汪小珊,嚴(yán)海軍,周凌九,徐云成
SSQ系列射流施肥器水力性能試驗(yàn)研究
汪小珊,嚴(yán)海軍,周凌九,徐云成※
(中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083)
基于農(nóng)業(yè)生產(chǎn)中水肥一體化技術(shù)的施肥要求,該研究對(duì)國(guó)內(nèi)常用的SSQ系列射流施肥器進(jìn)行了性能測(cè)試。以吸肥量、進(jìn)出口壓差等指標(biāo)為研究目標(biāo)進(jìn)行了施肥器水力性能的分析和預(yù)測(cè),推導(dǎo)了SSQ系列射流施肥器開(kāi)始吸肥和吸肥效率最高時(shí)進(jìn)出口壓差與進(jìn)口壓力的關(guān)系公式。結(jié)果表明:在正常工作階段,SSQ系列射流施肥器的吸肥量隨進(jìn)出口壓差的增加而增大,在空化條件下達(dá)到極限工況;8種不同規(guī)格施肥器在進(jìn)口壓力超過(guò)0.20 MPa時(shí)才能充分發(fā)揮吸肥性能;正常工作階段臨界壓差與進(jìn)口壓力關(guān)系公式的斜率與試驗(yàn)值的誤差小于15%,斜率的大小主要受喉管截面和噴嘴出口截面的面積比影響;效率最高時(shí)進(jìn)出口壓差與進(jìn)口壓力關(guān)系公式的斜率與試驗(yàn)值的平均相對(duì)誤差為17%,驗(yàn)證了該關(guān)系公式的合理性。該文提出的SSQ系列射流施肥器水力性能預(yù)測(cè)公式可為同類(lèi)產(chǎn)品的設(shè)計(jì)和應(yīng)用提供參考。
肥料;試驗(yàn);射流施肥器;吸肥量;水力性能;水肥一體化
施肥裝置是實(shí)施水肥一體化技術(shù)的重要設(shè)備,其性能的優(yōu)劣直接影響灌溉與施肥的質(zhì)量[1],常見(jiàn)的施肥裝置有壓差式施肥罐[2-4]、文丘里施肥器[5-7]、柱塞泵、隔膜泵等。其中文丘里施肥器結(jié)構(gòu)簡(jiǎn)單、價(jià)格便宜、應(yīng)用較廣,國(guó)內(nèi)學(xué)者對(duì)其吸肥性能進(jìn)行了深入研究[8-10],但文丘里施肥器存在吸肥量小、壓力損失過(guò)大的缺點(diǎn),為此近些年部分水肥一體機(jī)選用射流泵替代文丘里施肥器。射流泵工作原理與文丘里施肥器相近,是利用高速射流卷吸空氣產(chǎn)生真空負(fù)壓,從而達(dá)到吸入肥液的目的,因此又稱(chēng)為射流施肥器。
國(guó)內(nèi)外射流泵的研究工作主要包括:特定模型結(jié)構(gòu)參數(shù)與水力性能之間的關(guān)系,多數(shù)以提高效率為目標(biāo)[11-13];對(duì)模型內(nèi)部流動(dòng)機(jī)制進(jìn)行分析,主要研究空化發(fā)生機(jī)理、發(fā)展過(guò)程等[14-15];所采用的研究方法有理論推導(dǎo)[16]、試驗(yàn)手段[17-18]、數(shù)值模擬[19-21]等。目前國(guó)內(nèi)用于水肥一體化的射流施肥器結(jié)構(gòu)型號(hào)多樣、性能各異,有些產(chǎn)品無(wú)法滿(mǎn)足低壓力損失、高吸肥量的灌溉施肥要求。本文對(duì)市場(chǎng)上常見(jiàn)的8種SSQ系列射流施肥器開(kāi)展性能試驗(yàn),并利用流體力學(xué)理論,推導(dǎo)射流施肥器在開(kāi)始吸肥和最高吸肥效率時(shí)進(jìn)出口壓差與進(jìn)口壓力的關(guān)系公式,探究其關(guān)鍵結(jié)構(gòu)尺寸與水力性能之間的聯(lián)系,以期為射流施肥器的設(shè)計(jì)和應(yīng)用提供參考依據(jù)。
