崔玉雙?石瑤瑤?高宏程?陳晨
【摘要】 糖尿病性黃斑水腫(DME)是導(dǎo)致糖尿病性視網(wǎng)膜病變患者視力下降的主要原因,其中多元醇途徑、己糖胺通路、糖基化終末產(chǎn)物等機制已被熟知。最近研究表明周細胞及Apelin在糖尿病性黃斑水腫的發(fā)生發(fā)展中也起著重要作用,因此該文就周細胞及愛帕琳肽(Apelin)在糖尿病性黃斑水腫中的作用做一綜述,旨在了解更多關(guān)于DME的可能機制。
【關(guān)鍵詞】 周細胞;血管生成素;血管生成素/Tie-2通路;愛帕琳肽;
愛帕琳肽/血管緊張素受體AT1相關(guān)受體蛋白通路
The role of pericytes and Apelin in diabetic macular edema Cui Yushuang, Shi Yaoyao, Gao Hongcheng, Chen Chen. School of Clinical Medicine, Weifang Medical University, Weifang 261000, China
Corresponding author, Chen Chen, E-mail: sdchenchen@126.com
【Abstract】 Diabetic macular edema is the main cause of vision loss in patients with diabetic retinopathy. The mechanisms of polyol pathway, hexosamine pathway and glycation end products have been well known. Recent studies have shown that pericyte and Apelin also play an important role in the occurrence and development of diabetic macular edema. Therefore, the role of pericyte and Apelin in diabetic macular edema was reviewed to understand more possible mechanisms.
【Key words】 Pericyte;Ang;Ang/Tie-2 pathway;Apelin;Apelin/APJ pathway
糖尿病性視網(wǎng)膜病變是最嚴重、最常見的糖尿病微血管并發(fā)癥,也是導(dǎo)致20 ~ 74歲人群新出現(xiàn)失明的主要原因,臨床上分為非增殖性糖尿病性視網(wǎng)膜病變和增殖性糖尿病性視網(wǎng)膜病變,兩者均存在糖尿病性黃斑水腫(DME) [1]。在DME中,黃斑增厚是由于高滲透性視網(wǎng)膜毛細血管產(chǎn)生的細胞外液增加所致。長時間的高血糖導(dǎo)致視網(wǎng)膜內(nèi)氧張力降低、靜脈擴張、視網(wǎng)膜內(nèi)血管內(nèi)皮生長因子(VEGF)濃度增加、白細胞停滯和生長因子水平失調(diào),這些都與血清滲出視網(wǎng)膜血管進入細胞外液有關(guān)[2]。隨著黃斑水腫的進展,出現(xiàn)中度至重度視力下降。在美國威斯康辛州一項糖尿病性視網(wǎng)膜病變10年的流行病學(xué)研究中,DME發(fā)病率在糖尿病患者中約為20.1% ~ 25.4%[3]。DME的發(fā)病機制是復(fù)雜的,其中一些機制已被熟知,如氧化應(yīng)激、糖基化終末產(chǎn)物、炎癥介質(zhì)等,而周細胞及愛帕琳肽(Apelin)在DME的發(fā)生發(fā)展中也起著重要作用。因此本文就周細胞及Apelin在DME中的作用做一綜述,旨在了解更多關(guān)于DME的可能機制。
一、周細胞及血管生成素(Ang)/Tie-2通路
1. 周細胞
周細胞作為空間間隔細胞,在毛細血管的外面、直部和分支點上都有一個橫突的形態(tài)。它們可以通過生長因子受體和生長因子的共受體蛋白多糖NG2的表達來識別。它們被基底膜包繞著,沿著毛細血管和毛細血管周圍均有突起,毛細血管床微動脈端有較多的環(huán)狀突起,毛細血管床中部有較多的縱向突起,毛細血管小靜脈端呈星狀形態(tài)[4-5]。研究者們早就認識到,周細胞是多能細胞,存在于身體的每一個血管化組織中。周細胞不僅在形態(tài)上不同,而且在蛋白質(zhì)表達上也不同。目前,成熟的周細胞被定義為“嵌入在血管基底膜內(nèi)的細胞”。另一常用定義是“周細胞是在血管結(jié)構(gòu)中包圍內(nèi)皮細胞的壁細胞,包括毛細血管、毛細血管后小靜脈和終微動脈”[6]。它們通過旁分泌信號與內(nèi)皮細胞溝通,促進血管生理中的重要功能,如血管形成、毛細血管收縮和擴張、血腦屏障維護和調(diào)節(jié)免疫細胞進入[7-8]。周細胞的脫落或丟失是糖尿病性視網(wǎng)膜病變的標志之一,據(jù)推測它可以引發(fā)或觸發(fā)多種病理特征,包括微動脈瘤形成、異常滲漏、水腫和局部缺血,從而引起視網(wǎng)膜增生性新生血管形成。
