; Cui, 2018),對于3月齡半滑舌鰨,進(jìn)一步結(jié)合基因的相對表達(dá)量剔除偽雄魚(Cui, 2017)。

1.2 半滑舌鰨hsd11b1l和hsd11b2的全長克隆

使用RNAprep pure Tissue Kit (Tiangen, 中國)提取3齡半滑舌鰨的精巢組織總RNA,并使用PrimeScriptTMII 1st Strand cDNA Synthesis Kit (TaKaRa, 日本)完成cDNA反轉(zhuǎn)錄。根據(jù)半滑舌鰨基因組中的(GenBank ID: XM_025065042)和(GenBank ID: XM_008310169)基因序列,利用Primer 6.0設(shè)計引物(hsd11b1l-F/R和hsd11b2-F/R) (表1)。利用SMARTTMRACE cDNA Amplification Kit (Clontech, 美國)進(jìn)行5′和3′RACE克隆。RACE引物如表1所示。PCR產(chǎn)物經(jīng)純化,克隆到pEasy-T1載體(TransGen, 中國)并進(jìn)行測序。

1.3 hsd11b1l和hsd11b2基因序列的生物信息學(xué)分析

通過在線工具SMART (http://smart.embl-heidelberg. de/)預(yù)測了和的蛋白質(zhì)結(jié)構(gòu)。使用AliBaba2.1(http://gene-regulation.com/pub/programs/alibaba2/index.html)對和基因啟動子區(qū)域(轉(zhuǎn)錄起始位點(diǎn)上游500 bp和5'UTR區(qū)域)進(jìn)行轉(zhuǎn)錄因子結(jié)合位點(diǎn)預(yù)測。從NCBI下載不同物種的蛋白質(zhì)序列,然用根據(jù)軟件MEGAX使用Neighbor- Joining (NJ)法構(gòu)建系統(tǒng)進(jìn)化樹(Bootstrap=1000)。

1.4 半滑舌鰨hsd11b1l和hsd11b2基因的表達(dá)分析

選取各樣本高質(zhì)量的RNA 1 μg,利用PrimeScript RT reagent Kit (Takara, 日本)試劑盒反轉(zhuǎn)錄生成cDNA。設(shè)計和的熒光定量檢測引物(表1),進(jìn)行實時熒光定量PCR (Real-time PCR)表達(dá)分析。使用QuantiNova? SYBR Green PCR Kit (Qiagen, 德國)試劑盒,反應(yīng)體系為20 μl,分別包含1 μl cDNA模板、10 μl SYBR Green PCR Master Mix (2×)、2 μl QN ROX Reference Dye及0.7 μmol/L的正向和反向引物。反應(yīng)在ABI StepOnePlus_Real-Time PCR System (Applied Biosystems, 美國)進(jìn)行,程序為95℃ 2 min;95℃ 5 s, 60℃ 10 s,共40個循環(huán);95℃ 5 s, 60℃ 1 min, +1℃/min, 95℃ 15 s。內(nèi)參用基因片段(β-actin-qF/R,表1)。每個反應(yīng)體系設(shè)置3個技術(shù)重復(fù)。使用2–ΔΔCt方法分析以及基因在半滑舌鰨雌雄各組織、不同發(fā)育時期及溫度處理樣品中的表達(dá)水平(Livak, 2001; Li, 2010)。利用-檢驗分析顯著性,<0.05表示差異顯著。