射流施肥器結(jié)構(gòu)如圖1a所示,主要由6部分組成:進(jìn)口、噴嘴、喉管、擴(kuò)散管、出口、吸入口。工作時(shí),有壓流體從進(jìn)口進(jìn)入射流施肥器,內(nèi)部流道截面逐漸變小,使得工作流體從噴嘴處高速射出,在噴嘴與喉管間形成低壓,被吸流體由于真空作用從儲(chǔ)肥桶吸出,與工作流體在喉管內(nèi)進(jìn)行能量和質(zhì)量傳遞,之后工作流體流速降低,被吸流體流速升高,二者速度在喉管末端趨于一致[22],最后混合流體經(jīng)擴(kuò)散管增壓后進(jìn)入有壓灌溉管網(wǎng)。
試驗(yàn)采用的8種射流施肥器均為國(guó)內(nèi)廠家生產(chǎn),有機(jī)玻璃材質(zhì),型號(hào)及關(guān)鍵尺寸如表1,實(shí)物圖見(jiàn)圖1b。進(jìn)口與出口均加工成內(nèi)螺紋,有DN15、DN20、DN25三種規(guī)格,滿(mǎn)足農(nóng)業(yè)灌溉常用的管道尺寸;肥液吸入口加工成外螺紋,有DN15和DN20兩種規(guī)格。
1.進(jìn)口 2.噴嘴 3.喉管 4.擴(kuò)散管 5.出口 6.吸入口
1.Inlet 2.Nozzle 3.Throat 4.Diffuser 5.Outlet 6.Suction
注:0、1、3、c、s分別為進(jìn)口、噴嘴、喉管、出口、吸入口的直徑,mm。
Note:0,1,3,c, andsarethe diameter of inlet, nozzle, throat, outlet and suction, mm.
圖1 SSQ系列射流施肥器
Fig.1 Jet fertilizer applicator of SSQ series
試驗(yàn)中射流施肥器的進(jìn)口壓力按照廠家給定的值設(shè)定,在0.05~0.40 MPa之間變化,以0.05 MPa遞增。通過(guò)調(diào)節(jié)閥門(mén)1、2,使進(jìn)口壓力達(dá)到設(shè)定值,進(jìn)口和出口壓力的變化范圍較大,吸入口的壓力變化在?0.01~0 MPa。當(dāng)進(jìn)口壓力一定時(shí),出口閥門(mén)2最大開(kāi)度時(shí)對(duì)應(yīng)最小出口壓力,緩慢關(guān)閉閥門(mén)2,使出口壓力逐漸增大,當(dāng)進(jìn)出口流量相等(即吸肥量為0)時(shí),得到最大壓力,如表2所示。試驗(yàn)通過(guò)調(diào)節(jié)進(jìn)口和出口壓力改變運(yùn)行工況,閥門(mén)3用于控制儲(chǔ)肥桶的水位,當(dāng)水位在3 min內(nèi)不發(fā)生變化,即認(rèn)定試驗(yàn)工況達(dá)到穩(wěn)定,記錄吸入口壓力和進(jìn)出口流量,每組試驗(yàn)重復(fù)3次。試驗(yàn)時(shí)室溫約為20 ℃;大水箱與儲(chǔ)肥桶的液面是與空氣直接接觸,系統(tǒng)采用獨(dú)立循環(huán);試驗(yàn)過(guò)程中每30 min停泵降溫,以減緩介質(zhì)在試驗(yàn)過(guò)程中的升溫。
表1 SSQ系列射流施肥器關(guān)鍵尺寸參數(shù)
注:Q0、Qs、Qc分別為進(jìn)口、吸入口和出口的流量,m3·h-1。
表2 SSQ系列射流施肥器試驗(yàn)工況
注:“—”表示該條件下不能形成吸肥。
Note: “—” indicates no suction amount under this condition.
