劉津 覃繼新
【關(guān)鍵詞】?外泌體;腫瘤;PI3K;Akt;作用機(jī)制
中圖分類號(hào):R730.5?文獻(xiàn)標(biāo)志碼:A?DOI:10.3969/j.issn.1003-1383.2021.01.015
外泌體是由細(xì)胞所產(chǎn)生的小體,在近年來的研究中發(fā)現(xiàn)外泌體能夠傳遞信號(hào)分子,調(diào)控靶細(xì)胞的生理功能,在細(xì)胞的生長(zhǎng)發(fā)展中起著重要作用。磷脂酰肌醇3-激酶(Phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB,也稱Akt)信號(hào)通路是一條經(jīng)典的細(xì)胞信號(hào)通路,在腫瘤細(xì)胞的發(fā)生、發(fā)展、轉(zhuǎn)移中發(fā)揮重要的作用。近幾年發(fā)現(xiàn)外泌體可以通過PI3K/Akt信號(hào)通路,起到調(diào)控細(xì)胞作用的研究逐漸增多,我們對(duì)此進(jìn)行總結(jié)。
1?外泌體的結(jié)構(gòu)及功能
1.1?外泌體的結(jié)構(gòu)
外泌體(exosome),又被稱為腔內(nèi)小泡(intraluminal vesicles,ILVs),是由各種細(xì)胞分泌,廣泛存在于人體的囊泡狀結(jié)構(gòu)[1],其被脂質(zhì)雙分子層膜包裹。在血漿、尿液、精液、唾液、支氣管液、腦脊液、母乳、血清、羊水、滑膜液、眼淚、淋巴、膽汁和胃酸中都可檢測(cè)到外泌體的存在[2],外泌體經(jīng)核內(nèi)體途徑形成,通常直徑30~150 nm到40~200 nm不等[3~6]。外泌體形成后被多泡狀小體(MVBs)所包裹,參與蛋白質(zhì)的分類、回收、儲(chǔ)存、運(yùn)輸和釋放[4],當(dāng)MVBs與細(xì)胞膜融合后,外泌體就被釋放到細(xì)胞外[6~9]。外泌體內(nèi)含有mRNA、miRNA、DNA、蛋白質(zhì)等多種具有生物活性的物質(zhì)[10]。
1.2?外泌體的基本功能及應(yīng)用
外泌體參與細(xì)胞間通訊、細(xì)胞維持和腫瘤進(jìn)展,此外,已經(jīng)發(fā)現(xiàn)外泌體通過充當(dāng)抗原呈遞小泡來刺激免疫應(yīng)答[11~12],在神經(jīng)系統(tǒng)中,外泌體被發(fā)現(xiàn)有助于促進(jìn)髓鞘形成、神經(jīng)突生長(zhǎng)和神經(jīng)細(xì)胞存活,從而在組織修復(fù)和再生中發(fā)揮作用[13~17]。與此同時(shí),中樞神經(jīng)系統(tǒng)的外泌體被發(fā)現(xiàn)含有可能有助于疾病進(jìn)展的致病蛋白,如淀粉樣蛋白肽、超氧化物歧化酶和突觸核蛋白[18~20]。腫瘤細(xì)胞分泌的外泌體攜帶特定的蛋白質(zhì)、RNA或突變的基因序列,通過外泌體作用于對(duì)應(yīng)的靶細(xì)胞,促進(jìn)腫瘤的轉(zhuǎn)移、增殖和發(fā)展[21]。隨著研究的不斷深入,人們發(fā)現(xiàn)外泌體常常攜帶某些疾病的特異性物質(zhì),從而作為疾病診斷的依據(jù)[22~26]。由于外泌體存在于體液,這就意味著可以通過低限度甚至無創(chuàng)操作的方法來診斷疾病或監(jiān)測(cè)患者的治療反應(yīng)。