趙文利 熊育久 邱國玉 鄢春華 鄒振東 秦龍君
模型結(jié)構(gòu)與參數(shù)化差異對蒸散發(fā)估算的影響
趙文利1熊育久2邱國玉1,?鄢春華1鄒振東1秦龍君1
1.北京大學(xué)深圳研究生院環(huán)境與能源學(xué)院, 深圳 518055; 2.土木工程學(xué)院, 中山大學(xué), 廣州 510275;?通信作者, E-mail: qiugy@pkusz.edu.cn
基于 2012 年黑河綠洲 HiWATER 高密度通量觀測數(shù)據(jù), 對比研究模型結(jié)構(gòu)差異(單源 Penman-Monteith/ PM 公式與雙源 PM 公式、雙源 PM 公式與雙源三溫模型)以及 PM 公式中阻抗參數(shù)化差異對蒸散發(fā)估算的影響。結(jié)果表明: 1)與模型結(jié)構(gòu)相對復(fù)雜的雙源 PM 公式相比, 單源 PM 公式計(jì)算的蒸散發(fā)平均相對誤差(MAPE)為 34%, 略優(yōu)于雙源 PM 公式的 40%; 2)對于兩種模型結(jié)構(gòu)差異顯著的雙源模型, 模型中不含阻抗參數(shù)的三溫模型比模型中含阻抗參數(shù)的 PM 公式具有更高的估算精度, 前者的 MAPE 為 18% (2=0.85), 后者為40% (2=0.34); 3)兩種單源和一種雙源阻抗參數(shù)化方法導(dǎo)致 PM 公式計(jì)算的蒸散發(fā)出現(xiàn)不同程度的差異, MAPE 可相差 6%; 4)使用先驗(yàn)知識/數(shù)據(jù)事前率定阻抗參數(shù)化方法, 可顯著地提高單源 PM 公式的計(jì)算精度(MAPE 可降低 22%), 但隨著模型結(jié)構(gòu)與參數(shù)化復(fù)雜度增加, 事前率定雙源 PM 公式的阻抗參數(shù)化方法難以提高計(jì)算精度(MAPE僅減小0.8%)。
蒸散發(fā); Penman-Monteith; 阻抗; 三溫模型; HiWATER; 黑河
蒸散發(fā)(evapotranspiration)是生物圈、水圈和大氣圈中水循環(huán)和能量傳輸?shù)年P(guān)鍵環(huán)節(jié)[1–2], 精確的蒸散發(fā)估算對研究全球氣候變化和水資源評價(jià)等有重要意義, 在農(nóng)作物需水生產(chǎn)管理、水資源有效開發(fā)利用等方面也具有重要的應(yīng)用價(jià)值[3–6]?,F(xiàn)有的蒸散發(fā)估算模型都有簡化的假設(shè), 并對蒸散發(fā)的內(nèi)部機(jī)理有不同的描述方程[7], 導(dǎo)致現(xiàn)有蒸散發(fā)估算模型在模型結(jié)構(gòu)的復(fù)雜程度和參數(shù)化方面各不相同[8–9], 從而產(chǎn)生不同的蒸散發(fā)估算結(jié)果。因此, 由模型結(jié)構(gòu)和參數(shù)化差異引起的蒸散發(fā)估算誤差急需得到量化和重新評估[10]。
Penman-Monteith (PM)公式是經(jīng)典的蒸散發(fā)估算方法之一。1948 年, Penman[11]引入空氣動力學(xué)阻抗的假設(shè), 結(jié)合地表能量平衡方程, 推導(dǎo)得出 Penman公式。1965 年, Monteith[12]引入表面阻抗, 將其發(fā)展為經(jīng)典的 Penman-Monteith 公式, 并成為應(yīng)用最廣泛的蒸散發(fā)估算方法之一[13]?;凇按笕~”理論假設(shè)的單源 PM 公式主要適用于茂密的植被冠層或裸露土壤表面[14–15], 因此 Mu 等[5]提出雙源結(jié)構(gòu)的PM 模型, 用于估算稀疏植被覆蓋區(qū)。在雙源模型中, 阻抗被分成土壤阻抗和植被冠層阻抗, 并通過“串聯(lián)”或“并聯(lián)”結(jié)構(gòu)與 PM 公式結(jié)合[14,16–18]。改進(jìn)后的雙源 PM 公式在蒸散發(fā)估算方面取得較大的成就[5,19–25], 但隨之而來的是更復(fù)雜的模型結(jié)構(gòu)和阻抗參數(shù)化過程[26], 不僅導(dǎo)致估算結(jié)果的誤差, 甚至在一些缺乏詳細(xì)觀測資料的地區(qū)難以應(yīng)用[5,21,27–28]。為此, 有研究者對現(xiàn)有阻抗模型進(jìn)行改進(jìn)[29–31], 也有研究者重新開發(fā)建立新的表面阻抗模型[18,32–34]。雖然這些研究都取得很大的進(jìn)步, 但由模型結(jié)構(gòu)和阻抗參數(shù)化引起的蒸散發(fā)估算不確定性仍然是一個(gè)很大的難題[35–38]。
有學(xué)者選擇去掉阻抗, 開發(fā)不含阻抗的蒸散發(fā)估算模型, 以便簡化模型結(jié)構(gòu), 避免由阻抗參數(shù)化引起的誤差[39], 如三溫模型(3T)[40–42]、Priestley-Taylor模型[43]、互補(bǔ)關(guān)系模型[44–45]、三角形或平行四邊形特征空間法[46]以及最大熵增地表蒸散模型[47]等。這些方法由于消除了難以確定的阻抗, 輸入?yún)?shù)相對減少, 具有較高的估算精度[41,46,48–49]。其中, 三溫模型自 1996 年提出以來, 在多種尺度下都取得較好的效果[1,42], 被認(rèn)為是一種既簡單又精確的蒸散發(fā)估算模型[42]。
基于上述背景, 本研究擬通過分析黑河高密度通量觀測和氣象觀測數(shù)據(jù)集, 評估模型結(jié)構(gòu)差異 (對比單源 PM 公式與雙源 PM 公式、雙源 PM 公式與雙源三溫模型)和阻抗參數(shù)化差異對蒸散發(fā)估算結(jié)果的影響(對比兩種單源和一種雙源阻抗參數(shù)化方法), 探討減小模型結(jié)構(gòu)和參數(shù)化差異影響的解決方案。研究方法框架如圖1所示。