2. Ang/Tie-2通路
目前已知的Ang家族成員包括Ang-1、Ang-2、Ang-3和Ang-4,其中Ang-1和Ang-2已被廣泛研究。Ang-1由周細胞產(chǎn)生,是有效的血管生成因子,對體內(nèi)血管生成至關(guān)重要,具有與血管內(nèi)皮生長因子不同的功能。Ang-2是屬于Ang/Tie-2信號通路的生長因子,是參與血管生成的重要物質(zhì)之一[9]。Ang-1和Ang-2是通過與Tie-2跨膜受體酪氨酸激酶(Tie-2受體是一種包含表皮生長因子同源性基序,免疫球蛋白和纖連蛋白Ⅲ型重復(fù)序列的酪氨酸激酶受體,在內(nèi)皮細胞和造血干細胞中表達)相互作用而在血管穩(wěn)態(tài)、血管生成和血管通透性中發(fā)揮關(guān)鍵作用的生長因子[10]。
Ang/Tie-2通路的紊亂與糖尿病性視網(wǎng)膜病變的發(fā)病機理密切相關(guān)[11]。在生理條件下Ang-1和Ang-2與Tie-2的結(jié)合導(dǎo)致了Tie1-Tie2(Tie-1與Tie-2形成異二聚體)與內(nèi)皮整合素α5β1和αvβ3相互作用在細胞表面形成復(fù)合物,α5β1整合素與Tie-2外顯子的相互作用使受體對Ang-1的激活敏感,Ang-1能夠誘導(dǎo)Tie-2與Tie1-Tie2解離使Tie-2激活(磷酸化),磷酸化的Tie-2通過磷脂酰肌醇激酶-3/蛋白激酶B(PI3K/AKT)途徑誘導(dǎo)了叉頭框轉(zhuǎn)錄因子O1(FOXO1,主要在內(nèi)皮細胞中表達,是血管生成的負調(diào)節(jié)因子)的磷酸化及其在胞質(zhì)中的定位,從而抑制Ang-2的表達,維持血管穩(wěn)定,限制滲出[12]。在高血糖或者缺氧等病理條件下,Ang-1的表達下調(diào)使Tie-2解離能力下降,阻止了Ang-1誘導(dǎo)FOXO1的磷酸化,同時導(dǎo)致FOXO1從細胞質(zhì)進入細胞核,細胞核中FOXO1的增加引起微血管內(nèi)皮細胞中Ang-2的表達上調(diào),激活了Tie-2,引起了周細胞的凋亡,導(dǎo)致血-視網(wǎng)膜內(nèi)屏障破壞引起血管不穩(wěn)定和新生血管形成[13-14]。Puddu等[13]研究證明了高血糖和糖基化終末產(chǎn)物能使Tie-2磷酸化水平下降、Ang-2產(chǎn)生增加。另外Ang-2可以直接與整合素α5β1結(jié)合激活FAK-Rac1通路,誘導(dǎo)細胞遷移和血管生成以及周細胞脫離基底膜和周細胞遷移[8]。
二、Apelin及Apelin/血管緊張素受體AT1相關(guān)受體蛋白(APJ)通路
1. Apelin及APJ
Apelin是一種生物活性肽,于1998年首次從牛胃提取物中鑒定出來,它被認為是G蛋白偶聯(lián)受體APJ的內(nèi)源性配體。已有研究表明,77-氨基酸殘基Apelin前蛋白的C端可裂解產(chǎn)生較短的生物活性亞型,包括Apelin-12、Apelin-13、Apelin-17和Apelin-36,其中Apelin-13(Apelin-13為Apelin主要的亞型,該亞型不受外肽酶的降解)是Apelin受體APJ最有效的激活劑[15-16]。
APJ是一種典型的380個氨基酸的G蛋白偶聯(lián)受體,具有7個跨膜結(jié)構(gòu)域,與血管緊張素Ⅱ受體1型具有密切的序列同源性。APJ廣泛表達于人和嚙齒動物的中樞神經(jīng)系統(tǒng)以及下丘腦、脂肪組織、骨骼肌等外周組織[17-18]。越來越多的證據(jù)表明Aplein/APJ通過激活各種組織特異性信號通路參與多種生物功能的調(diào)節(jié),包括心血管功能、體液穩(wěn)態(tài)、胰島素分泌等,同時也參與了不同病理的發(fā)展,包括糖尿病和糖尿病并發(fā)癥[19-21]。
2. Apelin/APJ通路
