雷金銀,雷曉婷,周麗娜,何進(jìn)勤,賈愛平,余建軍,張 慧,路 芳
耕作措施對緩坡耕地土壤養(yǎng)分分布及肥料利用率的影響
雷金銀1,雷曉婷1,周麗娜1※,何進(jìn)勤1,賈愛平2,余建軍3,張 慧3,路 芳3
(1. 寧夏農(nóng)林科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所 銀川 750002;2. 寧夏銀川市農(nóng)業(yè)技術(shù)推廣服務(wù)中心 銀川 750002;3. 固原市原州區(qū)官廳鎮(zhèn)農(nóng)業(yè)服務(wù)中心 固原 756000)
為研究不同耕作措施對坡耕地土壤養(yǎng)分坡面分布特征及作物產(chǎn)量與肥料利用率的影響,該研究在2017—2018年期間,以寧南山區(qū)10°緩坡耕地為研究對象,開展傳統(tǒng)平作(CK)、壟溝種植(NH)、壟溝+秸稈覆蓋(SM)和壟溝+地膜覆蓋(PM)4種不同耕作措施對坡耕地耕層養(yǎng)分、作物產(chǎn)量的影響及其坡位效應(yīng)分析研究,探討不同耕作措施下作物肥料利用率。結(jié)果表明,相較于CK,NH、SM和PM 3種耕作措施顯著提高耕層土壤有機(jī)質(zhì)和土壤速效氮含量,分別提高了18.50%和14.47%、18.22%和17.64%、21.75%和18.71%,3種耕作措施之間差異并不顯著。CK處理下耕層土壤有機(jī)質(zhì)含量和速效氮隨著坡位自上而下的變化而增加,表現(xiàn)出流失風(fēng)險(xiǎn),而PM、SM和NH 3種措施表現(xiàn)出能夠削弱坡位效應(yīng)的作用,由高到低順序?yàn)槠轮小⑵孪?、坡上。相對于CK,其他3種耕作措施下坡耕地土壤有效磷、速效鉀有所降低,其中PM措施下土壤有效磷顯著低于其他耕作處理。NH、SM和PM顯著增加作物產(chǎn)量,玉米和馬鈴薯產(chǎn)量比CK分別增加27.03%和2.89%、12.85%和8.50%、204.56%和2.52%,且具有顯著的坡位效應(yīng)。2個覆蓋措施SM和PM顯著提高作物肥料利用率,種植玉米N、P利用率分別提高7.92%和16.83%、217.03%和241.59%,種植馬鈴薯分別提高89.43%和44.62%、97.31%和49.66%。由此可知,以壟溝、覆蓋為核心的保護(hù)性耕作措施能夠有效阻斷養(yǎng)分損失途徑,阻控土壤養(yǎng)分的坡面運(yùn)移,提高肥料利用率和作物產(chǎn)量。
土壤;侵蝕;耕作措施;緩坡耕地;坡位效應(yīng);肥料利用率
緩坡耕地是水土流失的主要地類和江河泥沙的主要策源地之一,也是山區(qū)寶貴的土地資源[1-2]。坡耕地由于常年采用傳統(tǒng)翻耕為主的耕作措施使得土壤機(jī)械擾動頻繁從而導(dǎo)致表層土壤結(jié)構(gòu)松散,農(nóng)田土壤有機(jī)質(zhì)和氮磷鉀養(yǎng)分損失嚴(yán)重、土地生產(chǎn)力下降,這已成為全球倍受關(guān)注的農(nóng)業(yè)資源與生態(tài)環(huán)境問題[3-6]。同時,由此引發(fā)的土壤養(yǎng)分再分配和損失對土壤生態(tài)化學(xué)計(jì)量學(xué)特征及其養(yǎng)分循環(huán)和平衡的影響也成為全球研究的前沿領(lǐng)域之一[7-10]。