表1 實驗所用到的引物

Tab.1 Primers used in the experiments

2 結(jié)果與分析

2.1 hsd11b1l和hsd11b2克隆和序列分析

通過RACE克隆獲得半滑舌鰨和基因的cDNA全長。的cDNA全長為1650 bp,包含97 bp的5'UTR和689 bp的3'UTR,開放性閱讀框(Open Reading Frame, ORF)為864 bp,編碼287個氨基酸,蛋白質(zhì)的分子量為31.79 kDa,預(yù)測理論等電點(diǎn)(p)為7.65(圖1)。啟動子區(qū)域轉(zhuǎn)錄因子結(jié)合位點(diǎn)預(yù)測分析顯示,啟動子區(qū)域存在NF-kappaB、AP-1、E2、GATA-1、GR、PR、C/EBPalp、C/EBPbeta、TBP、HNF1、HNF3等轉(zhuǎn)錄因子結(jié)合位點(diǎn)。基因的cDNA全長為4526 bp,包括1209 bp的ORF,5′UTR和3′UTR長度分別為403 bp和2914 bp,編碼402個氨基酸,預(yù)測分子量為44.5 kDa,理論等電點(diǎn)為8.38(圖2)。啟動子區(qū)域轉(zhuǎn)錄因子結(jié)合位點(diǎn)預(yù)測分析顯示,啟動子區(qū)域包含GR、TBP、Sp1、Ahr、PR、Sox-2、C/EBPalp、Elk-1、HNF-3、COUP、GATA-1等轉(zhuǎn)錄結(jié)合位點(diǎn)。將和mRNA比對到對應(yīng)DNA序列,顯示包含6個外顯子,包含5個外顯子(圖3A)。

2.2 多序列比對和系統(tǒng)進(jìn)化樹分析

利用SMART預(yù)測了半滑舌鰨HSD11B1L和HSD11B2的蛋白結(jié)構(gòu)。結(jié)果顯示,這2個蛋白都存在1個保守的結(jié)構(gòu)域,為短鏈脫氫酶(adh_short),其中,HSD11B1L還具有信號肽,HSD11B2包含2個跨膜結(jié)構(gòu)域(圖3B)。根據(jù)ExPASy (https://www.expasy. org/)的GOR IV工具預(yù)測HSD11B1L和HSD11B2蛋白的二級結(jié)構(gòu),結(jié)果表明,HSD11B2蛋白的α-螺旋和無規(guī)卷曲含量比HSD11B1L高,而延伸鏈的比例少。

圖1 半滑舌鰨hsd11b1l基因核苷酸序列及推測的氨基酸序列

方框內(nèi)為起始密碼子和終止密碼子,黑色下劃線表示polyA信號,紅色下劃線表示信號肽位置,藍(lán)色下劃線表示保守結(jié)構(gòu)域

Frames indicate the start codon and stop codon, respectively. Black underline indicates the PolyA tail sequence, red underline indicates signal peptide, and blue underline indicates conserved domain

半滑舌鰨HSD11B1L和HSD11B2蛋白序列與其他物種同源性分析顯示,HSD11B1L與河豚(, XP_029684148.1)、牙鲆(XP_019936361.1)和斑馬魚(NP_ 956617.2) HSD11B1L蛋白的相似性分別為77.04%、73.08%和66.89%。HSD11B2蛋白與河豚(XP_029702217.1)、羅非魚(, NP_001266686.1)和斑馬魚(NP_997885.2) HSD11B2蛋白的序列相似性分別為77.08%、75.33%和69.40%。進(jìn)化樹分析結(jié)果表明,HSD11B1L和HSD11B2均聚成了兩支,一支是哺乳動物、鳥類、兩棲動物和爬行動物,另一支是魚類(圖4A、B)。

2.3 hsd11b1l和hsd11b2在不同組織中的表達(dá)分布

和基因在3齡半滑舌鰨不同組織的表達(dá)分析結(jié)果顯示,主要在肝臟、卵巢、精巢和腸中表達(dá),并且卵巢中的表達(dá)量顯著高于精巢(<0.05)。在精巢、腸、肝臟和腎臟中廣泛表達(dá),而在卵巢中幾乎不表達(dá)(圖5)。