近年來,Apelin被認為是視網(wǎng)膜血管系統(tǒng)的血管生成因子。而AKT和ERK被認為是受刺激的內(nèi)皮細胞中最重要的信號因子,在血管生成中發(fā)揮著重要作用[22]。AKT和ERK的磷酸化參與增殖、遷移、血管重塑和血管生成。Apelin/APJ可能通過上調(diào)PI3K/AKT和MAPK/ERK信號通路促進視網(wǎng)膜色素上皮層細胞骨架和緊密連接蛋白的增殖、遷移和表達。Qin等[23]觀察了不同濃度的Apelin與AKT及ERK磷酸化水平的關(guān)系,表明高濃度的Apelin顯著提高了AKT和ERK的磷酸化水平,研究還表明AKT及ERK磷酸化水平的提高可以促進視網(wǎng)膜色素上皮層細胞的遷移。其他研究者也證明了以上觀點[24-25]。
另外,在不同的生理和病理條件下,生物體經(jīng)常遇到缺氧環(huán)境的條件。缺氧應(yīng)激的反應(yīng)是由缺氧誘導(dǎo)因子(HIF)的異二聚體轉(zhuǎn)錄介導(dǎo)的。而HIF的主要生物學(xué)功能是由HIF-1α決定的,它是維持氧穩(wěn)態(tài)的關(guān)鍵介質(zhì)。在高血糖或者缺氧等病理條件下,Apelin的上調(diào)可以由低氧暴露下的HIF-1α激活介導(dǎo),這可能會加速細胞增殖、遷移和存活,從而有助于生理和病理血管的生成[26]。有研究表明低氧誘導(dǎo)視網(wǎng)膜病變小鼠的視網(wǎng)膜,Apelin表達明顯增加,缺乏Apelin可抑制缺氧誘導(dǎo)的視網(wǎng)膜血管形成[27]。
三、總 結(jié)
在高血糖及缺氧等病理條件下,Ang-2/Tie-2及Apelin/APJ通路或許和其他已知的機制一樣通過多種信號途徑使VEGF和其他炎癥細胞因子的反應(yīng)增強,刺激血管滲漏和新生血管形成、周細胞脫落或丟失、促進視網(wǎng)膜色素上皮層細胞骨架和緊密連接蛋白的增殖、遷移和表達而導(dǎo)致血-視網(wǎng)膜屏障的破壞,最終引起黃斑水腫。因此,了解多種途徑在DME發(fā)生發(fā)展中的作用,或許能夠給我們尋找新的治療靶點提供新的方向。只有對DME的發(fā)病機制有了全面的認識,才能研究出更好的治療方案。
參 考 文 獻
[1] Dedania VS, Bakri SJ. Novel pharmacotherapies in diabetic retinopathy. Middle East Afr J Ophthalmol, 2015, 22(2): 164-173.
[2] Browning DJ, Stewart MW, Lee C. Diabetic macular edema: Evidence-based management. Indian J Ophthalmol, 2018, 66(12): 1736-1750.
[3] Klein R, Klein BE, Moss SE. The wisconsin epidemiologic study of diabetic retinopathy. Xvi. The relationship of C-peptide to the incidence and progression of diabetic retinopathy. Diabetes, 1995, 44(7): 796-801.
[4] Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, Zlokovic BV. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimers disease. J Cereb Blood Flow Metab, 2016, 36(1): 216-227.
[5] Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics, 2015, 2(4): 041402.
[6] Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Volarevic V. Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci, 2018, 25(1): 21.
[7] Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol, 2018, 136(4): 507-523.
[8] Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration. Cell Commun Signal, 2019, 17(1): 26.
[9] Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells, 2019, 8(5):471.