黑河流域是我國西北部第二大內(nèi)陸河流域, 位于 98°—101°30′E, 38°—42°N, 海拔變化較大(890~ 5298m), 總面積為 12.8×104km2。氣候干旱, 年均氣溫為 7.78oC, 降水少, 蒸散發(fā)量大[50]。本文研究區(qū)域位于甘肅河西走廊黑河流域中游, 100°6′—100°52′E, 38°32′—39°24′N (圖 2(a))。年均氣溫、降雨量和蒸發(fā)皿蒸發(fā)量分別為 7.3oC, 100~250mm 和1200~1800mm。研究區(qū)的地勢相對平坦, 海拔高度為 1400~1600m。玉米、春小麥、蔬菜、果園和居民用地是該綠洲的主要用地類型[42]。
本研究使用的數(shù)據(jù)集由黑河生態(tài)水文遙感實(shí)驗(yàn)(HiWATER, http://www.heihedata.org/)提供, 我們選取 14 個(gè)分布在玉米地上的渦度相關(guān)系統(tǒng)(表 1)的日間觀測數(shù)據(jù)(圖 2(b)), 數(shù)據(jù)采集時(shí)間為 2012 年 5 月至 9 月。每個(gè)渦度相關(guān)系統(tǒng)周圍配套一個(gè)自動氣象觀測站(Campbell Co., Ltd.), 渦度相關(guān)系統(tǒng)的數(shù)據(jù)每隔 0.1 秒記錄并存儲一次, 自動氣象觀測站每隔 10 分鐘記錄并存儲一次。經(jīng)過數(shù)據(jù)質(zhì)量控制后的渦度相關(guān)系統(tǒng)數(shù)據(jù)時(shí)間分辨率為 30 分鐘, 詳細(xì)過程可參見文獻(xiàn)[51]。本研究對于能量平衡閉合度((LE+)/(n?), 其中 LE 為潛熱通量,為顯熱通量,n為凈輻射,為土壤熱通量)小于0.8 的潛熱通量數(shù)據(jù), 使用波文比法進(jìn)行校正, 強(qiáng)制能量閉合[52–53]。
圖1 研究框架示意圖
(a) HiWATER計(jì)劃中21個(gè)渦度通量觀測塔分布位置; (b)張掖綠洲核心實(shí)驗(yàn)區(qū)17個(gè)渦度通量觀測塔位置
表1 研究區(qū)14個(gè)渦度相關(guān)系統(tǒng)信息
說明: 1)所有的傳感器都是開路測量, 相關(guān)型號信息引自文獻(xiàn)[51]; 2)渦度相關(guān)系統(tǒng)的采樣頻率為 10Hz, 且渦度相關(guān)系統(tǒng)數(shù)據(jù)已按照Liu等[51]的數(shù)據(jù)處理方法進(jìn)行質(zhì)量控制, 處理后的數(shù)據(jù)為30分鐘的平均值; 3)葉面積指數(shù) LAI 和土壤濕度的數(shù)據(jù)為實(shí)驗(yàn)觀測期內(nèi)相應(yīng)數(shù)據(jù)的平均值; 4)渦度塔編號與圖2(b)中對應(yīng); 5)下墊面均為玉米地。
觀測期間的葉面積指數(shù) LAI 數(shù)據(jù)由 LAI-2000 (LI-COR Co., Ltd)實(shí)測得到[54]。本研究選取與渦度相關(guān)系統(tǒng)和自動氣象站觀測時(shí)間同步的 16 天 LAI實(shí)測數(shù)據(jù), 分別代表育苗、發(fā)芽、抽穗、灌漿和成熟階段。觀測期間研究區(qū)氣象要素變化如圖 3 所示, 太陽輻射、風(fēng)速、氣溫和相對濕度的平均值分別為518.70 W/m2, 1.82 m/s, 24.37oC和46.02%。
(a)太陽輻射; (b)風(fēng)速; (c)氣溫; (d)相對濕度
1.2.1 單源Penman-Monteith公式
單源PM公式[12]為
其中,為潛熱蒸發(fā)擴(kuò)散系數(shù);為可利用的能量(凈輻射n與土壤熱通量的差值), 由通量塔直接觀測得到; VPD為空氣的飽和水汽壓差,為飽和水汽壓對溫度曲線的斜率,為濕度計(jì)算常數(shù), 這3個(gè)量均根據(jù)Allen等[13]的方法, 基于氣象觀測數(shù)據(jù)計(jì)算得到;a為標(biāo)準(zhǔn)大氣壓下的空氣密度,C為空氣的比熱,s為表面阻抗??諝鈩恿W(xué)阻抗a根據(jù)下式[55–56]計(jì)算得到:
單源模型主要包括以下兩種。
1)Jarvis-Stewart表面阻抗參數(shù)化模型(PM_ JA)。式(1)中的表面阻抗s可以按照J(rèn)arvis-Stewart阻抗模型[27]進(jìn)行參數(shù)化:
其中,smin為最適環(huán)境條件下的最小氣孔阻抗(如不受環(huán)境因子脅迫),(s),(VPD),(a)和()采用以下公式[33,57–60]計(jì)算:
(VPD)=1?2VPD, (4b)
其中,L,op和H分別為限制氣孔活動的最小、最適及最大空氣溫度,w為植被枯萎點(diǎn),f為田間持水力,1和2為常量值。各參數(shù)取值見表2。
2) KP表面阻抗模型(PM_KP)。在 PM_KP 模型中,s可用下式表示:
對于經(jīng)驗(yàn)系數(shù)1和2, Li 等[33]在本文研究區(qū)附近地區(qū)(環(huán)境狀況相似)做過校正, 分別為 0.85 和 1.83 (表2)。*是與氣候變量有關(guān)的因子, 計(jì)算公式如下:
表2 阻抗參數(shù)化的經(jīng)驗(yàn)參數(shù)
說明: 率定前參數(shù)取值來源于相應(yīng)的文獻(xiàn), 如PM_KP和PM_JA方法引自文獻(xiàn)[33], PM_Mu方法引自文獻(xiàn)[5], 率定后參數(shù)值是基于渦度實(shí)測潛熱通量數(shù)據(jù), 使用最小二乘法重新率定后的結(jié)果。
1.2.2 雙源Penman-Monteith公式
Mu 等[5,22]提出, 可以將總蒸散發(fā)量(ET)視為冠層蒸騰(c)和土壤蒸發(fā)(s)的和, 因此雙源 Penman-Monteith公式(PM_Mu)為
其中, LEs可根據(jù)改進(jìn)的PM公式[5,21,61]計(jì)算:
其中,s,s為土壤的表面阻抗,a,s為土壤上方的空氣動力學(xué)阻抗, 計(jì)算公式如下:
tot為未校正的總空氣動力學(xué)阻抗, 玉米地取值為107 s/m[5]。
植被冠層的潛熱通量LEc計(jì)算公式如下:
a,c取值與a,s相等, 均由式(10)[21,61]計(jì)算得到。
植被冠層的表面阻抗s,c為冠層導(dǎo)度c的倒數(shù):
其中,c可按照下式計(jì)算:
min_close,min_open, VPD_close 和 VPD_open等參數(shù)取值見表2。
1.2.3三溫模型
三溫模型(3T)由 Qiu[62]于 1996 年基于地表能量平衡提出, 通過引入沒有蒸發(fā)和蒸騰的干燥參考平面, 避免對難以估算的阻抗進(jìn)行參數(shù)化[63]。三溫模型使用參考土壤平面(無蒸發(fā)), 并假定參考土壤的空氣動力學(xué)阻抗與其他土壤表面相同, 從而得到土壤蒸發(fā)子模型:
s為土壤蒸發(fā)分量(mm/s),為潛熱蒸發(fā)系數(shù),n,s和s分別為土壤凈輻射分量和土壤熱通量(W/m2),a為空氣溫度(K),n,sr,sr與0sr分別為參考平面的凈輻射、土壤熱通量和表面溫度。
同樣地, 通過引入?yún)⒖既~片(無蒸騰), 并假定參考葉片的空氣動力學(xué)阻抗與周圍植被相同, 得到植被蒸騰子模型:
其中,c為植被蒸騰分量(mm/s),n,c為植被凈輻射分量,0c為冠層表面溫度,n,cr和0cr分別是參考平面的凈輻射和表面溫度??偟臐摕嵬坑檬?7)計(jì)算得到。本研究以 19 號站點(diǎn)神沙窩沙漠站為參考站點(diǎn)(圖 2)。
近年來的研究表明, 三溫模型在衛(wèi)星遙感尺度也可以取得足夠好的效果, 是一種相對簡單同時(shí)足夠精確的蒸散發(fā)估算方法[41–42,64]。
與渦度實(shí)測數(shù)據(jù)比較, 單源 PM 公式具有比雙源 PM 公式更高的蒸散發(fā)估算精度, 其中 PM_KP的潛熱通量(LE_KP)具有較小的 MAPE (34.08%), 決定系數(shù)2為 0.93, RMSE 為 129.22W/m2, PM_JA 的潛熱通量(LE_JA)的 MAPE 和2分別為 34.18%和0.79, 均優(yōu)于雙源 PM 模型潛熱通量(LE_Mu2007) (MAPE=39.75%,2=0.34)(圖 4), 表明隨著蒸散發(fā)估算模型結(jié)構(gòu)復(fù)雜程度的增加, 模型估算精度有降低的趨勢。此外, 雖然三溫模型與 PM_Mu 同屬于雙源蒸散發(fā)估算模型, 但由于三溫模型中不含與阻抗相關(guān)的參數(shù), 避免了由阻抗引起的不確定性, 因此具有較高的精度(MAPE=18.05%,2=0.85), 優(yōu)于模型結(jié)構(gòu)更復(fù)雜的PM_Mu。
圖4 蒸散發(fā)估算結(jié)果與渦度塔實(shí)測數(shù)據(jù)比較
圖 5(a)和(b)分別為根據(jù)式(3)和(5)估算得到的PM_KP 和 PM_JA 的冠層表面阻抗 rs_KP 和 rs_JA, 可見由于阻抗參數(shù)化過程的不同, 阻抗估算結(jié)果會產(chǎn)生較大的差異。即使將阻抗大于 1000s/m 的點(diǎn)作為異常值去除, rs_KP 與 rs_JA 估算值之間的平均值差值仍然可達(dá) 231.73s/m, 導(dǎo)致 Penman-Monteith 公式在蒸散發(fā)估算中產(chǎn)生差異。例如, 由于 rs_KP 被普遍高估, 導(dǎo)致 LE_KP 呈現(xiàn)明顯的低估效應(yīng), 而由于 rs_JA 被普遍低估, 導(dǎo)致 LE_JA 呈現(xiàn)明顯的高估效應(yīng)。同樣地, 根據(jù)式(12)估算得到的 PM_Mu 冠層阻抗分量 rs_veg_Mu2007 也與 rs_KP 和 rs_JA 有較大的差異(圖 5(c))。因此, 阻抗參數(shù)化過程的不同最終會導(dǎo)致蒸散發(fā)估算結(jié)果存在較大的差異。
提前使用實(shí)測數(shù)據(jù)對 PM 公式中的經(jīng)驗(yàn)系數(shù)(表2)進(jìn)行準(zhǔn)確率定, 是去除模型結(jié)構(gòu)和參數(shù)化差異對蒸散發(fā)估算影響的一個(gè)可能方案。本研究基于渦度相關(guān)系統(tǒng)實(shí)測數(shù)據(jù), 采用最小二乘法對表 2 中的經(jīng)驗(yàn)系數(shù)進(jìn)行率定。將觀測期內(nèi)的整個(gè)數(shù)據(jù)集按照1:1 等分成率定數(shù)據(jù)集和驗(yàn)證數(shù)據(jù)集。結(jié)果表明, 經(jīng)過提前對經(jīng)驗(yàn)參數(shù)進(jìn)行率定, 單源 PM 模型的蒸散發(fā)估算精度有顯著的提升, 率定后 PM_KP 的潛熱通量LE_KP_cal 的低估效應(yīng)得到改善, 無偏回歸線的斜率為 0.98 (圖 6(a)), 散點(diǎn)均勻地分布在 1:1 線兩側(cè), MAPE 僅為 12.42%, RMSE 為 59.73W/m2。同樣, 率定后 PM_JA 的潛熱通量 LE_JA_cal 結(jié)果不再呈現(xiàn)高估效應(yīng), 無偏回歸線的斜率為 0.97, 接近1, MAPE 和 RMSE 分別降低到 14.38%和 60.73 W/m2(圖 6(b))。表 2 中經(jīng)驗(yàn)參數(shù)的率定前取值來自 Li 等[33]在黑河地區(qū)的研究結(jié)果, 但在本研究中, 率定后的經(jīng)驗(yàn)參數(shù)值與原值有差別, 表明即使是氣候、地理環(huán)境條件都相似的地區(qū), 仍然需要用實(shí)測數(shù)據(jù)重新率定經(jīng)驗(yàn)系數(shù), 這些經(jīng)驗(yàn)系數(shù)過分依賴率定數(shù)據(jù)集, 使得 PM 公式在缺乏氣象觀測資料的地區(qū)難以應(yīng)用, 而不含經(jīng)驗(yàn)系數(shù)的三溫模型可以達(dá)到較好的蒸散發(fā)估算效果。此外, 率定后 PM_KP 的蒸散發(fā)估算結(jié)果仍然優(yōu)于 PM_JA (圖 4 和 6), 這同樣表明對于單源 PM 公式而言, 模型含有的經(jīng)驗(yàn)系數(shù)越少, 阻抗參數(shù)化模型越簡單, 引起的蒸散發(fā)估算誤差就越小。這可能是因?yàn)楫?dāng)觀測數(shù)據(jù)量有限時(shí), 模型越簡單, 越容易獲得更符合觀測數(shù)據(jù)集的率定結(jié)果。
圖5 冠層表面阻抗模擬結(jié)果與Penman-Monteith公式逆推阻抗比較