外泌體的另一個(gè)潛在的應(yīng)用是監(jiān)測(cè)患者的疾病治療的反應(yīng)能力[27],如果外泌體可以反映疾病的狀態(tài),而治療是有效果的,外泌體則會(huì)表現(xiàn)出變化。基于外泌體具有抗原呈遞的功能,且外泌體半衰期長(zhǎng),人體耐受好,能穿透細(xì)胞膜,并具有潛在的靶向特定細(xì)胞的能力,有人提出將外泌體應(yīng)用于疫苗開發(fā)或其他免疫學(xué)目的[11~12]。此外,由于外泌體的這些優(yōu)勢(shì),它們也是開發(fā)藥物傳遞系統(tǒng)的理想材料[28]。雖然將RNA和蛋白質(zhì)引入外泌體并通過外泌體將這些物質(zhì)靶向傳遞到特定區(qū)域的方法仍在研究中,但外泌體能夠裝載蛋白質(zhì)和遺傳物質(zhì),是其成為具有吸引力的藥物遞送系統(tǒng)的另一個(gè)優(yōu)勢(shì)[29]。最后,已經(jīng)證明間充質(zhì)干細(xì)胞外泌體本身可以作為一種治療實(shí)體,幫助減少組織損傷[30~34]。
2?PI3K/Akt的結(jié)構(gòu)及基本功能
2.1?PI3K
PI3K屬于原癌基因,是肌醇和磷脂酰肌醇的重要激酶,根據(jù)其結(jié)構(gòu)和地位,分為3型,分別是Ⅰ型、Ⅱ型和Ⅲ型。其中關(guān)于Ⅰ型PI3K最為深入的研究。Ⅰ型PI3K可以被受體酪氨酸激酶等激活。同時(shí)可以進(jìn)一步分為ⅠA和ⅠB,其中ⅠA在腫瘤中表達(dá)較多。受體酪氨酸激酶可以激活ⅠA,ⅠB則是被G蛋白激活。ⅠA是由P85和P110組成,其中P85是調(diào)節(jié)亞單位,具有3種亞型(p85α、p85β和p85γ),分別由PIK3R1、PIK3R2和PIK3R3所編碼。P110是催化亞單位,分為p110α、p110β和p110γ三種亞型,分別被PIK3CA、PIK3CB和PIK3CD編碼[35]。
2.2?Akt
Akt是一種絲氨酸/蘇氨酸激酶,是PI3K主要下游效應(yīng)分子,屬于ACG蛋白激酶家族。由大約480個(gè)氨基酸序列組成,分子量約57 kD,分為Akt1、Akt2和Akt3三種亞型,分別由3個(gè)不同基因所編碼,稱為PKBα、PKBβ和PKBγ。在結(jié)構(gòu)上,Akt由3個(gè)亞基所組成,分別是N-末端的PH區(qū),含核心激酶的CAT區(qū)域和C-末端的EXT區(qū)域。Akt主要存在于細(xì)胞漿內(nèi),當(dāng)Thr308和Ser473兩個(gè)重要位點(diǎn)磷酸化后,可以使Akt被激活。
2.3?PI3K/Akt基本功能
PI3K可以被蛋白酪氨酸激酶受體或G蛋白偶聯(lián)受體所激活[36]。激活的PI3K會(huì)磷酸化質(zhì)膜上的PI(4,5)P2,轉(zhuǎn)化為第二信使PI(3,4,5)P3,使得Akt與PDK1結(jié)合,從而轉(zhuǎn)移到質(zhì)膜,被PDK1和mTORC2(the mammalian target of rapamycin complex 2)磷酸化,導(dǎo)致Akt的激活。而Akt被激活可以引起大量下游蛋白的磷酸化,比如糖原合成激酶3、叉頭轉(zhuǎn)錄因子、西羅莫司靶蛋白復(fù)合物1等等,從而調(diào)節(jié)細(xì)胞的增殖擴(kuò)散、新陳代謝等大量生理活動(dòng)。PI3K/Akt通路在許多不同的惡性腫瘤的發(fā)生、增殖、生長(zhǎng)、凋亡、侵襲、轉(zhuǎn)移、上皮-間質(zhì)轉(zhuǎn)化、干細(xì)胞樣表型、免疫微環(huán)境和耐藥性密切相關(guān)[37]。
