李佳 鄧鈞尹 周偉 孫麗英
摘要:采用靜態(tài)暗箱-氣相色譜法評(píng)估氮肥分別配施生物炭和硝化抑制劑對(duì)菜地生態(tài)系統(tǒng)綜合溫室效應(yīng)(GWP)和溫室氣體排放強(qiáng)度(GHGI)的影響。共設(shè)置3個(gè)田間處理:尿素(U)、尿素配施生物炭(UB)和尿素配施硝化抑制劑雙氰胺(UDCD)。結(jié)果表明:與U處理相比,UDCD處理分別顯著降低了N2O排放通量和GWP的27.1%(P<0.05)和29.1%(P<0.05),而對(duì)CH4排放通量、蔬菜產(chǎn)量以及GHGI并沒(méi)有顯著影響。與U處理相比,UB處理對(duì)N2O排放通量、GWP和GHGI并無(wú)顯著影響。與UB處理相比,UDCD處理分別顯著降低了N2O排放通量和GWP的28.3%(P<0.05)和29.1%(P<0.05)。綜合對(duì)比3種施肥方式的GWP和GHGI,發(fā)現(xiàn)氮肥配施硝化抑制劑DCD可以顯著減少氮肥對(duì)環(huán)境的影響,因此在菜地可推薦使用尿素配施硝化抑制劑雙氰胺(UDCD)施肥方案。
關(guān)鍵字:生物炭;硝化抑制劑;CH4;N2O;菜地;綜合溫室效應(yīng)
中圖分類號(hào):S181文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1000-4440(2020)05-1205-07
Abstract:Static opaque chamber-gas chromatography method was used to study the effects of nitrogen fertilizer combined with biochar and nitrification inhibitor respectively, on the global warming potential (GWP) and greenhouse gas intensity (GHGI) of ecosystem in vegetable field. Three following field treatments were set up: urea (U), urea combined with biochar (UB) and urea combined with nitrification inhibitor dicyandiamide (UDCD). The results showed that compared with U treatment, UDCD treatment significantly decreased the N2O emission flux and GWP by 27.1% (P<0.05) and 29.1% (P<0.05) respectively, but there were no significant effects on CH4 emission flux, vegetable yield and GHGI. Compared with U treatment, UB treatment had no significant effects on N2O emission flux, GWP and GHGI. Compared with UB treatment, UDCD treatment significantly decreased N2O emission flux and GWP by 28.3% (P<0.05) and 29.1% (P<0.05), respectively. The nitrogen fertilizer combined with DCD is recommended for reducing the effect of nitrogen fertilizer on environment significantly by comprehensive comparison of GWP and GHGI under three fertilization modes. Therefore, the UDCD fertilizing scheme is recommend in vegetable field.
Key words:biochar;nitrification inhibitor;methane;nitrous oxide;vegetable field;global warming potential