圖6 Penman-Monteith公式率定參數(shù)后蒸散發(fā)估算結(jié)果與渦度塔實(shí)測數(shù)據(jù)比較
相比之下, 率定經(jīng)驗(yàn)系數(shù)后, 雙源 PM 公式的蒸散發(fā)估算精度只有輕微的提升, 率定后的蒸散發(fā)估算結(jié)果 MAPE 為 38.96%, 略低于參數(shù)率定前的MAPE (39.75%), 精度僅提升 0.79%, 率定后的潛熱通量 LE_Mu2007_cal 仍然呈現(xiàn)低估的趨勢(圖 6(c)), 表明與單源 PM 公式中較簡單的阻抗參數(shù)化過程相比, 更復(fù)雜的雙源阻抗參數(shù)化結(jié)構(gòu)可能會導(dǎo)致更大的誤差。
本文基于黑河高密度通量觀測數(shù)據(jù), 研究模型結(jié)構(gòu)和參數(shù)化差異對蒸散發(fā)估算結(jié)果的影響, 主要結(jié)論如下。
1)隨著模型結(jié)構(gòu)復(fù)雜程度增加, 蒸散發(fā)估算精度有降低的趨勢。單源 PM 公式具有比模型結(jié)構(gòu)更復(fù)雜的雙源 PM 公式更高的蒸散發(fā)估算精度, 不含阻抗的雙源三溫模型具有比雙源 PM 公式更高的蒸散發(fā)估算精度。
2)隨著阻抗參數(shù)化復(fù)雜程度增加, 蒸散發(fā)估算精度有降低的趨勢。只含兩個(gè)經(jīng)驗(yàn)系數(shù)的 PM_KP公式具有比含 6 個(gè)經(jīng)驗(yàn)系數(shù)的 PM_JA 略高的估算精度, 且顯著優(yōu)于含 5 個(gè)經(jīng)驗(yàn)系數(shù)、阻抗參數(shù)化更復(fù)雜的雙源結(jié)構(gòu)PM_Mu模型。
3)使用實(shí)測數(shù)據(jù)對 PM 公式中的經(jīng)驗(yàn)系數(shù)提前進(jìn)行率定, 可以在一定程度上去除模型結(jié)構(gòu)和阻抗參數(shù)化對蒸散發(fā)估算結(jié)果的影響。率定后, 模型結(jié)構(gòu)相對較簡單的單源 PM 公式蒸散發(fā)估算精度均有顯著的提升(PM_KP 和 PM_JA 的 MAPE 分別降低22%和 20%), 但雙源 PM_Mu 由于模型結(jié)構(gòu)和阻抗參數(shù)化過于復(fù)雜, 即使采用觀測數(shù)據(jù)率定后, 蒸散發(fā)估算精度也無明顯的改善(MAPE 僅減小 0.8%)。
綜上所述, 模型結(jié)構(gòu)及其參數(shù)化過程對蒸散發(fā)估算影響較大, 在未來的研究中應(yīng)予以重視。
[1] Yan C, Qiu G. The three-temperature model to est-imate evapotranspiration and its partitioning at mul-tiple scales: a review. Transactions of the ASABE, 2016, 59(2): 661–670
[2] Kite G, Droogers P. Comparing evapotranspiration es-timates from satellites, hydrological models and field data. Journal of Hydrology, 2000, 229(1/2): 3–18
[3] 趙玲玲, 夏軍, 許崇育, 等. 水文循環(huán)模擬中蒸散發(fā)估算方法綜述. 地理學(xué)報(bào), 2013, 68(1): 127–136
[4] Zhao W L, Gentine P, Reichstein M, et al. Physics-constrained machine learning of evapotranspiration. Geophysical Research Letters, 2019, 46(24): 14496–14507
[5] Mu Q, Heinsch F A, Zhao M, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of En-vironment, 2007, 111(4): 519–536
[6] Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010, 467: 951–954
[7] 李曉媛, 于德永. 蒸散發(fā)估算方法及其驅(qū)動力研究進(jìn)展. 干旱區(qū)研究, 2020, 37(1): 26–36
[8] Chen Y, Xia J, Liang S, et al. Comparison of satellite-based evapotranspiration models over terrestrial eco-systems in China. Remote Sensing of Environment, 2014, 140: 279–293
[9] 馮景澤, 王忠靜. 遙感蒸散發(fā)模型研究進(jìn)展綜述. 水利學(xué)報(bào), 2012, 43(8): 914–925
[10] Ershadi A, McCabe M, Evans J, et al. Impact of model structure and parameterization on Penman–Monteith type evaporation models. Journal of Hydro-logy, 2015, 525: 521–535
[11] Penman H L. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 193: 120–145
[12] Monteith J L. Evaporation and environment // 19th Symposia of the Society for Experimental Biology. Cambridge: Cambridge University Press, 1965: 205–234