寧夏南部山區(qū)地處黃土高原,其中固原市原州區(qū)地形復(fù)雜,氣候多變,地面物質(zhì)和土壤對侵蝕十分敏感,加之人為活動頻繁,導(dǎo)致了土壤侵蝕類型多樣及水土流失嚴(yán)重。已有研究表明,地形條件、土壤物理性質(zhì)、耕作管理措施和土地利用方式等都對土壤養(yǎng)分分布與流失產(chǎn)生重要影響[11-13]。當(dāng)前,壟溝種植、覆膜、免耕、秸稈覆蓋和秸稈還田等保護(hù)性耕作措施被普遍認(rèn)為可通過改變緩坡耕地坡面微地形、增加地表覆蓋度或改變土壤結(jié)構(gòu)與提升地力等方面來有效控制土壤養(yǎng)分流失、調(diào)控土壤肥力。其具有明顯的蓄水保墑、增強(qiáng)干旱地區(qū)農(nóng)業(yè)抗逆穩(wěn)產(chǎn)潛力,在當(dāng)?shù)剞r(nóng)業(yè)生產(chǎn)與環(huán)境資源高效利用中逐步得到認(rèn)可并被大面積推廣應(yīng)用[14-15]。譚春薦等[16-17]研究表明,相較于傳統(tǒng)耕作,玉米秸稈覆蓋措施可有效提高土壤耕作層的土壤養(yǎng)分。張霞等[18]研究表明,免耕-深松處理相比翻耕處理,小麥產(chǎn)量顯著增加了14.25%,水分利用效率提高24.98%。李春喜等[19]研究表明,秸稈還田處理較不還田處理提高了冬小麥氮素利用率44%。
耕作措施對農(nóng)田土壤養(yǎng)分變化的影響主要表現(xiàn)在2個方面,一是不同耕作措施對農(nóng)田土壤進(jìn)行不同程度的擾動,造成不同農(nóng)田土壤環(huán)境,其必然會對土壤養(yǎng)分貯藏與釋放產(chǎn)生不同的影響。二是不同耕作措施對水土流失的影響不同,導(dǎo)致水土流失對土壤養(yǎng)分的再分配和土地生產(chǎn)力產(chǎn)生不同的影響。但是目前大量研究工作主要集中在不同耕作措施對土壤理化性質(zhì)、土壤肥力變化及產(chǎn)量的影響等方面[20-22],而關(guān)于不同耕作措施對坡面水土流失動力的影響,進(jìn)而造成養(yǎng)分的坡面運(yùn)移、分配及其對農(nóng)田生產(chǎn)力影響的研究還較為薄弱或關(guān)注甚少。李海強(qiáng)等[23]對遼寧無措施坡耕地土壤養(yǎng)分坡面分布研究發(fā)現(xiàn),0~15和15~30cm兩層次土壤有機(jī)質(zhì)、全氮和有效磷含量均順坡逐漸增高。因此,針對寧南山區(qū)坡耕地水土流失問題,開展以壟溝、覆蓋為核心的保護(hù)性耕作措施下緩坡耕地土壤養(yǎng)分運(yùn)移特征及養(yǎng)分利用率研究,可為保護(hù)山區(qū)坡耕地水土資源、提高耕地水肥利用效率提供科學(xué)依據(jù)。
固原市原州區(qū)是寧夏南部山區(qū)土壤水蝕嚴(yán)重的區(qū)域之一,地處黃土高原,地形復(fù)雜,氣候多變,地面物質(zhì)和土壤對侵蝕十分敏感,加之人為活動頻繁,導(dǎo)致了土壤侵蝕類型多樣及水土流失嚴(yán)重。2017和2018年作物生育期內(nèi)(4—11月)降雨量分別為448.0和616.2 mm,且分布不均,其中6—9月占65.6%。降雨不足和干旱頻繁是制約當(dāng)?shù)剞r(nóng)、林、牧業(yè)發(fā)展的主要自然障礙因素。2017和2018年生育期內(nèi)(4—11月)平均氣溫分別為7.2和6.4 ℃(見圖1),≥10℃積溫2 400 ℃,無霜期平均100~150 d。農(nóng)作物主要以種植玉米、馬鈴薯和秋雜糧為主。該區(qū)坡耕地面積約61.2萬hm2,占總耕地64.8%,坡耕地土壤侵蝕量占流域總侵蝕量的50%~60%。試驗(yàn)地試驗(yàn)前(2017年)0~20 cm耕層土壤有機(jī)質(zhì)(19.2±1.54)g/kg,速效氮(101 ±2.03)mg/kg,有效磷(10.3±0.29)mg/kg,土壤速效鉀(147±3.18)mg/kg。砂粒(2.0~0.02 mm)質(zhì)量分?jǐn)?shù)(51.5±1.06)%、粉粒(0.02~0.002 mm)質(zhì)量分?jǐn)?shù)(32.0±1.45)%、黏粒(<0.002 mm)質(zhì)量分?jǐn)?shù)(16.5±1.30)%。