3?外泌體與PI3K/Akt的關(guān)系
目前發(fā)現(xiàn)外泌體中大量不同的miRNA可以抑制PI3K/Akt的上游抑制性蛋白PTEN,從而激活PI3K/Akt信號(hào)通路,起到保護(hù)細(xì)胞的作用。在組織細(xì)胞中表現(xiàn)出抗凋亡,促進(jìn)修復(fù)的作用,而在腫瘤細(xì)胞中起到促進(jìn)腫瘤細(xì)胞增殖、轉(zhuǎn)移、生長(zhǎng)及耐藥的作用。
3.1?心肌細(xì)胞的保護(hù)及抗凋亡作用
ARSLAN[38]對(duì)C57BI6/J小鼠進(jìn)行了30分鐘的缺血再灌注,并在灌注前4分鐘予以外泌體或生理鹽水,結(jié)果顯示外泌體可以減少45%的梗死面積,在試驗(yàn)后28天內(nèi)的檢查發(fā)現(xiàn)外泌體治療的動(dòng)物左心室功能及形態(tài)顯著保留;同時(shí)再灌注一小時(shí)內(nèi)用外泌體可以降低氧化應(yīng)激,增加Akt磷酸化,降低局部及全身炎癥,表明外泌體可以恢復(fù)細(xì)胞功能,減少氧化應(yīng)激,增強(qiáng)心肌損傷后修復(fù)和功能保留。其他研究也顯示來自間充質(zhì)干細(xì)胞的外泌體,可以通過提高ATP水平,降低細(xì)胞的氧化應(yīng)激,并激活PI3K/Akt通路的活性,增強(qiáng)心肌活力,從而預(yù)防和減輕心肌缺血再灌注損傷之后的不良重構(gòu)。在SUN等[39]研究中,來自低氧預(yù)處理的臍帶細(xì)胞分泌的外泌體,通過miR-486-5P可以激活PI3K/Akt通路又達(dá)到H9C2細(xì)胞增殖,起到抗凋亡作用,PI3K的特異性抑制劑LY294002可以抑制抗凋亡作用,從而證實(shí)了外泌體通過調(diào)控PI3K/Akt信號(hào)通路,起到抗凋亡的作用。而骨髓間充質(zhì)干細(xì)胞來源的外泌體作用于心肌干細(xì)胞后可以通過miR-21抑制PTEN的表達(dá),從而激活PI3K/Akt信號(hào)通路,保護(hù)心肌細(xì)胞免受氧化應(yīng)激引發(fā)的凋亡,而PI3K/Akt信號(hào)通路的特異性抑制劑LY294002和miR-21抑制劑阻斷該保護(hù)作用[40]。LIU等利用低氧預(yù)處理促進(jìn)了人臍帶間充質(zhì)干細(xì)胞分泌的外泌體,然后將其提取,作用于缺血缺氧處理后的心肌細(xì)胞H9C2,發(fā)現(xiàn)外泌體可明顯抑制缺血缺氧所誘導(dǎo)的H9C2細(xì)胞的凋亡,表現(xiàn)出抗凋亡作用,同時(shí)還發(fā)現(xiàn)外泌體降低LC3B-II/I 和 beclin-1的表達(dá),激活PI3K/Akt/mTOR通路,而PI3K的特異性抑制劑LY294002可以減弱外泌體的抗凋亡作用,由此推測(cè)人臍帶間充質(zhì)干細(xì)胞的外泌體通過PI3K/Akt/mTOR通路調(diào)控細(xì)胞自噬,抑制缺血缺氧誘導(dǎo)的H9C2凋亡[41]。
3.2?組織修復(fù)增生