2.4 hsd11b1l和hsd11b2在性腺發(fā)育中的表達(dá)模式

在性別分化早期基本不表達(dá),3月齡開始有微弱表達(dá)。在卵巢中,在6月齡的表達(dá)量急劇升高,然后在2齡時期急劇下降,在3齡表達(dá)量重新上升并達(dá)到峰值;在精巢中,表達(dá)與卵巢中類似,在6月齡表達(dá)量急劇升高,在2齡表達(dá)量略有下降,在3齡表達(dá)量重新上升并達(dá)到峰值,在6月齡及3齡中精巢的表達(dá)量均顯著低于卵巢(<0.05) (圖5A)。

基因在性別分化早期基本不表達(dá)。在精巢中,在3月齡開始表達(dá),6月齡達(dá)到峰值且顯著高于其他時期(<0.05),隨后在2齡表達(dá)量下降并維持較低水平至3齡;在卵巢中,各階段均幾乎無法檢測到的表達(dá)(圖6B)。

2.5 hsd11b1l和hsd11b2在高溫處理下的表達(dá)

在30日齡到3月齡性別分化過程對半滑舌鰨進(jìn)行高溫(28℃)處理,和基因在雄魚中的表達(dá)量均顯著低于正常生長溫度組(<0.05),在雌魚中的表達(dá)量無顯著差異(圖7A、B)。對3月齡幼魚進(jìn)行48 h的短期高溫刺激后,表達(dá)量在雌魚和雄魚中均顯著下調(diào),雌魚為常溫條件下的37.80%,雄魚為47.18%;基因在雄魚中顯著下調(diào)表達(dá),為常溫對照組的25.65%(<0.05),在雌魚中的表達(dá)量無顯著差異(圖7C、D)。

圖2 半滑舌鰨hsd11b2基因核苷酸序列及推測的氨基酸序列

方框內(nèi)為起始密碼子和終止密碼子,黑色下劃線表示polyA信號,紫色下劃線表示跨膜結(jié)構(gòu)域,藍(lán)色下劃線表示保守結(jié)構(gòu)域

Frames indicate the start codon and stop codon, respectively. Black underline indicates the PolyA tail sequence, violet underline indicates transmembrane region, blue underline indicates conserved domain

圖3 半滑舌鰨hsd11b1l和hsd11b2的基因結(jié)構(gòu)分析及蛋白結(jié)構(gòu)域預(yù)測

A:基因結(jié)構(gòu)示意圖,外顯子用紅色框表示,DNA序列用黑線表示,UTR用藍(lán)框表示; B:HSD11B1L和HSD11B2保守結(jié)構(gòu)域

A: Schematic representation of genomic structure. The exons were represented by red boxes, DNA sequences were indicated by lines, and UTRs were shown as blues boxes; B: The predicted conserved domain of HSD11B1L and HSD11B2

A: HSD11B1L; B: HSD11B2

圖5 hsd11b1l和hsd11b2基因在半滑舌鰨中的組織表達(dá)模式

數(shù)據(jù)用3個獨(dú)立個體的Mean±SE表示(=3)。*表示顯著差異。下同

The mean±SE values from three separate individuals (=3) are shown. Asterisks indicate significant differences (<0.05). The same as below