在寧夏南部山區(qū)固原地區(qū)選擇坡度為10°的緩坡耕地為研究對象,在2017—2018年期間,第一年種植玉米,品種富農(nóng)821,第二年在前茬玉米的基礎(chǔ)上,免耕種植馬鈴薯,品種青薯9號,試驗(yàn)采用完全隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì),共設(shè)4種不同耕作方式,分別為:
傳統(tǒng)平作(CK):傳統(tǒng)翻耕平作,無覆蓋措施,收獲后作物秸稈移除;
壟溝種植(NH):壟寬60 cm,溝寬30 cm,壟高10~15 cm,無覆蓋措施,收獲后作物秸稈移除;
壟溝+秸稈覆蓋(SM):在起壟的基礎(chǔ)上,采用玉米秸稈覆蓋在壟上和壟溝,覆蓋量7 500 kg/hm2;
壟溝+地膜覆蓋(PM):在壟溝上,采用寬80 cm、厚0.08 mm的塑料薄膜,覆蓋壟上部位,收獲后作物秸稈移除。
試驗(yàn)重復(fù)3次,共計(jì)12個小區(qū),每個小區(qū)面積4 m×24 m。每個處理均設(shè)一個不施肥對照。作物種植在壟上,玉米種植行距60 cm,株距30 cm,種植密度保持在55 000株/hm2、馬鈴薯行距60 cm,株距40 cm,種植密度保持在40 000株/hm2。施肥水平參照當(dāng)?shù)爻R?guī):兩季作物施肥量保持一致,生物有機(jī)肥(N-P-K總養(yǎng)分200 g/kg,有機(jī)質(zhì)350 g/kg,有效活菌數(shù)≥0.2×108CFU/g)和磷酸二銨((NH4)2HPO4)作為種肥一次性施入施用量分別為4 500和275 kg/hm2,尿素(CO(NH2)2)分兩次施入,基施150 kg/hm2,拔節(jié)期追施75 kg/hm2。
圖1 試驗(yàn)區(qū)2017—2018年生育期降水量與氣溫的變化情況
土壤樣品采集:坡面自上而下0~8 m為坡上位置,8~16 m為坡中位置,16~24 m為坡下位置。采用2 m×2 m網(wǎng)格法,播種前和收獲后分別在坡面作物種植行內(nèi)采集耕層0~20 cm土壤樣品。
土壤養(yǎng)分指標(biāo):播種前和收獲后統(tǒng)一在作物種植行內(nèi)采集耕層0~20 cm土壤樣品。土壤有機(jī)質(zhì)采用K2Cr2O7容量法-外加熱法;速效氮采用堿解擴(kuò)散法;有效磷采用NaHCO3浸提-分光光度計(jì)法,速效鉀采用乙酸氨浸提-火焰光度計(jì)法[24]。
植物全氮、全磷、全鉀含量測定:不同生長期各小區(qū)分別采集植株根、莖、葉樣品,烘干、粉碎過0.25 mm篩,測定全N、全P、全K等養(yǎng)分含量。植物樣品采用H2SO4-H2O2消煮分解,全氮采用半微量開氏法測定,全磷采用鉬銻抗比色測定,全鉀采用火焰光度計(jì)法測定。
產(chǎn)量及主要構(gòu)成因素測定:收獲期在田間小區(qū)實(shí)收實(shí)測,直接測定其產(chǎn)量和地上生物量。
肥料利用率的計(jì)算:
肥料利用率按養(yǎng)分差減法求得,計(jì)算公式如下
式中為施肥量,kg/hm2;FH為肥料中某養(yǎng)分含量,g/kg;1和0分別為施肥區(qū)和不施肥區(qū)籽粒產(chǎn)量,kg/hm2;1和0分別為施肥區(qū)和不施肥區(qū)秸稈產(chǎn)量,kg/hm2;ZH1和ZH0分別代表施肥區(qū)和不施肥區(qū)籽粒中該養(yǎng)分的含量,g/kg;JH1和JH0分別代表施肥區(qū)和不施肥區(qū)秸稈中該養(yǎng)分的含量,g/kg。