在骨創(chuàng)傷修復(fù)中,多能干細(xì)胞來源的外泌體可以被人骨髓間充質(zhì)干細(xì)胞所攝取,然后通過激活PI3K/Akt通路,增強(qiáng)人骨髓間充質(zhì)干細(xì)胞的增殖、遷移和成骨分化,增強(qiáng)hr-TCP的成骨誘導(dǎo)能力,從而促進(jìn)骨組織的修復(fù),進(jìn)一步說明外泌體可以作為一種生物活性材料,提高生物材料的生物活性[42]。ZHANG 等[43]發(fā)現(xiàn)吸收脂肪干細(xì)胞來源的外泌體后,成纖維細(xì)胞的增殖和遷移表現(xiàn)出明顯的劑量依賴性增長(zhǎng),同時(shí)在外泌體的作用下,成纖維細(xì)胞中Ⅰ型膠原、Ⅲ型膠原、MMP1、bFGF和TGF-271的mRNA及蛋白表達(dá)水平均明顯升高,同時(shí)體外試驗(yàn)中發(fā)現(xiàn)p-Akt/Akt也明顯激活,使用特異性PI3K的抑制劑LY294002可以明顯抑制外泌體增多導(dǎo)致的各種改變,從而認(rèn)為脂肪干細(xì)胞來源的外泌體可以通過PI3K/Akt信號(hào)通路促進(jìn)傷口愈合與創(chuàng)面修復(fù)。YANG 等[44]將提取的脂肪干細(xì)胞來源的外泌體作用于BALb/c小鼠真皮創(chuàng)面以及人永生化角質(zhì)形成細(xì)胞HaCaT細(xì)胞,結(jié)果發(fā)現(xiàn)相對(duì)于對(duì)照組外泌體可以明顯改善BALb/c小鼠創(chuàng)面修復(fù)的水平,也能明顯增強(qiáng)HaCaT細(xì)胞的遷移和增殖能力,而采用外泌體抑制劑GW4869后,細(xì)胞的遷移和增殖能力恢復(fù)到正常水平,同時(shí)TGF-β1與miR-21互相抑制,他們通過PI3K/Akt信號(hào)通路調(diào)節(jié)HaCat細(xì)胞中MMP-2和TIMP-1蛋白的表達(dá),從而影響創(chuàng)面的修復(fù)與愈合。
3.3?腫瘤增殖轉(zhuǎn)移
外泌體對(duì)腫瘤細(xì)胞的作用,更是獲得了大量深入的研究。目前大量的研究報(bào)道認(rèn)為外泌體可以增強(qiáng)腫瘤細(xì)胞的增殖與轉(zhuǎn)移。在直結(jié)腸癌中研究發(fā)現(xiàn),高轉(zhuǎn)移性直結(jié)腸癌細(xì)胞的外泌體,作用于普通直結(jié)腸癌細(xì)胞后可以提高巖藻糖轉(zhuǎn)移酶4(FUT4)的表達(dá)水平,而FUT4可以激活PI3K/Akt/mTOR信號(hào)通路,從而增強(qiáng)直結(jié)腸癌細(xì)胞侵襲和轉(zhuǎn)移能力[45]。在胃癌細(xì)胞的研究中發(fā)現(xiàn),提取胃癌細(xì)胞SGC7901的外泌體,可以明顯增強(qiáng)SCG7901和BGC823細(xì)胞的增殖,同時(shí)導(dǎo)致Akt和細(xì)胞外調(diào)節(jié)蛋白激酶的激活,采用特異性抑制劑可以部分逆轉(zhuǎn)外泌體的增殖,從而認(rèn)為胃癌外泌體可以促進(jìn)腫瘤細(xì)胞增殖,至少部分通過激活PI3K/Akt信號(hào)通路[46]。YANG等[47]提取了腫瘤相關(guān)成纖維細(xì)胞(CAFs)的外泌體,發(fā)現(xiàn)其可以被肺癌細(xì)胞所攝取,而該外泌體中miR-210表達(dá)水平明顯提高,同時(shí)可以調(diào)控UPF1的表達(dá)水平,從而激活PTEN/PI3K/Akt信號(hào)通路,增強(qiáng)非小細(xì)胞肺癌細(xì)胞的遷移、增殖、侵襲能力。膀胱癌細(xì)胞T24的外泌體可以導(dǎo)致靶細(xì)胞中miR-21表達(dá)上調(diào),抑制巨噬細(xì)胞中的磷酸酶并激活PI3K/Akt信號(hào)通路,導(dǎo)致腫瘤相關(guān)巨噬細(xì)胞M2極化,膀胱癌T24細(xì)胞遷移和侵襲能力明顯增強(qiáng)[48]。