圖6 hsd11b1l和hsd11b2在性腺發(fā)育階段的表達(dá)模式

3 討論

本研究克隆獲得了半滑舌鰨和基因的cDNA全長,分析了基因序列特征。研究發(fā)現(xiàn),2個基因都含有1個保守的短鏈脫氫酶結(jié)構(gòu)域,該結(jié)構(gòu)域?qū)儆阪溍摎涿?還原酶家族(SDR),是一種重要的氧化還原酶家族(Ghosh, 1994),表明和基因在皮質(zhì)醇的生理過程中具有氧化還原酶的作用。此外,基因啟動子序列中包含糖皮質(zhì)激素受體(GR)、雌激素(E2)、TATA結(jié)合蛋白(TATA-binding protein, TBP)等轉(zhuǎn)錄結(jié)合位點(diǎn),啟動子區(qū)域包含糖皮質(zhì)激素受體(GR)、雄激素受體(AHR)和TBP等轉(zhuǎn)錄結(jié)合位點(diǎn)。皮質(zhì)醇是一種糖皮質(zhì)激素,可以與糖皮質(zhì)激素受體結(jié)合,在生長、生殖等生理活動中起到重要作用(Mommsen, 1999)。在牙鲆、青鳉()、牙漢魚等魚類中,皮質(zhì)醇參與高溫誘導(dǎo)雄性化(Hattori, 2009; Hayashi, 2010; Yamaguchi, 2010)。雄激素和雌激素受體可以直接參與魚類的性別發(fā)育調(diào)節(jié)。TBP則是一類可以與RNA聚合酶Ⅱ共同發(fā)揮作用的轉(zhuǎn)錄因子,在精子形成期過量表達(dá),參與精細(xì)胞的形成(Schmidt, 1997)。

本研究分析了半滑舌鰨和基因的時空表達(dá)特征。組織表達(dá)結(jié)果顯示,基因主要在半滑舌鰨肝臟和性腺中表達(dá),這與其他脊椎動物中的研究結(jié)果相似。HSD11B1是一種還原型酶,可以轉(zhuǎn)化生成大量皮質(zhì)醇并且增強(qiáng)糖皮質(zhì)激素的作用,這種酶存在于人類的多種組織器官中,在肝臟、脂肪等關(guān)鍵的代謝組織中非常豐富(White, 1997; Tomlinson, 2004)。本研究結(jié)果顯示,半滑舌鰨于3月齡開始表達(dá),在6月齡和3齡時期魚的卵巢中顯著高于其他時期和精巢。半滑舌鰨在6月齡左右開始分化形成卵母細(xì)胞,3齡已進(jìn)入卵巢發(fā)育成熟期,暗示可能參與半滑舌鰨卵巢發(fā)育過程(Chen, 2014; Li, 2016、2017)。前期研究表明,不僅催化皮質(zhì)酮向皮質(zhì)醇的轉(zhuǎn)化過程,還可催化11-酮基雄烯二酮生成11-酮基睪酮,在雄激素的形成過程中起到至關(guān)重要的作用(Oppermann, 1997)。牙漢魚可通過合成雄激素進(jìn)而參與雄性化形成(Zhang, 2018)。在虹鱒()中,在調(diào)節(jié)精子發(fā)生過程中起到重要作用,其表達(dá)模式在雄魚發(fā)育過程中發(fā)生顯著變化(Liu, 2000; Kusakabe, 2002)。本研究中,半滑舌鰨主要在精巢中表達(dá),在卵巢中幾乎不表達(dá),也提示該基因在精巢中發(fā)揮重要作用。對精巢各發(fā)育時期的進(jìn)一步分析表明,在3月齡開始表達(dá),在6月齡達(dá)到峰值,隨后在成熟精巢中表達(dá)量下降,這一發(fā)現(xiàn)與半滑舌鰨精巢細(xì)胞分化時間吻合(Chen, 2014; Li, 2016; Chen, 2009),表明在生殖細(xì)胞分化增殖過程中起到重要作用。

圖7 高溫(28℃)處理后hsd11b1l和hsd11b2基因在性腺中的表達(dá)模式

在高溫處理2個月后,和在雄魚中表達(dá)量均顯著降低;高溫處理48 h后,在雌、雄魚中表達(dá)量均顯著降低,在雄魚中表達(dá)量顯著降低(<0.05),表明溫度可影響皮質(zhì)醇和皮質(zhì)酮之間的相互轉(zhuǎn)化。但在牙漢魚中,高溫處理14 d后,表達(dá)量升高,與本研究結(jié)果相反(Fernandino, 2012)。牙漢魚分析的是在幼魚軀干部位的表達(dá)變化,包括了肝、腸、性腺等多個組織。根據(jù)的功能及組織表達(dá)模式,肝臟也是其發(fā)揮作用的主要器官。因此,結(jié)果的不同可能反映了不同組織在應(yīng)對高溫時的不同表現(xiàn)。后續(xù)將針對和基因在肝臟和不同性腺中的作用機(jī)制展開更深入的研究。