式中0、s、c分別為進(jìn)口、吸入口、出口的壓力,Pa;0、s、c分別為進(jìn)口、吸入口、出口的流速,m/s;0、s、c分別進(jìn)口、吸入口、出口的位置水頭,m;0、s、c分別為進(jìn)口、吸入口、出口液體的容重,kg/(m2·s2);為重力加速度,m/s2;1為噴嘴出口截面積,m2;3為喉管截面積,m2。
2.1.1 進(jìn)出口壓差對(duì)吸肥量的影響
在水肥一體化技術(shù)應(yīng)用中,吸肥量是衡量射流施肥器性能的一個(gè)重要指標(biāo),進(jìn)出口壓差反映了吸肥過(guò)程中主要的壓力損失。
圖3為試驗(yàn)得到的8種射流施肥器進(jìn)出口壓差Δ與吸肥量S的關(guān)系曲線(xiàn)。根據(jù)文獻(xiàn)[23]可將流量比與壓力比關(guān)系曲線(xiàn)分為正常工作階段和極限工況階段。在正常工作階段,S隨著Δ的增大而增加,具有線(xiàn)性遞增關(guān)系。當(dāng)Δ增大到一定值時(shí),喉管入口處局部壓力接近飽和蒸汽壓力,產(chǎn)生微小的氣泡,并隨流體向下游發(fā)展,此時(shí)空化現(xiàn)象還不夠強(qiáng)烈,對(duì)裝置運(yùn)行影響較弱。隨著Δ繼續(xù)增大,射流施肥器內(nèi)的最低壓力沿喉管向下游發(fā)展,流道內(nèi)空泡越來(lái)越多,會(huì)堵塞流道致使吸肥能力不再變化,此時(shí)認(rèn)為發(fā)生了極限工況,圖3中表現(xiàn)為S隨Δ增加到最大值并保持穩(wěn)定。當(dāng)進(jìn)口壓力較小時(shí),不會(huì)發(fā)生極限工況。
圖3 不同射流施肥器進(jìn)出口壓差Δp對(duì)吸肥量QS的影響
圖3中某一進(jìn)口壓力下的S-Δ曲線(xiàn)與橫坐標(biāo)軸的交點(diǎn),可以認(rèn)為是該進(jìn)口壓力下正常工作吸肥所需的最小壓差,即臨界壓差Δmin。在設(shè)定進(jìn)口壓力下,SSQ-125的Δmin取值范圍為0.10~0.20 MPa,SSQ-130~SSQ-170的進(jìn)出口直徑和噴嘴直徑相同,Δmin取值范圍也較為一致,大約為0~0.20 MPa,而對(duì)于SSQ-200~SSQ-260,隨著進(jìn)出口直徑和噴嘴直徑變大,Δmin逐漸變小,趨向于0~0.10 MPa,并且極限工況下的S也越來(lái)越大。Δ反映裝置內(nèi)的壓力損失,表明在同等吸肥條件下,SSQ-200、SSQ-230、SSQ-260的壓力損失更小。比較進(jìn)口壓力0.40 MPa時(shí)極限工況出現(xiàn)的壓差值變化可以看出,隨著射流施肥器長(zhǎng)度的增加,進(jìn)出口壓差值越來(lái)越小,表明SSQ-260射流施肥器的壓力損失更小??傮w上,吸肥量范圍隨著施肥器長(zhǎng)度的增加而增加,在實(shí)際應(yīng)用中,可根據(jù)田間施肥要求選擇不同尺寸的施肥器。
2.1.2 進(jìn)口壓力對(duì)最大吸肥量的影響
射流施肥器在正常工作階段和極限工況階段表現(xiàn)出不同的吸肥性能,通常使用開(kāi)始吸肥時(shí)和吸肥量最大這2個(gè)工況點(diǎn)對(duì)總體性能進(jìn)行評(píng)價(jià)和分析[10,24]。在正常工作階段,用開(kāi)始吸肥時(shí)的進(jìn)出口壓差反映裝置內(nèi)的壓力損失,此時(shí)的壓差和進(jìn)口流量即為臨界壓差Δmin和臨界流量0min。最大壓差Δmax指在進(jìn)口壓力一定時(shí)所能調(diào)節(jié)得到的最小出口壓力,對(duì)應(yīng)的吸肥量為最大吸肥量smax。需要指出的是,當(dāng)進(jìn)口壓力較小時(shí),不一定發(fā)生極限工況,因此smax與極限工況不存在必然關(guān)系。smax與裝置結(jié)構(gòu)(型號(hào))有關(guān),同時(shí)也與進(jìn)口壓力有關(guān)。
圖4是8種射流施肥器的最大吸肥量smax與進(jìn)口壓力0關(guān)系??梢钥闯?,隨著0增加,smax逐漸升高,從圖3也可以看出,8種射流施肥器在進(jìn)口壓力較小的條件下都處于正常工作階段,此時(shí)射流施肥器的性能并未完全發(fā)揮。當(dāng)0大于0.20 MPa時(shí),各型號(hào)射流施肥器的smax均達(dá)到一個(gè)相對(duì)穩(wěn)定的值,不再發(fā)生變化,表明此時(shí)能充分發(fā)揮該系列射流施肥器的吸肥性能。
圖4 不同射流施肥器進(jìn)口壓力p0對(duì)最大吸肥量Qsmax的影響