本文試驗(yàn)數(shù)據(jù)均采用EXCEL2007和SPSS16.0軟件進(jìn)行統(tǒng)計(jì)處理及方差分析(LSD)。
不同耕作措施下緩坡耕地坡上、坡中、坡下等部位土壤有機(jī)質(zhì)的研究表明(表1),相較于CK,NH、SM和PM 3種耕作措施分別顯著提高耕層土壤有機(jī)質(zhì)18.50%、18.22%和21.75%(<0.05),而3種耕作措施之間差異并不顯著,各處理有機(jī)質(zhì)含量由高低到表現(xiàn)為:PM> NH > SM >CK。從坡面分布來看,各耕作處理下耕層土壤有機(jī)質(zhì)含量均表現(xiàn)為坡上小于坡中和坡下,CK和PM處理隨著坡位自上而下的變化,土壤有機(jī)質(zhì)含量逐漸增加,而NH和SM處理則表現(xiàn)出先增加后降低的變化特征,由高到低順序?yàn)椋浩轮?坡下>坡上。
不同耕作處理對土壤速效氮的影響與有機(jī)質(zhì)基本一致,相較于CK,NH、SM和PM 3種耕作措施分別顯著提高耕層土壤速效氮14.47%、17.64%和18.71%,而3種耕作措施之間差異不顯著。各處理土壤速效氮含量由高低到表現(xiàn)為:PM > NH > SM >CK。從坡面分布來看,各耕作措施下耕層土壤速效氮含量同樣地均表現(xiàn)為坡上小于坡中和坡下。CK、NH和PM隨著坡位自上而下的變化,表現(xiàn)出逐漸增加;SM隨著坡位自上而下的變化,逐漸降低。
由于土壤有效磷的移動性相對較弱,且當(dāng)?shù)剞r(nóng)業(yè)生產(chǎn)中磷肥投入較低,從不同耕作措施對土壤有效磷的影響結(jié)果來看,土壤有效磷是一個消耗的過程。與CK相比,NH處理耕層土壤有效磷增加6.71%,而SM和PM 2種耕作處理耕層土壤有效磷含量均有所降低,分別降低4.01%和20.97%,表明覆蓋措施不利于土壤有效磷的積累。各處理土壤有效磷含量由高到低表現(xiàn)為:NH>CK>SM>PM,其中PM與其他3種耕作處理差異顯著,其他3種耕作處理之間差異不顯著。從坡位土壤有效磷分布來看,各處理土壤有效磷隨著坡位自上而下的變化各不相同,CK處理表現(xiàn)出逐漸降低;PM、SM和NH則表現(xiàn)出先增加再降低,由高到低的順序?yàn)椋浩轮?坡上>坡下。
NH、SM和PM 3種耕作處理與CK相比,耕層土壤速效鉀顯著降低,分別降低了10.48%、10.65%和7.85%,而3種耕作之間差異不顯著,由高到低表現(xiàn)為:CK> PM > NH > SM。這與當(dāng)?shù)仄赂剽浄释度胼^低,3種耕作措施促進(jìn)作物肥料吸收有關(guān)。從坡面分布來看,CK、NH和SM表現(xiàn)出先降低后增加,由高到低的順序?yàn)椋浩律?坡下>坡中。NH 表現(xiàn)出先降低后增加,由高到低的順序?yàn)槠孪? 坡上>坡中。PM則表現(xiàn)出現(xiàn)增加后降低,由高到低的順序?yàn)椋浩轮?坡下>坡上。
表1 不同耕作措施對坡耕地不同坡位土壤養(yǎng)分分布的影響
注:小寫字母表示同一坡位不同處理在0.05水平顯著。CK、NH、SM、PM分別為傳統(tǒng)平作、壟溝種植、壟溝+秸稈覆蓋、壟溝+地膜覆蓋。下同
Note: the little letters is significant at α=0.05. CK, conventional tillage, NH, furrow-ridge tillage, SM, furrow-ridge + straw mulching, PM, furrow-ridge + plastic mulching .the same as below.