綜上所述,本研究報道了半滑舌鰨和基因的全長序列,分析了它們在性腺發(fā)育過程以及高溫脅迫后的表達(dá)規(guī)律,為進(jìn)一步研究二者在溫度介導(dǎo)半滑舌鰨性別分化過程中的機(jī)理奠定了基礎(chǔ)。

Albiston AL, Obeyesekere VR, Smith RE,Cloning and tissue distribution of the human 1lβ-hydroxysteroid dehydrogenase type 2 enzyme. Molecular and Cellular Endocrinology, 1994, 105(2): R11–R17

Alderman SL, Vijayan MM. 11-hydroxysteroid dehydrogenase type 2 in zebrafish brain: A functional role in hypothalamus- pituitary-interrenal axis regulation. Journal of Endocrinology, 2012, 215(3): 393

Baker M. Evolution of 11[beta]-hydroxysteroid dehydrogenase- type 1 and 11[beta]-hydroxysteroid dehydrogenase-type 3. Nature Precedings, 2010: 1

Blasco M, Fernandino JI, Guilgur LG,Molecular characterization ofandand their gene expression profile in pejerrey () during early gonadal development. Comparative Biochemistryand Physiology Part A: Molecular and Integrative Physiology, 2010, 156(1): 110–118

Chen SL, Tian YS, Yang JF,Artificial gynogenesis and sex determination in half-smooth tongue sole (). Marine Biotechnology, 2009, 11(2): 243–251

Chen SL, Zhang G, Shao CW,Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature Genetics, 2014, 46(3): 253–260

Cui Y, Wang WF, Ma LY,New locus reveals the genetic architecture of sex reversal in the Chinese tongue sole (). Heredity, 2018, 121(4): 319–326

Cui Z, Liu Y, Wang W,Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (). Scientific Reports, 2017, 7: 42213

Fernandino JI, Hattori RS, Kishii A,The cortisol and androgen pathways cross talk in high temperature-induced masculinization: The 11β-hydroxysteroid dehydrogenase as a key enzyme. Endocrinology, 2012, 153(12): 6003–6011

Francis RC, Barlow GW. Social control of primary sex differentiation in the Midas cichlid. Proceedings of the National Academy of Sciences, 1993, 90(22): 10673–10675

Francis RC. The effects of bidirectional selection for social dominance on agonistic behavior and sex ratios in the paradise fish (). Behaviour, 1984, 90(1–3): 25–44

Ghosh D, Erman M, Wawrzak Z,Mechanism of inhibition of 3α, 20β-hydroxysteroid dehydrogenase by a licorice-derived steroidal inhibitor. Structure, 1994, 2(10): 973–980

Hattori RS, Fernandino JI, Kishii A,Cortisol-induced masculinization: Does thermal stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination? PLoS One, 2009, 4(8): e6548

Hayashi Y, Kobira H, Yamaguchi T,High temperature causes masculinization of genetically female medaka by elevation of cortisol. Molecular Reproduction and Development, 2010, 77(8): 679–686

Hu YC, Chu KF, Hwang LY,Cortisol regulation of Na+, K+-ATPase β1 subunit transcription via the pre-receptor 11β-hydroxysteroid dehydrogenase 1-like (11β-hsd1l) in gills of hypothermal freshwater milkfish,. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192: 105381

Jiang L, Li H. Single locus maintains large variation of sex reversal in half-smooth tongue sole (). G3: Genes, Genomes, Genetics, 2017, 7(2): 583–589

Krozowski Z. The 11β-hydroxysteroid dehydrogenases: Functions and physiological effects. Molecular and Cellular Endocrinology, 1999, 151(1–2): 121–127