[13] Allen R G, Pereira L S, Raes D, et al. Crop evapo-transpiration — guidelines for computing crop water requirements — FAO irrigation and drainage paper 56. Rome: FAO, 1998
[14] Shuttleworth W J, Wallace J. Evaporation from sparse crops — an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 1985, 111: 839–855
[15] Rana G, Katerji N. A measurement based sensitivity analysis of the Penman-Monteith actual evapotranspi-ration model for crops of different height and in con-trasting water status. Theoretical and Applied Clima-tology, 1998, 60(1/2/3/4): 141–149
[16] Norman J M, Kustas W P, Humes K S. Source app-roach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface tem-perature. Agricultural and Forest Meteorology, 1995, 77(3/4): 263–293
[17] Boulet G, Mougenot B, Lhomme J P, et al. The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat. Hydrology and Earth System Sciences Discus-sions, 2015(19): 4653–4672
[18] Li X, Gentine P, Lin C, et al. A simple and objective method to partition evapotranspiration into transpi-ration and evaporation at eddy-covariance sites. Agri-cultural and Forest Meteorology, 2019, 265: 171–182
[19] Cleugh H A, Leuning R, Mu Q, et al. Regional evapo-ration estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 2007, 106(3): 285–304
[20] Leuning R, Zhang Y Q, Rajaud A, et al. A simple surface conductance model to estimate regional evapo-ration using MODIS leaf area index and the Penman-Monteith equation. Water Resources Research, 2008, 44(10): W10419
[21] Zhang K, Kimball J S, Nemani R R, et al. A conti-nuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour-ces Research, 2010, 46(9): W09522
[22] Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 2011, 115(8): 1781–1800
[23] Yao Y, Liang S, Li X, et al. A satellite-based hybrid algorithm to determine the Priestley–Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes. Remote Sensing of Environment, 2015, 165: 216–233
[24] Peng L, Zeng Z, Wei Z, et al. Determinants of the ratio of actual to potential evapotranspiration. Global change biology, 2019, 25(4): 1326–1343
[25] 楊雨亭, 尚松浩. 雙源蒸散發(fā)模型估算潛在蒸散發(fā)量的對比. 農(nóng)業(yè)工程學(xué)報(bào), 2012, 28(24): 85–91
[26] 高冠龍, 張小由, 魚騰飛, 等. Shuttleworth-Wallace 雙源蒸散發(fā)模型阻力參數(shù)的確定. 冰川凍土, 2016, 38(1): 170–177
[27] Jarvis P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 1976, 273: 593–610
[28] Tan Z H, Zhao J F, Wang G Z, et al. Surface conductance for evapotranspiration of tropical forests: Calculations, variations, and controls. Agricultural and Forest Meteorology, 2019, 275: 317–328
[29] Katerji N, Rana G, Fahed S. Parameterizing canopy resistance using mechanistic and semi-empirical esti-mates of hourly evapotranspiration: critical evaluation for irrigated crops in the Mediterranean. Hydrological Processes, 2011, 25(1): 117–129