若施肥器在最大吸肥量的工況下運(yùn)行,可以選擇較小的進(jìn)口壓力;如果在較大的進(jìn)口壓力下運(yùn)行,射流施肥器出現(xiàn)空化會(huì)產(chǎn)生較大的水力損失。8種射流施肥器的最大吸肥量均隨著施肥器長(zhǎng)度的增加而升高,其中SSQ-130~SSQ-170的吸肥量基本一致,主要是因?yàn)樯淞魇┓势鞯拿娣e比和進(jìn)出口尺寸一致。SSQ-160和SSQ-200進(jìn)出口尺寸一致,面積比不同,后者比前者的吸肥量大,表明面積比會(huì)影響最大吸肥量。
進(jìn)出口壓差是評(píng)價(jià)SSQ系列射流施肥器水力性能的重要指標(biāo),反映了流體從進(jìn)口到出口的壓力損失。試驗(yàn)表明,在某個(gè)階段,如開(kāi)始吸肥、效率最高或者吸肥量最大時(shí),壓差與進(jìn)口壓力存在線(xiàn)性關(guān)系。
試驗(yàn)通過(guò)調(diào)節(jié)進(jìn)口、出口的壓力改變工況條件,得到相應(yīng)的吸肥量、壓差等參數(shù)。在以往的研究中[10,24],壓差與吸肥量、壓差與進(jìn)口壓力等參數(shù)之間的回歸模型較為常見(jiàn),但很少對(duì)回歸模型系數(shù)含義進(jìn)行探討分析,也未能將系數(shù)與結(jié)構(gòu)尺寸聯(lián)系起來(lái)。為此,本文根據(jù)流體力學(xué)基本理論推導(dǎo)得出基于關(guān)鍵結(jié)構(gòu)參數(shù)的進(jìn)出口壓差與進(jìn)口壓力的關(guān)系公式,并明確各系數(shù)的物理含義。
為簡(jiǎn)化計(jì)算,忽略各種水力損失的影響,認(rèn)為儲(chǔ)肥桶液面無(wú)限大且施肥器整個(gè)吸入腔(噴嘴與喉管之間部分)的壓力保持s,s的取值相對(duì)0很小,且變化范圍也較小。根據(jù)工作流體在進(jìn)口和噴嘴出口斷面的伯努利方程得到進(jìn)口流量0,吸入流量s用和0的關(guān)系表示,出口流量c為0與s之和。其中,0、進(jìn)口流速0和出口流速c分別為
式中0為進(jìn)口斷面直徑,m;c為出口斷面直徑,m;1為噴嘴出口斷面直徑,m;循環(huán)管路中的工作流體和被吸流體為相同介質(zhì),容重均用表示,kg/(m2·s2)。
在正常工作階段,射流施肥器的基本性能方程[25]為
為了得到進(jìn)出口壓差與進(jìn)口壓力的關(guān)系,聯(lián)立式(2)和(9)進(jìn)行簡(jiǎn)化得到式(11),用系數(shù)h表示式(11)的右邊部分。
上式以施肥器管軸線(xiàn)作為基準(zhǔn)面,下標(biāo)0取進(jìn)口斷面,s取吸入口斷面,c取出口斷面。為了減少公式中的參數(shù),選擇儲(chǔ)肥桶的穩(wěn)定液面作為計(jì)算斷面,根據(jù)對(duì)儲(chǔ)肥桶液面無(wú)限大的假設(shè),認(rèn)為儲(chǔ)肥桶液面的壓力和流速取值為0,試驗(yàn)中儲(chǔ)肥桶液面與施肥器管軸線(xiàn)垂直高差Δ為0.50 m,則式(11)可簡(jiǎn)化為
整理可得
從式(13)可以看出,右側(cè)分別由壓力勢(shì)能、重力勢(shì)能、動(dòng)能3項(xiàng)組成。h為一定流量比時(shí)出口與進(jìn)口的壓力比值,取值在0~1之間。若壓差的計(jì)量單位為MPa,則重力勢(shì)能項(xiàng)最大為0.00489 MPa。將式(7)~(8)代入式(13)得到進(jìn)出口壓差與進(jìn)口壓力的關(guān)系
式(14)可寫(xiě)為一般形式0?c=t0+t。其中,t為進(jìn)出口壓差與進(jìn)口壓力關(guān)系公式的斜率,用于描述射流施肥器在工作過(guò)程中的壓力損失。截距t隨著工況選取的不同而發(fā)生變化,式(13)中的重力勢(shì)能項(xiàng)和動(dòng)能項(xiàng)都可歸入到t中,利用試驗(yàn)數(shù)據(jù)可以初步估算重力勢(shì)能和動(dòng)能2項(xiàng)數(shù)值較小,表明t的比重較小。根據(jù)式(14),斜率t和截距t分別為
由式(9)推導(dǎo)得到的式(14)只適用于空化強(qiáng)度較弱的正常工作階段,極限工況的情況還需進(jìn)一步研究。
2.2.1 進(jìn)口壓力對(duì)臨界壓差的影響
圖5為試驗(yàn)的8種射流施肥器臨界壓差Δmin與進(jìn)口壓力0的關(guān)系圖,可以看出,Δmin與0呈線(xiàn)性正相關(guān)。相同進(jìn)口壓力下,SSQ-125的臨界壓差值最大,SSQ-260的臨界壓差值最小,而SSQ-130~SSQ-170的臨界壓差值很接近。
表3 臨界壓差與進(jìn)口壓力的關(guān)系公式系數(shù)與回歸模型對(duì)比
注:h為一定流量比時(shí)出口與進(jìn)口的壓力比值,取值0~1。