Kusakabe M, Kobayashi T, Todo T,. Molecular cloning and expression during spermatogenesis of a cDNA encoding testicular 11β‐hydroxylase (p45011β) in rainbow trout (). Molecular Reproduction and Development, 2002, 62(4): 456–469

Li H, Xu W, Zhang N,Two figla homologues have disparate functions during sex differentiation in half-smooth tongue sole (). Scientific Reports, 2016, 6(1): 1–10

Li H, Xu W, Zhu Y,Characterization and expression pattern of r-spondin1 in. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328(8): 772–780

Li Z, Yang L, Wang J,β-actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the half-smooth tongue solechallenged with LPS or. Fish and Shellfish Immunology, 2010, 29(1): 89–93

Liu S, Govoroun M, D'Cotta H,. Expression of cytochrome p45011β (11β-hydroxylase) gene during gonadal sex differentiation and spermatogenesis in rainbow trout,. Journal of Steroid Biochemistry and Molecular Biology, 2000, 75(4–5): 291–298

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402–408

Miura S, Horiguchi R, Nakamura M. Immunohistochemical evidence for 11β-hydroxylase (p45011β) and androgen production in the gonad during sex differentiation and in adults in the protandrous anemonefish. Zoological Science, 2008, 25(2): 212–219

Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries, 1999, 9(3): 211–268

Oppermann UC, Persson B, J?rnvall H. The 11β‐hydroxysteroid dehydrogenase system, a determinant of glucocorticoid and mineralocorticoid action: Function, gene organization and protein structures of 11β-hydroxysteroid dehydrogenase isoforms. European Journal of Biochemistry, 1997, 249(2): 355–360

Rubin DA. Effect of pH on sex ratio in cichlids and a poecilliid (Teleostei). Copeia, 1985, 1985(1): 233–235

Sadoul B, Geffroy B. Measuring cortisol, the major stress hormone in fishes. Journal of Fish Biology, 2019, 94(4): 540–555

Schmidt EE, Ohbayashi T, Makino Y,Spermatid-specific overexpression of the tata-binding protein gene involves recruitment of two potent testis-specific promoters. Journal of Biological Chemistry, 1997, 272(8): 5326–5334

Tabata K. Reduction of female proportion in lower growing fish separated from normal and feminized seedlings of hirame. Fisheries Science, 1995, 61(2): 199– 201

Tokarz J, Norton W, M?ller G,Zebrafish 20β-hydroxysteroid dehydrogenase type 2 is important for glucocorticoid catabolism in stress response. PLoS One, 2013, 8(1): e54851

Tomlinson JW, Walker EA, Bujalska IJ,11β-hydroxysteroid dehydrogenase type 1: A tissue-specific regulator of glucocorticoid response. Endocrine Reviews, 2004, 25(5): 831–866

Tsachaki M, Meyer A, Weger B,Absence of 11-keto reduction of cortisone and 11-ketotestosterone in the model organism zebrafish. Journal of Endocrinology, 2017, 232: 323–335

van den Hurk R, van Oordt P. Effects of natural androgens and corticosteroids on gonad differentiation in the rainbow trout,. General and Comparative Endocrinology, 1985, 57(2): 216–222

Wendelaar Bonga SE. The stress response in fish. Physiological Reviews, 1997, 77(3): 591–625

White PC, Mune T, Agarwal AK. 11β-hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocrine Reviews, 1997, 18(1): 135–156

Yamaguchi T, Yoshinaga N, Yazawa T,Cortisol is involved in temperature-dependent sex determination in the Japanese flounder. Endocrinology, 2010, 151(8): 3900–3908

Zhang Y, Hattori RS, Sarida M,Expression profiles ofand major sex-related genes during gonadal sex differentiation and their relation with genotypic and temperature-dependent sex determination in pejerrey. General and Comparative Endocrinology, 2018, 265: 196–201

Molecular Characterization and Expression Patterns ofandand Their Response to High Temperature Stress in Chinese Tongue Sole