[30] Xu J, Liu X, Yang S, et al. Modeling rice evapo-transpiration under water-saving irrigation by cali-brating canopy resistance model parameters in the Penman-Monteith equation. Agricultural Water Manage-ment, 2017, 182: 55–66
[31] Lehmann P, Merlin O, Gentine P, et al. Soil texture effects on surface resistance to bare-soil evaporation. Geophysical Research Letters, 2018, 45(19): 10398–10405
[32] Leuning R, Zhang Y, Rajaud A, et al. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resources Research, 2008, 44(10): W10419
[33] Li S, Zhang L, Kang S, et al. Comparison of several surface resistance models for estimating crop evapo-transpiration over the entire growing season in arid regions. Agricultural and Forest Meteorology, 2015, 208: 1–15
[34] Li Y, Kustas W P, Huang C, et al. Evaluation of soil resistance formulations for estimates of sensible heat flux in a desert vineyard. Agricultural and forest me-teorology, 2018, 260: 255–261
[35] Long D, Longuevergne L, Scanlon B R. Uncertainty in evapotranspiration from land surface modeling, re-mote sensing, and GRACE satellites. Water Resour-ces Research, 2014, 50(2): 1131–1151
[36] Ershadi A, McCabe M F, Evans J P, et al. Impact of model structure and parameterization on Penman–Monteith type evaporation models. Journal of Hydro-logy, 2015, 525: 521–535
[37] Zhang K, Kimball J S, Running S W. A review of remote sensing based actual evapotranspiration esti-mation. Wiley Interdisciplinary Reviews: Water, 2016, 3(6): 834–853
[38] Yao Y, Liang S, Yu J, et al. Differences in estima- ting terrestrial water flux from three satellite-based Priestley-Taylor algorithms. International Journal of Applied Earth Observation and Geoinformation, 2017, 56: 1–12
[39] 王寧, 賈立, 李占勝, 等. 非參數(shù)化蒸散發(fā)估算方法在黑河流域的適用性分析. 高原氣象, 2016, 35 (1): 118–128
[40] Qiu G Y, Shi P, Wang L. Theoretical analysis of a remotely measurable soil evaporation transfer coeffi-cient. Remote Sensing of Environment, 2006, 101(3): 390–398
[41] Xiong Y J, Zhao S H, Tian F, et al. An evapotranspi-ration product for arid regions based on the three-temperature model and thermal remote sensing. Jour-nal of Hydrology, 2015, 530: 392–404
[42] Wang Y Q, Xiong Y J, Qiu G Y, et al. Is scale really a challenge in evapotranspiration estimation? A multi-scale study in the Heihe oasis using thermal remote sensing and the three-temperature model. Agricultural and Forest Meteorology, 2016, 230/231: 128–141
[43] Priestley C H B, Taylor R. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 1972, 100(2): 81–92
[44] Ma N, Szilagyi J, Zhang Y, et al. Complementary-relationship-based modeling of terrestrial evapotran-spiration across China during 1982–2012: validations and spatiotemporal analyses. Journal of Geophysical Research: Atmospheres, 2019, 124(8): 4326–4351