蔬菜地是一種特殊的農(nóng)業(yè)生態(tài)系統(tǒng),與其他大田作物相比,蔬菜生產(chǎn)集約化程度高、復(fù)種指數(shù)高、氮肥用量遠(yuǎn)超于推薦施肥量,導(dǎo)致氮肥利用率越來(lái)越低,N2O和CH4大量排放[1]。而N2O和CH4是兩種重要的農(nóng)業(yè)源溫室氣體。據(jù)聯(lián)合國(guó)氣候變化政府間專家委員會(huì)(IPCC)報(bào)告,在過(guò)去的200年里,大氣N2O和CH4質(zhì)量濃度分別由西方工業(yè)化之前的270.9 μg/L和0.73 mg/L,增加到2005年的325.1 μg/L和1.82 mg/L,預(yù)計(jì)今后仍將呈線性增長(zhǎng)[2]。在100年時(shí)間尺度上,N2O和CH4的增溫潛勢(shì)分別是CO2的298和34倍。據(jù)Wang等估算,中國(guó)菜地施肥引起的直接N2O排放量為66.95 Gg N,約占中國(guó)農(nóng)田總直接N2O排放量的21.4%[3]。因此,尋找切實(shí)可行的減排措施減緩菜地溫室氣體的排放具有重要的意義且十分迫切。
近年來(lái),大量研究結(jié)果表明生物炭和硝化抑制劑對(duì)農(nóng)業(yè)增產(chǎn)減排的效果顯著[4-5]。生物炭是指生物質(zhì)在限氧條件下通過(guò)熱裂解方法制備而成的一種富含孔隙結(jié)構(gòu)、含碳量高、碳穩(wěn)定性強(qiáng)的一種非純凈碳的混合物。生物炭施入到土壤中能改善土壤質(zhì)量,降低土壤溫室氣體排放,提高作物產(chǎn)量[6-7]。據(jù)Cayuela等報(bào)道,生物炭的施用可以平均降低54%的農(nóng)業(yè)生態(tài)系統(tǒng)N2O的排放。因此,農(nóng)田施用生物炭可以作為農(nóng)業(yè)增產(chǎn)減排的一個(gè)新途徑[8]。硝化抑制劑能抑制土壤中的硝化作用,從而減少氮肥的損失,提高氮肥利用率而增加作物產(chǎn)量,同時(shí)能減緩溫室氣體的排放[9]。目前,國(guó)內(nèi)外對(duì)蔬菜地溫室氣體排放的研究較多,通常認(rèn)為添加生物炭與硝化抑制劑能減緩N2O的排放[10-12]。因此,生物炭和硝化抑制劑都是目前農(nóng)業(yè)上廣泛使用的用來(lái)增加作物產(chǎn)量、固碳減排的有效措施。但是,同時(shí)對(duì)比研究生物炭與硝化抑制劑對(duì)菜地溫室效應(yīng)的影響的研究較少。因此,本研究將探討氮肥分別配施生物炭和硝化抑制劑條件下菜地N2O、CH4的排放特征以及對(duì)蔬菜產(chǎn)量的影響。以期為菜地生態(tài)系統(tǒng)增產(chǎn)減排提供理論依據(jù)。
1材料與方法
1.1試驗(yàn)設(shè)計(jì)
田間試驗(yàn)于2018年6月在江蘇省南京市浦口區(qū)浦浩生態(tài)園(32°14′N,118°41′E)進(jìn)行,該區(qū)域?qū)儆诘湫偷膩啛釒Ъ撅L(fēng)氣候。該地塊已有5年多的集約化蔬菜種植歷史。表層土壤(0~15 cm)的基本性質(zhì)為:pH 6.5,總氮含量1.4 g/kg,土壤有機(jī)碳含量24.1 g/kg。試驗(yàn)中所用的生物炭由水稻秸稈在550~650 ℃裂解而成,基本性質(zhì)為:總碳含量462.2 g/kg,總氮含量7.2 g/kg,碳氮比64.2,pH 6.5,表面積11.5 m2/g。雙氰胺(DCD),作為一種硝化抑制劑,與氮肥混合施用能降低農(nóng)田溫室氣體的排放并提高氮肥利用率,因此廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn)中。
試驗(yàn)共設(shè)置3個(gè)處理,每個(gè)處理3個(gè)重復(fù)。3個(gè)處理分別為僅施尿素(U)、尿素配施生物炭(UB)、尿素配施硝化抑制劑雙氰胺(UDCD)。所有處理中施肥水平一致,根據(jù)當(dāng)?shù)爻R?guī)施肥水平確定,即氮肥(以N計(jì))施入量為200 kg/hm2,磷肥(以P2O5計(jì))施入量為200 kg /hm2,鉀肥(以K2O計(jì))施入量為200 kg/hm2。生物炭的施用量為30 t/hm2。硝化抑制劑DCD按常規(guī)施氮量5%的比例與尿素混勻。在播種之前,將氮肥、磷肥、鉀肥和生物炭施入到土壤中,并翻耕使其混合均勻。試驗(yàn)期間共種植一茬不結(jié)球白菜,于2018年6月10日播種,2018年7月21日收獲,蔬菜生長(zhǎng)期間不追肥。在整個(gè)試驗(yàn)期間,其他管理措施都按照當(dāng)?shù)爻R?guī)進(jìn)行。
1.2樣品采集與分析
采用靜態(tài)暗箱-氣相色譜法測(cè)定菜地土壤N2O和CH4的排放通量。采樣箱和采樣底座均由PVC材料制成,采樣箱長(zhǎng)、寬、高分別為45 cm、45 cm、50 cm。在試驗(yàn)開(kāi)始之前,將方形的采樣箱底座安裝在各個(gè)小區(qū)中,采樣時(shí),將采樣箱扣在采樣箱底座上,用水密封。采樣時(shí)間為上午8∶00-10∶00,扣上采樣箱之后,于0 min、10 min、20 min、30 min分別用20 ml的針筒收集4針氣體樣品,然后將樣品帶回實(shí)驗(yàn)室,在12 h之內(nèi)用氣相色譜儀(安捷倫7890 B)分析N2O和CH4濃度。采樣頻率一般為每7 d 1次,施肥之后每隔1 d收集1次樣品,持續(xù)7 d。氣相色譜儀測(cè)定樣品中N2O和CH4的檢測(cè)器分別為電子捕獲檢測(cè)器(ECD)和氫火焰離子化檢測(cè)器(FID)。