[10] Hussain RM, Neiweem AE, Kansara V, Harris A, Ciulla TA. Tie-2/Angiopoietin pathway modulation as a therapeutic strategy for retinal disease. Expert Opin Investig Drugs, 2019, 28(10): 861-869.
[11] Park DY, Lee J, Kim J, Kim K, Hong S, Han S, Kubota Y, Augustin HG, Ding L, Kim JW, Kim H, He Y, Adams RH, Koh GY. Plastic roles of pericytes in the blood-retinal barrier. Nat Commun, 2017, 8: 15296.
[12] Khalaf N, Helmy H, Labib H, Fahmy I, El Hamid MA, Moemen L. Role of angiopoietins and Tie-2 in diabetic retinopathy. Electron Physician, 2017, 9(8): 5031-5035.
[13] Puddu A, Sanguineti R, Maggi D, Nicolò M, Traverso CE, Cordera R, Viviani GL. Advanced glycation end-products and hyperglycemia increase angiopoietin-2 production by impairing angiopoietin-1-Tie-2 system. J Diabetes Res, 2019, 2019: 6198495.
[14] Campochiaro PA, Peters KG. Targeting Tie2 for treatment of diabetic retinopathy and diabetic macular edema. Curr Diab Rep, 2016, 16(12): 126.
[15] Pouresmaeili-Babaki E, Esmaeili-Mahani S, Abbasnejad M, Ravan H. Protective effect of neuropeptide apelin-13 on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y dopaminergic cells: involvement of its antioxidant and antiapoptotic properties. Rejuvenation Res, 2018, 21(2): 162-167.
[16] Xin Q, Cheng B, Pan Y, Liu H, Yang C, Chen J, Bai B. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides, 2015, 63: 55-62.
[17] Emam MN, El gheit REA. Promoting effect of adipocytokine, apelin, on hepatic injury in caerulein-induced acute pancreatitis in rats: Apelin on ap-induced hepatic injury. Alexandria Journal of Medicine, 2016, 52(4): 309-315.
[18] Antushevich H, Wojcik M. Review: apelin in disease. Clin Chim Acta, 2018, 483: 241-248.
[19] Ocarroll AM, Lolait SJ, Harris LE, Pope GR. The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol, 2013, 219(1): R13-R35.
[20] Bertrand C, Pignalosa A, Wanecq E, Rancoule C, Batut A, Deleruyelle S, Lionetti L, Valet P, Castan-Laurell I. Effects of dietary eicosapentaenoic acid (EPA) supplementation in high-fat fed mice on lipid metabolism and apelin/APJ system in skeletal muscle. PLoS One, 2013, 8(11): e78874.
[21] Hu H, He L, Li L, Chen L. Apelin/APJ system as a therapeutic target in diabetes and its complications. Mol Genet Metab, 2016, 119(1-2): 20-27.
[22] Ye EA, Steinle JJ. miR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators Inflamm, 2016, 2016: 3958453.
[23] Qin D, Zheng XX, Jiang YR. Apelin-13 induces proliferation, migration, and collagen I mRNA expression in human RPE cells via PI3K/Akt and MEK/Erk signaling pathways. Mol Vis, 2013, 19: 2227-2236.
[24] Li Y, Bai YJ, Jiang YR. Apelin induces the proliferation, migration and expression of cytoskeleton and tight junction proteins in human RPE cells via PI-3K/Akt and MAPK/Erk signaling pathways. Int J Clin Exp Pathol, 2017, 10(11): 10711-10729.
[25] Li Y, Bai YJ, Jiang YR, Yu WZ, Shi X, Chen L, Feng J, Sun GB. Apelin-13 is an early promoter of cytoskeleton and tight junction in diabetic macular edema via PI-3K/Akt and MAPK/Erk signaling pathways. Biomed Res Int, 2018, 2018: 3242574.
[26] He L, Xu J, Chen L, Li L. Apelin/APJ signaling in hypoxia-related diseases. Clin Chim Acta, 2015, 451(Pt B): 191-198.
[27] Kasai A, Ishimaru Y, Kinjo T, Satooka T, Matsumoto N, Yoshioka Y, Yamamuro A, Gomi F, Shintani N, Baba A, Maeda S. Apelin is a crucial factor for hypoxia-induced retinal angiogenesis. Arterioscler Thromb Vasc Biol, 2010, 30(11): 2182-2187.
(收稿日期:2020-07-06)
(本文編輯:鄭巧蘭)