[45] 韓松俊, 張寶忠. 基于 Penman 方法和互補(bǔ)原理的蒸散發(fā)研究歷程與展望. 水利學(xué)報(bào), 2018, 49(9): 1158–1168
[46] Long D, Singh V P. A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Re-mote Sensing of Environment, 2012, 121: 370–388
[47] 劉元波, 張珂. 最大熵增地表蒸散模型: 原理及應(yīng)用綜述. 地球科學(xué)進(jìn)展, 2019, 34(6): 596–605
[48] Ershadi A, McCabe M, Evans J P, et al. Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agricultural and Forest Meteorology, 2014, 187: 46–61
[49] Zhou X, Bi S, Yang Y, et al. Comparison of ET estimations by the three-temperature model, SEBAL model and eddy covariance observations. Journal of Hydrology, 2014, 519: 769–776
[50] 蒙吉軍, 汪疆瑋, 王雅, 等. 基于綠洲灌區(qū)尺度的生態(tài)需水及水資源配置效率研究——黑河中游案例. 北京大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 54(1): 171–180
[51] Liu S, Xu Z, Song L, et al. Upscaling evapotranspira-tion measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agri-cultural and Forest Meteorology, 2016, 230: 97–113
[52] Twine T E, Kustas W, Norman J, et al. Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest Meteorology, 2000, 103(3): 279–300
[53] Xu Z, Liu S, Li X, et al. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Re-search: Atmospheres, 2013, 118(23): 13140–13157
[54] Qu Y, Zhu Y, Han W, et al. Crop leaf area index observations with a wireless sensor network and its potential for validating remote sensing products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 7(2): 431–444
[55] Brutsaert W, Stricker H. An advection-aridity approa-ch to estimate actual regional evapotranspiration. Water Resources Research, 1979, 15(2): 443–450
[56] Irmak S, Mutiibwa D, Irmak A, et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density. Agricultural and Forest Meteorology, 2008, 148(6/7): 1034–1044
[57] Li S, Kang S, Zhang L, et al. Quantifying the com-bined effects of climatic, crop and soil factors on surface resistance in a maize field. Journal of Hydro-logy, 2013, 489: 124–134
[58] Bai Y, Li X, Liu S, et al. Modelling diurnal and seasonal hysteresis phenomena of canopy conductance in an oasis forest ecosystem. Agricultural and Forest Meteorology, 2017, 246: 98–110
[59] Bai Y, Li X, Zhou S, et al. Quantifying plant trans-piration and canopy conductance using eddy flux data: an underlying water use efficiency method. Agricultu-ral and Forest Meteorology, 2019, 271: 375–384
[60] Hu G, Jia L. Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations. Remote Sensing, 2015, 7(3): 3056–3087
[61] Zhang K, Kimball J S, Mu Q, et al. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. Journal of Hydrology, 2009, 379(1): 92–110