每次采集氣體樣品時(shí),同時(shí)采集耕層土壤(0~15 cm)樣品,儲(chǔ)存于-4 ℃冰箱,用來(lái)測(cè)定土壤銨態(tài)氮(NH+4-N)、硝態(tài)氮(NO-3-N)含量。NH+4-N和NO-3-N含量分別采用靛酚藍(lán)比色法和雙波長(zhǎng)紫外分光光度計(jì)法測(cè)定。蔬菜收獲之后,直接稱量新鮮的地上部分,獲得每個(gè)小區(qū)的蔬菜產(chǎn)量。
1.3數(shù)據(jù)處理與分析方法
N2O、CH4排放通量計(jì)算公式如下:F=ρ×V/A×dC/dt×273/(273+T)。式中,F(xiàn)為N2O-N或CH4-C排放通量,單位為μg/(m2·h)或mg/(m2·h);ρ為標(biāo)準(zhǔn)狀態(tài)下N2O-N和CH4-C的質(zhì)量濃度,分別為1.25 g/L和0.54 g/L;V為采樣箱體積,m3;A為采樣箱底面積,m2;dC/dt為N2O或CH4的排放速率,單位為nl/(L·h)或μl/(L·h);T為采樣時(shí)箱內(nèi)平均溫度,℃。用每個(gè)處理的3個(gè)重復(fù)的平均值表示N2O和CH4的排放通量。
利用菜地N2O和CH4的增溫潛勢(shì)之和來(lái)計(jì)算菜地的綜合溫室效應(yīng)(GWP,t/hm2,以CO2計(jì))。在100年時(shí)間尺度上,N2O和CH4的增溫潛勢(shì)分別是CO2的298和34倍[2],GWP(t/hm2)計(jì)算公式如下:GWP=298×GWP(N2O)+34×GWP(CH4)。溫室氣體排放強(qiáng)度(GHGI,t/t,以CO2計(jì))是指單位產(chǎn)量的綜合溫室效應(yīng)。計(jì)算公式如下:GHGI=GWP/產(chǎn)量,式中產(chǎn)量單位為t/hm2。
采用Microsoft Excel 2013和OriginPro 8.5軟件進(jìn)行圖表制作。采用JMP 9.0軟件進(jìn)行多重比較分析(Students)。采用Pearsons法分析無(wú)機(jī)態(tài)氮(NH+4-N和NO-3-N)與N2O和CH4排放通量之間的相關(guān)性。
2結(jié)果與分析
2.1生物炭與硝化抑制劑DCD對(duì)N2O排放的影響
由圖1可知,在整個(gè)蔬菜生長(zhǎng)季,各處理的N2O排放通量的變化趨勢(shì)一致。所有處理都在施肥后第5 d出現(xiàn)N2O排放通量最大峰值,然后快速下降,之后各處理N2O排放通量均保持在較低水平。UB、U、UDCD處理的N2O排放通量的最大峰值由高到低分別為2 781.66 μg/(m2·h)、2 447.89 μg/(m2·h)、1 751.04 μg/(m2·h)。
整個(gè)蔬菜生長(zhǎng)期,UB、U、UDCD處理的N2O累積排放量分別為4.64 kg/hm2、4.56 kg/hm2、3.33 kg/hm2(表1)。與U處理相比,UB處理增加了1.9%的N2O累積排放量(P>0.05),而UDCD處理顯著降低了27.0%的N2O累積排放量(P<0.05)。與UB處理相比,UDCD處理顯著降低了28.3%的N2O累積排放量(P<0.05)。
2.2生物炭與硝化抑制劑DCD對(duì)CH4排放的影響
由圖2可知,整個(gè)觀測(cè)期間,CH4的排放通量變化較平穩(wěn)。UB處理在施肥第7 d出現(xiàn)CH4排放峰,峰值為0.14 μg/(m2·h),其他處理則無(wú)明顯CH4排放峰。而UB處理的CH4平均排放通量高于其他兩個(gè)處理。U、UDCD處理的CH4排放總量均為0.13 kg/hm2,而UB處理高達(dá)0.45 kg/hm2。UB處理的CH4排放通量高于U、UDCD處理CH4排放量,但無(wú)顯著差異(P>0.05)。
2.3菜地CH4排放與土壤NH+4-N、NO-3-N含量的相關(guān)性
參考文獻(xiàn):
[1]紀(jì)夢(mèng)夢(mèng),吳曉剛,吳欣欣,等. 過(guò)量施肥對(duì)設(shè)施菜田土壤菌群結(jié)構(gòu)及N2O產(chǎn)生的影響[J]. 微生物學(xué)通報(bào), 2018, 45(6): 1452-1459.
[2]Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: the physical science basis[R]. Cambridge: Cambridge University Press, 2013.