3.4?腫瘤細(xì)胞的多藥耐藥
腫瘤細(xì)胞的多藥耐藥是導(dǎo)致腫瘤治療失敗的重要原因。多藥耐藥的產(chǎn)生機(jī)制很多,近年來外泌體將耐藥細(xì)胞的耐藥性傳遞給敏感細(xì)胞的研究逐漸深入,顯示了耐藥細(xì)胞外泌體中的miRNA轉(zhuǎn)移到敏感細(xì)胞中,通過上調(diào)PI3K/Akt通路,誘導(dǎo)腫瘤細(xì)胞耐藥性。FU等[49]在肝癌耐藥細(xì)胞株Bel/5-FU中發(fā)現(xiàn)miR-32-5表達(dá)明顯上升,同時(shí)PTEN表達(dá)下降,過度表達(dá)的miR-32-5可以抑制PTEN的表達(dá),從而激活PI3K/Akt通路,通過外泌體促進(jìn)血管生成與上皮間充質(zhì)轉(zhuǎn)化,從而誘導(dǎo)多藥耐藥的產(chǎn)生。在非小細(xì)胞肺癌耐藥機(jī)制的研究中發(fā)現(xiàn),T790M突變而對(duì)EGFR 耐藥的非小細(xì)胞肺癌H1975細(xì)胞的外泌體可以被敏感非小細(xì)胞肺癌細(xì)胞PC9所攝取,引起miR-522-3p的高表達(dá),導(dǎo)致PC9的PI3K/Akt細(xì)胞信號(hào)通路明顯被激活,從而表現(xiàn)出對(duì)吉非替尼的耐藥[50]。
綜上,我們可以看出,間充質(zhì)細(xì)胞的外泌體具有修復(fù)組織、抗凋亡、增強(qiáng)細(xì)胞生存能力的作用,而腫瘤細(xì)胞外泌體也起著同樣的作用,可以通過激活PI3K/Akt信號(hào)通路,調(diào)控下游蛋白,促進(jìn)腫瘤的增殖、轉(zhuǎn)移及耐藥的作用。如何利用這一機(jī)制,促進(jìn)創(chuàng)傷和創(chuàng)面修復(fù),抑制腫瘤細(xì)胞的生長(zhǎng)轉(zhuǎn)移,逆轉(zhuǎn)腫瘤細(xì)胞的耐藥,是進(jìn)一步研究的熱點(diǎn)。
參?考?文?獻(xiàn)
[1]?HE C, ZHENG S , LUO Y, et al. Exosome Theranostics:Biology and Translationl Medicine[J].Theranostics,2018,8(1):237-255.
[2]?DOYLE L M,WANG M Z.Overview of extracellular vesicles,their origin,composition,purpose,and methods for exosome isolation and analysis[J].Cells,2019,8(7):727.
[3]?ZABOROWSKI M P,BALAJ L,BREAKEFIELD X O,et al.Extracellular vesicles:composition,biological relevance,and methods of study[J].Bioscience,2015,65(8):783-797.
[4]?BORGES F T,REIS L A,Schor N.Extracellular vesicles:structure,function,and potential clinical uses in renal diseases[J].Braz J Med Biol Res,2013,46(10):824-830.