Note:his the pressure ratio between the outlet and the inlet at a certain flow ratio, with a value of 0-1.
2.2.2 最高效率時(shí)進(jìn)口壓力對(duì)壓差的影響
效率是評(píng)價(jià)射流施肥器的重要性能參數(shù),圖6為射流施肥器最高效率時(shí)進(jìn)出口壓差Δpmax與進(jìn)口壓力0的關(guān)系曲線(xiàn),可以發(fā)現(xiàn)壓差與進(jìn)口壓力呈正相關(guān),壓差隨著施肥器長(zhǎng)度的增加而逐漸降低。
圖6 不同射流施肥器最高效率時(shí)進(jìn)口壓力p0對(duì)壓差Δpηmax的影響
表4 最高效率時(shí)壓差與進(jìn)口壓力的關(guān)系公式系數(shù)與回歸模型系數(shù)對(duì)比
圖7 不同射流施肥器進(jìn)口壓力p0對(duì)最大壓差Δpmax的影響
2.2.3 進(jìn)口壓力對(duì)最大壓差的影響
圖7表明8種射流施肥器的最大壓差Δmax隨著進(jìn)口壓力0的增大而逐漸增大,呈現(xiàn)一定的線(xiàn)性關(guān)系。進(jìn)口壓力保持不變,SSQ-260的最大壓差值最小,而其他7種施肥器基本接近;同時(shí)SSQ-260線(xiàn)性回歸模型的斜率也最小。
本文對(duì)8種國(guó)內(nèi)生產(chǎn)的SSQ系列射流施肥器進(jìn)行了試驗(yàn),分析了射流施肥器在吸肥量、壓差之間的差異以及結(jié)構(gòu)參數(shù)對(duì)水力性能的影響,得到以下主要結(jié)論:
1)當(dāng)射流施肥器處于正常工作階段時(shí),吸肥量與進(jìn)出口壓差呈正相關(guān)。由于空化作用的影響,吸肥量在極限工況階段達(dá)到最大。
2)進(jìn)口壓力超過(guò)0.20 MPa以后,射流施肥器才可能充分發(fā)揮其吸肥性能。8種施肥器的吸肥量范圍隨著施肥器長(zhǎng)度的增加而增大;當(dāng)施肥器的面積比相同時(shí),最大吸肥量也相同。
3)由基本性能方程和壓力比的計(jì)算公式推導(dǎo)得到進(jìn)出口壓差與進(jìn)口壓力的關(guān)系公式,關(guān)系公式斜率代表吸肥時(shí)的壓力損失,主要受施肥器的面積比影響?;拘阅芊匠痰木€(xiàn)性假設(shè)使關(guān)系公式適用于開(kāi)始吸肥和效率最高時(shí)的特定工況。
本文研究結(jié)果可為SSQ系列射流施肥器結(jié)構(gòu)優(yōu)化及應(yīng)用選型提供技術(shù)支持。在進(jìn)出口壓差與進(jìn)口壓力的關(guān)系公式推導(dǎo)過(guò)程中,為簡(jiǎn)化計(jì)算忽略了水力損失的影響,也未對(duì)SSQ系列射流施肥器極限工況階段時(shí)壓差和進(jìn)口壓力的關(guān)系開(kāi)展進(jìn)一步的理論推導(dǎo),后續(xù)可以完善進(jìn)出口壓差與進(jìn)口壓力的關(guān)系公式,為同類(lèi)產(chǎn)品的設(shè)計(jì)和應(yīng)用提供指導(dǎo)。
[1] 韓啟彪,馮紹元,黃修橋,等. 我國(guó)節(jié)水灌溉施肥裝置研究現(xiàn)狀[J]. 節(jié)水灌溉,2014(12):76-79,83.
Han Qibiao, Feng Shaoyuan, Huang Xiuqiao, et al. Research on fertilizer injection units in saving-water irrigation in China[J]. Water Saving Irrigation, 2014(12): 76-79, 83. (in Chinese with English abstract)
[2] 胡昕宇,嚴(yán)海軍,陳鑫. 基于壓差式施肥罐的均勻施肥方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):119-127.
Hu Xinyu, Yan Haijun, Chen Xin. Uniform fertilization method based on differential pressure tank[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 119-127. (in Chinese with English abstract)
[3] 孟一斌,李久生,李蓓. 微灌系統(tǒng)壓差式施肥罐施肥性能試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(3):41-45.