[3]WANG J Y, XIONG Z Q, YAN X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China [J]. Atmospheric Environment, 2011, 45: 6923-6929.
[4]李博,李巧玲,范長(zhǎng)華,等. 施用生物炭與硝化抑制劑對(duì)菜地綜合溫室效應(yīng)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(9): 2651-2657.
[5]易瓊,逄玉萬(wàn),張木,等. 不同施肥模式下硝化抑制劑DCD與生物炭對(duì)菜地N2O排放和土壤特性的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 2017, 26(8):1336-1341.
[6]ZHANG A F, CHENG G, QAISER H, et al. Contrasting effects of straw and straw-derived biochar application on net global warming potential in the Loess Plateau of China [J]. Field Crops Research, 2017, 205: 45-54.
[7]陳晨,許欣,畢智超,等.生物炭和有機(jī)肥對(duì)菜地土壤N2O排放及硝化、反硝化微生物功能基因豐度的影響[J]. 環(huán)境科學(xué)學(xué)報(bào), 2017, 37(5): 1912-1920.
[8]CAYUELA M L, VAN ZWIETEN L, SINGH B P, et al. Biochars role in mitigating soil nitrous oxide emissions: a review and meta-analysis [J]. Agriculture Ecosystems and Environment, 2014, 191: 5-16.
[9]GUO Y J, DI H J, CAMERON K C, et al. Effect of 7-year application of a nitrification inhibitor, dicyandiamide (DCD), on soil microbial biomass, protease and deaminase activities, and the abundance of bacteria and archaea in pasture soils[J]. Journal of Soils and Sediments, 2013, 13(4): 753-759.
[10]DI T, ZHANG Y Y, ZHOU Y Z, et al. Effect of nitrification inhibitors on mitigating N2O and NO emissions from an agricultural field under drip fertigation in the North China Plain [J]. Science of the Total Environment, 2017, 598: 87-96.
[11]HUSSAIN M, FAROOQ M, NAWAZ A, et al. Biochar for crop production: potential benefits and risks [J]. Journal of Soils and Sediments, 2017, 17(3): 685-716.
[12]KONG X, ERIKSEN J, PETERSEN S. Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) for mitigating soil N2O emissions after grassland cultivation [J]. Agriculture Ecosystems and Environment, 2018, 259: 174-183.
[13]MAUCIERI C, ZhANG Y, MCDANIEL M D, et al. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting [J]. Geoderma, 2017, 307: 267-276.
[14]ZHANG A, CUI L, PAN G, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice Paddy from Tai Lake Plain, China [J]. Agriculture Ecosystems and Environment, 2010, 139: 469-475.
[15]CASE S D C, MCNAMARA N P, REAY D S, et al. Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? [J]. GCB Bioenergy, 2014, 6: 76-89.
[16]熊舞,夏永秋,周偉,等. 菜地氮肥用量與N2O排放的關(guān)系及硝化抑制劑效果[J]. 土壤學(xué)報(bào), 2013, 50(4):743-751.
[17]FRIEDL J, SCHEER C, ROWLINGS D W, et al. The nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) reduces N2 emissions from intensively managed pastures in subtropical Australia [J]. Soil Biology Biochemistry, 2017, 108:55-64.
[18]ASING J, SAGGAR S, SINGH J, et al. Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce under glasshouse conditions [J]. Soil Research, 2008, 46(7): 535-541.
[19]KHAN S, WANG N, REID B J, et al. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar [J]. Environmental Pollution, 2013, 175: 64-68.
[20]李露,周自強(qiáng),潘曉健,等.氮肥與生物炭施用對(duì)稻麥輪作系統(tǒng)甲烷和氧化亞氮排放的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2015, 21(5): 1095-1103.
[21]WEISKE A, BENCKISER G, HERBERT T, et al. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dyciandiamide (DCD) on nitrous oxide, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments [J]. Biology and Fertility of Soils, 2001, 34: 109-117.
[22]LI B, BI Z C, XIONG Z Q. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China [J]. GCB Bioenergy,2016, 9: 400-413.
[23]ZHANG D, PAN G, WU G, et al. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol [J]. Chemosphere, 2016, 142: 106-113.
[24]張洋,李雅穎,鄭寧國(guó),等. 生物硝化抑制劑的抑制原理及其研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),2019,47(1):21-26.
[25]FAN C, LI B, XIONG Z Q. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China [J]. Science of the Total Environment, 2018, 612: 480-489.
[26]ABALOS D, JEFFRY S, SANZ-CORBINA A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency [J]. Agriculture Ecosystems and Environment, 2014, 189:136-144.
(責(zé)任編輯:張震林)