[62] Qiu G Y. Estimation of plant transpiration by imita-tion leaf temperature II. application of imitation leaf temperature for detection of crop water stress. Tran-sactions of the Japanese Society of Irrigation, Drai-nage and Reclamation Engineering, 1996, 64(5): 767–773
[63] Paw U K T, Daughtry C S T. A new method for the estimation of diffusive resistance of leaves. Agricul-tural and Forest Meteorology, 1984, 33(2): 141–155
[64] Xiong Y J, Qiu G Y. Estimation of evapotranspiration using remotely sensed land surface temperature and the revised three-temperature model. International Journal of Remote Sensing, 2011, 32(20): 5853–5874
Impact of Model Structure and Parameterization Differences on Evapotranspiration Estimation
ZHAO Wenli1, XIONG Yujiu2, QIU Guoyu1,?, YAN Chunhua1, ZOU Zhendong1, QIN Longjun1
1. School of Environment and Energy, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055; 2. School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275; ? Corresponding author, E-mail: qiugy@pkusz.edu.cn
Based on the HiWATER high-density eddy covariance (EC) tower observations in Heihe Oasis in 2012, the impact of model structure differences (comparison between one-source Penman-Monteith / PM equation and two-source PM equation, or comparison between two-source PM equation and two-source three-temperature model) and parameterization differences on the evapotranspiration estimation were evaluated. The results show that, 1) compared with the two-source PM equation with a relatively complex model structure, the mean absolute percent error (MAPE) estimated by the one-source PM equation is 34%, which is more accurate than that by the two-source PM equation (40%); 2) for two kinds of two-source model with significant differences in model structure, the three-temperature model without resistance parameters has higher estimation accuracy than the PM-based equation with resistance parameters. The former has a MAPE of 18% (2=0.85), while the PM-based equation has that of 40% (2=0.34); 3) two one-source and one two-source resistance parameterization methods lead to different evapotranspiration estimation accuracy for the PM-based equation, with a MAPE difference of up to 6%; 4) using prior knowledge / dataset to calibrate resistance parameterization can significantly improve the estimation accuracy of one-source PM equation (MAPE can be reduced by 22%), but as model structure and parameterization complexity increase, two-source PM equation hasn’t been improved significantly after resistance parameterization calibration (MAPE is only reduced by 0.8%).
evapotranspiration; Penman-Monteith; resistance; three-temperature model; HiWATER; Heihe
10.13209/j.0479-8023.2020.119
2020–01–14;
2020–03–15
深圳市知識創(chuàng)新計(jì)劃(JCYJ20180504165440088)和國家自然科學(xué)基金(41671416)資助