Meng Yibin, Li Jiusheng, Li Bei. Fertilization performance of the pressure differential tank in micro-irrigation system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 41-45. (in Chinese with English abstract)
[4] 范軍亮,張富倉(cāng),吳立峰,等. 滴灌壓差施肥系統(tǒng)灌水與施肥均勻性綜合評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):96-101.
Fan Junliang, Zhang Fucang, Wu Lifeng, et al. Field evaluation of fertigation uniformity in drip irrigation system with pressure differential tank[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 96-101. (in Chinese with English abstract)
[5] 張建闊,李加念,吳昊,等基于雙吸肥口的低壓文丘里施肥器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):115-121.
Zhang Jiankuo, Li Jianian, Wu Hao, et al. Design and experiment of low pressure Venturi injector based on double fertilizer inlets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 115-121. (in Chinese with English abstract)
[6] 王淼,黃興法,李光永. 文丘里施肥器性能數(shù)值模擬研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(7):27-31.
Wang Miao, Huang Xingfa, Li Guangyong. Numerical simulation of characteristics of Venturi Injector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 27-31. (in Chinese with English abstract)
[7] Xu Yuncheng, Chen Yan, Wang Zijun, et al. Investigation of the cavitation fluctuation characteristics in a Venturi injector[J]. Fluid Dynamics Research, 2015, 47(2): 025506.
[8] 嚴(yán)海軍,陳燕,初曉一,等. 文丘里施肥器結(jié)構(gòu)參數(shù)優(yōu)化對(duì)吸肥性能的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2013,31(2):162-166,179.
Yan Haijun, Chen Yan, Chu Xiaoyi, et al. Influence of optimization of structural parameters on injection performance of Venturi injector[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(2): 162-166, 179. (in Chinese with English abstract)
[9] 周良富,金永奎,薛新宇. 電磁閥開(kāi)關(guān)模式下文丘里施肥器吸肥特性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):277-284.
Zhou Liangfu, Jin Yongkui, Xue Xinyu. Suction characteristics of venturi injector in solenoid valve switch ON&OFF mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 277-284. (in Chinese with English abstract)
[10] 王海濤,陳晏育,王建東,等. 微灌用文丘里施肥器綜合性能試驗(yàn)研究[J]. 排灌機(jī)械工程學(xué)報(bào),2018,36(4):340-346, 353.