[5]?BEBELMAN M P,SMIT M J,PEGTEL D M,et al.Biogenesis and function of extracellular vesicles in cancer[J].Pharmacol Ther,2018,188:1-11.
[6]?RAPOSO G, STOORVOGEL W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol,2013,200(4):373-383.
[7]?SIMONS M,RAPOSO G.Exosomes:vesicular carriers for intercellular communication[J].Curr Opin Cell Biol,2009,21(4):575-581.
[8]?THRY C,OSTROWSKI M,SEGURA E.Membrane vesicles as conveyors of immune responses[J].Nat Rev Immunol,2009,9(8):581-593.
[9]?MATHIVANAN S,SIMPSON R J.ExoCarta:a compendium of exosomal proteins and RNA[J].Proteomics,2009,9(21):4997-5000.
[10]?WAHLGREN J,KARLSON T D L,BRISSLERT M,et al.Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes[J].Nucleic Acids Research,2012,40(17): e130
[11]?BOBRIE A,COLOMBO?M,RAPOSO G, et at. Exosome secretion: molecular mechanisms and roles in immune responses[J].Traffic,2011, 12(12):1659-1668.
[12]?CHAPUT N,THR Y C.Exosomes:immune properties and potential clinical implementations[J].Semin Immunopathol,2011,33(5):419-440.
[13]?FAUR J, LACHENAL G, COURT M, et al.Exosomes are released by cultured cortical neurones[J]. Mol Cell Neurosci,2006,31(4):642-648.
[14]?KRMER-ALBERS E M,BRETZ N,TENZER S,et al.Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins:Trophic support for axons?[J].Proteomics Clin Appl,2007,1(11):1446-1461.
[15]?LACHENAL G, PERNET-GALLAY K, CHIVET M, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity[J].Mol Cell Neurosci, 2011,46(2):409-418.
[16]?BAKHTI M,WINTER C,SIMONS M.Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles[J].J Biol Chem,2011,286(1):787-796.
[17]?WANG S,CESCA F,LOERS G,et al.Synapsin I is an oligomannose-carrying glycoprotein,acts as an oligomannose-binding lectin,and promotes neurite outgrowth and neuronal survival when released via Glia-derived exosomes[J].J Neurosci,2011,31(20):7275-7290.
[18]?FEVRIER B, VILETTE D, ARCHER F, et al. Cells release prions in association with exosomes[J]. Proc Natl Acad Sci U S A,2004,101(26):9683-9688.
[19]?GOMES C,KELLER S,ALTEVOGT P,et al.Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis[J].Neurosci Lett,2007,428(1):43-46.
[20]?EMMANOUILIDOU E,MELACHROINOU K,ROUMELIOTIS T,et al.Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival[J].J Neurosci,2010,30(20):6838-6851.
[21]?CARVALHO J,OLIVEIRA C.Extracellular vesicles-powerful markers of cancer EVolution[J].Front Immunol,2014,5:685.
[22]?ALVAREZ-LLAMAS G,DE LA CUESTA F,BARDERAS M E G,et al.Recent advances in atherosclerosis-based proteomics:new biomarkers and a future perspective[J].Expert Rev Proteom,2008,5(5):679-691.
[23]?AL-NEDAWI K,MEEHAN B,RAK J.Microvesicles:Messengers and mediators of tumor progression[J].Cell Cycle,2009,8(13):2014-2018.
[24]?SIMPSON R J,LIM J W,MORITZ R L,et al.Exosomes:proteomic insights and diagnostic potential[J].Expert Rev Proteomics,2009,6(3):267-283.
[25]?GIUSTI I,DI FRANCESCO M,DOLO V.Extracellular vesicles in glioblastoma:role in biological processes and in therapeutic applications[J].Curr Cancer Drug Targets,2017,17(3):221-235.
[26]?SANDFELD-PAULSEN B,AGGERHOLM-PEDERSEN N,B?倞
K R,et al.Exosomal proteins as prognostic biomarkers in non-small cell lung cancer[J].Mol Oncol,2016,10(10):1595-1602.