HAO Xiancai1,2, FENG Bo1,2, SHAO Changwei1,2, WANG Qian2①

(1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Pilot National Laboratory for Marine Science and Technology (Qingdao), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071)

Sex determination and differentiation in fish are not only influenced by genetic factors, but also controlled by environmental factors. Previous studies have shown that cortisol plays an important role in the feedback of environmental stress in fish. Fishandcan regulate the concentration of cortisol. In this study, we cloned full-length cDNA ofand, and analyzed their sequence characteristics in Chinese tongue sole (). We then detected their spatiotemporal expression characteristics and expression patterns after temperature stress. The full-length cDNA ofwas 1650 bp with 864 bp open reading frame encoding a predicted 287 amino acid protein. While the full-length ofwas4526 bp with 1209 bp open reading frame encoding 402 amino acid protein. The qPCR showed that the highest expression ofwaswithin the liver and the expression level in the ovary was two-fold higher than that in testis. In particular, the expression level ofin the ovary was higher than in testis at the stages of 6 mpf and 3 ypf. Thewas expressed mainly in the testis and expression level peaked in testis at 6 mpf. Conversely, expression ofwas hardly detected in any stages of ovary development. In addition, we analyzed the expression patterns ofandafter high-temperature (28℃) treatment. The expression levels ofandwas significantly reduced in the gonads of males (<0.05) after the high-temperature treatment for 2 months. For the acute high-temperature treatment (48 h), the expression ofsignificantly decreased in the gonads of both females and males (<0.05), and the expression ofwas only significantly down-regulated in the male testis (<0.05). In this study, the expression patterns ofandgenes in the developmental stages of gonads affected by high temperature stress lays a foundation for understanding the relationship between temperature and sexual differentiation in Chinese tongue sole.

; Sex determination; Temperature;;

WANG Qian, E-mail: wangqian2014@ysfri.ac.cn

S917.4

A

2095-9869(2021)02-0045-10

10.19663/j.issn2095-9869.20200312001

http://www.yykxjz.cn/

郝先才, 馮博, 邵長偉, 王倩. 半滑舌鰨和基因的克隆及其溫度響應(yīng)的表達(dá)規(guī)律. 漁業(yè)科學(xué)進(jìn)展, 2021, 42(2): 45–54

Hao XC, Feng B, Shao CW, Wang Q. Molecular characterization and expression patterns ofandand their response to high temperature stress in Chinese tongue sole. Progress in Fishery Sciences, 2021, 42(2): 45–54

* 國家自然科學(xué)基金(31722058; 31802275)、中國水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費(fèi)(2020TD19)和南海水產(chǎn)經(jīng)濟(jì)動物增養(yǎng)殖重點(diǎn)實驗室(廣東海洋大學(xué))開放課題(KFKT2019ZD03)共同資助 [This work was funded by National Natural Science Foundation of China (31722058; 31802275), Central Public-Interest Scientific Institution Basal Research Fund, CAFS (2020TD19), Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University (KFKT2019ZD03)]. 郝先才,E-mail: best_hxc@163.com

王 倩,E-mail: wangqian2014@ysfri.ac.cn

2020-03-12,

2020-03-20

(編輯 馮小花)

猜你喜歡
雄魚皮質(zhì)醇結(jié)構(gòu)域
半滑舌鰨基因編輯快速生長雄魚通過現(xiàn)場驗收
危重患者內(nèi)源性皮質(zhì)醇變化特點(diǎn)及應(yīng)用進(jìn)展
細(xì)菌四類胞外感覺結(jié)構(gòu)域的概述
斗魚為什么喜歡爭斗
拿起手機(jī)掃一掃,就知道你壓力大不大
The most soothing music for dogs
金魚如何辨雌雄
血睪酮、皮質(zhì)醇與運(yùn)動負(fù)荷評定
黃星天牛中腸中內(nèi)切葡聚糖酶的鑒定與酶活性測定
水稻DnaJ蛋白的生物信息學(xué)分析