Wang Haitao, Chen Yanyu, Wang Jiandong, et al. Experimental study on comprehensive working performance of Venturi injector[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(4): 340-346, 353. (in Chinese with English abstract)
[11] 龍新平,朱勁木,梁愛(ài)國(guó),等. 射流泵喉管最優(yōu)長(zhǎng)度的數(shù)值計(jì)算[J]. 水利學(xué)報(bào),2003,34(10):14-18.
Long Xinping, Zhu Jinmu, Liang Aiguo, et al. Numerical calculation of optimal length of throat pipe in jet pump[J]. Journal of Hydraulic Engineering, 2003, 34(10): 14-18. (in Chinese with English abstract)
[12] Mallela R, Chatterjee D. Numerical investigation of the effect of geometry on the performance of a jet pump[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(7): 1614-1625.
[13] 趙陽(yáng),陳云良,王曉東,等. 中心喉嘴距對(duì)復(fù)合射流泵性能影響的數(shù)值模擬[J]. 水利水電技術(shù),2019,50(9):120-126.
Zhao Yang, Chen Yunliang, Wang Xiaodong, et al. Numerical simulation on influence of central nozzle-to-throat clearance on performance of compound jet pump[J]. Water Resources and Hydropower Engineering, 2019, 50(9): 120-126. (in Chinese with English abstract)
[14] Long Xinping, Wang Qingqing, Xiao Longzhou, et al. Numerical analysis of bubble dynamics in the diffuser of a jet pump under variable ambient pressure[J]. Journal of Hydrodynamics, 2017, 29(3): 510-519
[15] Liu Meng, Zhou Lingjiu, Wang Zhengwei. Numerical investigation of the cavitation instability in a central jet pump with a large area ratio at normal cavitating conditions[J]. International Journal of Multiphase Flow, 2019, 116: 153-163.
[16] 王常斌,林建忠,石興. 射流泵最佳參數(shù)的確定方法[J]. 流體機(jī)械,2004,32(9):21-25.
Wang Changbin, Lin Jianzhong, Shi Xing. Method of optimal parameter ascertainment of jet pump[J]. Fluid Machinery, 2004, 32(9): 21-25. (in Chinese with English abstract)
[17] Long Xingpin, Wang Jiong, Zhang Junqiang, et al. Experimental investigation of the cavitation characteristics of jet pump cavitation reactors with special emphasis on negative flow ratios[J]. Experimental Thermal and Fluid Science, 2018, 96: 33-42.
[18] Florean F G, Petcu A C, Porumbel I, et al. PIV measurements in low noise optimized air jet pump demonstrators[J]. International Journal of Energy, 2016, 10: 33-43.
[19] 何培杰,呂俊賢,龍新平,等. 噴射泵內(nèi)部流動(dòng)數(shù)值分析[J]. 核動(dòng)力工程,2005,26(2):135-139.
He Peijie, Lu Junxian, Long Xinping, et al. Numerical analysis on flows in jet pumps[J]. Nuclear Power Engineering, 2005, 26(2): 135-139. (in Chinese with English abstract)
[20] Xu Maosen, Yang Xuelong, Long Xinping, et al. Large eddy simulation of turbulent flow structure and characteristics in an annular jet pump[J]. Journal of Hydrodynamics, 2017, 29(4): 702-715.
[21] Xu Maosen, Yang Xuelong, Long Xinping, et al. Numerical investigation of turbulent flow coherent structures in annular jet pumps using the LES method[J]. Science China Technological Sciences, 2018, 61(1): 86-97.
[22] 陸宏圻. 射流泵技術(shù)的理論及應(yīng)用[M]. 北京:水利電力出版社,1989.
[23] Long Xinping, Zhang Junqiang, Wang Qingqing, et al. Experimental investigation on the performance of jet pump cavitation reactor at different area[J]. Experimental Thermal and Fluid Science, 2015, 63: 74-83.
[24] 嚴(yán)海軍,初曉一,王敏,等. 微灌系統(tǒng)文丘里施肥器吸肥性能試驗(yàn)[J]. 排灌機(jī)械工程學(xué)報(bào),2010,28(3):251-255,263.