[27]?SONODA H, YOKOTA-IKEDA N, OSHIKAWA S, et al. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury[J].Am J Physiol Renal Physiol, 2009,297(4):F1006-F1016.
[28]?ALVAREZ-ERVITI L,SEOW Y,YIN H F,et al.Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J].Nat Biotechnol,2011,29(4):341-345.
[29]?LAI R C,YEO R W,TAN K H,et al.Exosomes for drug delivery-a novel application for the mesenchymal stem cell[J].Biotechnol Adv,2013,31(5):543-551.
[30]?GATTI S, BRUNO S, DEREGIBUS M C, et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury[J]. Nephrol Dial Transplant,2011,26(5):1474-1483.
[31]?REIS L A,BORGES F T,SIMES M J,et al.Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats[J].PLoS One,2012,7(9):e44092.
[32]?BRUNO S,GRANGE C,COLLINO F,et al.Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury[J].PLoS One,2012,7(3):e33115.
[33]?AKAO Y, IIO A, ITOH T, et al. Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages[J]. Mol Ther,2011;19(2):395-399.
[34]?BRUNO S,GRANGE C,DEREGIBUS M C,et al.Mesenchymal stem cell-derived microvesicles protect against acute tubular injury[J].J Am Soc Nephrol,2009,20(5):1053-1067.
[35]?COURTNEY K D, CORCORAN R B, ENGELMAN J A. The PI3K pathway as drug target in human cancer[J]. J Clin Oncol,2010,28(6):1075-1083.
[36]?NYKERN M, TAZZARI P L, FINELLI C, et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients[J]. Leukemia,2006,20(2):230-238.
[37]?JIANG N, DAI Q, SU X, et al. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior[J].Mol Biol Rep,2020,47(6):4587-4629.
[38]?ARSLAN F,LAI R C,SMEETS M B,et al.Mesenchymal stem cell-derived exosomes increase ATP levels,decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J].Stem Cell Res,2013,10(3):301-312.
[39]?SUN X H,WANG X,ZHANG Y,et al.Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway[J].Thromb Res,2019,177:23-32.
[40]?SHI B,WANG Y,ZHAO R,et al.Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis[J].PLoS One,2018,13(2):e0191616.
[41]?LIU H,SUN X,GONG X,et al.Human umbilical cord mesenchymal stem cells derived exosomes exert antiapoptosis effect via activating PI3K/Akt/mTOR pathway on H9C2 cells[J].J Cell Biochem,2019,120(9):14455-14464.
[42]?ZHANG J Y,LIU X L,LI H Y,et al.Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway[J].Stem Cell Res Ther,2016,7:136.
[43]?ZHANG W,BAI X Z,ZHAO B,et al.Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J].Exp Cell Res,2018,370(2):333-342.
[44]?YANG C, LUO L, BAI X, et al. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J]. Arch Biochem Biophys,2020,681:108259.
[45]?XU J C,XIAO Y,LIU B,et al.Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway[J].J Exp Clin Cancer Res,2020,39:54.
[46]?QU J L,QU X J,ZHAO M F,et al.Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation[J].Dig Liver Dis,2009,41(12):875-880.
[47]?YANG F, YAN Y, YANG Y, et al. MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway [J].Cell Signal, 2020,73:109675.
[48]?LIN F,YIN H B,LI X Y,et al.Bladder cancer cellsecreted exosomal miR21 activates the PI3K/AKT pathway in macrophages to promote cancer progression[J].Int J Oncol,2020,56(1):151-164.
[49]?FU X,LIU M,QU S,et al.Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/AKT pathway[J]. J Exp Clin Cancer Res,2018,37(1):52.
[50]?LIU X Z,JIANG T,LI X F,et al.Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway[J].J Cell Mol Med,2020,24(2):1529-1540.
(收稿日期:2020-09-03?修回日期:2020-09-14)
(編輯:梁明佩)