Yan Haijun, Chu Xiaoyi, Wang Min, et al. Injection performance of Venturi injector in micro-irrigation system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(3): 251-255, 263. (in Chinese with English abstract)
[25] 朱勁木,梁愛(ài)國(guó),龍新平. 射流泵性能的數(shù)值計(jì)算[J]. 武漢大學(xué)學(xué)報(bào):工學(xué)版,2002,35(6):7-10,15.
Zhu Jinmu, Liang Aiguo, Long Xinping. Numerical calculation of performance of jet pump[J]. Engineering Journal of Wuhan University: Engineering Edition, 2002, 35(6): 7-10, 15. (in Chinese with English abstract)
Experimental research of hydraulic performance on jet fertilizer applicator of SSQ series
Wang Xiaoshan, Yan Haijun, Zhou Lingjiu, Xu Yuncheng※
(,100083,)
Fertilizer device is essential to the precision fertigation technology. Most fertilizer equipment includes the pressuretanks, plunger pump of fertigation, Venturi injector, and self-pressure fertilizer device. A jet pump is widely used in theindustrial and agricultural production, because of its simple structure, and convenient operation without an external power. In the integration technology of water and fertilizer, the jet pump can serve as the function of Venturi injector. However, some jetfertilizer applicators with various types and sizes cannot meet the irrigation requirements of small pressure loss and large suction amount. In this study, 8 jet fertilizer applicators of SSQ series were tested according to the fertilization requirements of agricultural irrigationsystem, and subsequently their hydraulic performances were evaluated using the suction amount, and the pressuredifference between inlet and outlet. In terms of pressure difference, the working condition of a jet fertilizer applicator can be divided into 3 stages, including the no-injection, normal, and extreme stage. The results show that the suction amount of a jet fertilizer applicator increased with the increasing of pressure difference during the normal stage. The cavitation occurred, and the suction amount reached the maximum during the extreme stage. The 8 jet fertilizer applicators were achieved the optimal performance of injection, if the inlet pressure was higher than 0.20 MPa, where the maximum suction amount was found to be related to thecross-sectional area ratio of nozzle and throat. During the normal stage, the pressure difference of starting to inject or of themaximum efficiency was in positively linear relation with the inlet pressure. A theoretical linear equation with structural parameters was proposed to predict the relationship between pressure difference and inlet pressure, starting to inject, and the maximum efficiency, where most data derived from basic performance equation and pressure ratio, without considering theintercept. The slope mainly depended on the area ratio, and thereby it can be strongly related to the difference of pressure loss. In each inlet pressure, the maximum difference of pressure varied linearly with the increase of inlet pressure, where as, the cavitation was result in the large flow resistance during the extreme stage. The slope error of starting to inject was less than15%, and the average relative slope error of the maximum efficiency was 17% between regression model and relation formula, indicating that the relation formula had a good agreement with the experimental data. The prediction on thehydraulic performance of a jet fertilizer applicator can provide a sound theoretical basis for the design and application. Nevertheless, there were some assumptions when deriving this formula. It was assumed that the pressure was the same everywhere in thechamber between nozzle and throat. It also ignored the head loss in terms of the length of throat portion and diffuser portion. The derived relation formulas can be further improved in thefuture by considering the influences of extreme stage orcavitation.
fertilizers; experiments; jet fertilizer applicator; suction amount; hydraulic performance; integration of water and fertilizers
汪小珊,嚴(yán)海軍,周凌九,等. SSQ系列射流施肥器水力性能試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):31-38. doi:10.11975/j.issn.1002-6819.2020.21.004 http://www.tcsae.org
Wang Xiaoshan, Yan Haijun, Zhou Lingjiu, et al. Experimental research of hydraulic performance on jet fertilizer applicator of SSQ series[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 31-38. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.004 http://www.tcsae.org
2020-07-09
2020-08-03
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0201502)
汪小珊,博士生,研究方向:灌溉施肥設(shè)備及水動(dòng)力學(xué)研究。Email:wangxiaoshan1019@163.com
徐云成,博士,講師,主要從事流體機(jī)械及水動(dòng)力學(xué)研究。Email:ycxu@cau.edu.cn
10.11975/j.issn.1002-6819.2020.21.004
S147.2
A
1002-6819(2020)-21-0031-08