分析2017年和2018年輪作玉米、馬鈴薯產(chǎn)量可知,不同耕作措施對作物產(chǎn)量影響顯著(表2)。2017年坡耕地各耕作措施下CK、NH、SM和PM處理的玉米平均產(chǎn)量分別為1 574.46、 2 000.04、1 806.55和4 795.19 kg/hm2,相對于CK,NH、SM和PM分別增產(chǎn)27.03%、12.85%和204.56%。2018年坡耕地各耕作措施下馬鈴薯平均產(chǎn)量分別為35 939.17、36 976.50、39 279.60和43 672.50 kg/hm2,相對于CK,NH、SM和PM產(chǎn)量分別增加2.89%、9.29%、21.52%。從坡面分布來看,隨著坡位自上而下的變化,不同耕作措施下玉米產(chǎn)量均逐漸增加。馬鈴薯產(chǎn)量則表現(xiàn)為CK隨著坡位下降而增加;NH和PM產(chǎn)量先增加后降低,坡中產(chǎn)量最高,坡下最低,坡上居中;SM先降低后增加,坡下最高、坡中最低,坡上居中。
表2 不同耕作措施對坡耕地不同坡位玉米及馬鈴薯產(chǎn)量的影響
通過對2017—2018兩季作物在不同耕作措施條件下,不同坡位土壤養(yǎng)分、作物產(chǎn)量的方差分析表明(表3),各耕作措施土壤養(yǎng)分、作物產(chǎn)量在坡位之間的差異極顯著,表現(xiàn)出明顯的坡位效應(yīng)。2017和2018年土壤有機(jī)質(zhì)在不同耕作措施和不同坡位均表現(xiàn)出極顯著差異(<0.01),土壤速效氮各耕作措施之間2017年表現(xiàn)出顯著差異(=1.88,<0.05),2018年表現(xiàn)為極顯著差異(=117.71,<0.01),坡位之間2017和2018年均表現(xiàn)為極顯著差異(=3.43和=19.60,<0.01)。土壤有效磷處理之間2017年顯著(=1.35,<0.05),2018年不顯著(=0.5,>0.05),坡位之間2017年差異極顯著(=6.74,<0.01),2018年顯著(=3.91,<0.05)。土壤速效鉀2017年耕作措施之間不顯著(=21.63,>0.05),2018年極顯著(=5.72,<0.01),坡位之間2017年顯著(=10.89,<0.05),2018年不顯著(=1.18,>0.05)。2017年產(chǎn)量在不同耕作措施之間和不同坡位之間均表現(xiàn)出極顯著差異(<0.01),2018年產(chǎn)量在不同耕作措施之間和不同坡位之間均表現(xiàn)出顯著差異(<0.05)??傮w來講,緩坡耕地土壤養(yǎng)分和作物產(chǎn)量的坡位效應(yīng)明顯,差異貢獻(xiàn)率高于耕作措施,但是,從2017和2018年兩年來看,耕作措施效應(yīng)隨著耕作年限的增加逐步顯現(xiàn),在耕作措施條件下坡位效應(yīng)逐步減弱。表明耕作措施可有效阻斷養(yǎng)分損失途徑,削弱土壤侵蝕動力,阻控土壤水分、養(yǎng)分的坡面運(yùn)移。
表3 2017—2018年緩坡耕地土壤養(yǎng)分、作物產(chǎn)量的坡位效應(yīng)分析
注:**表示在0.01水平差異極顯著,* 表示在0.05水平差異顯著。
Note: **indicates significant difference at the 0.01 level, and * indicates significant difference at the 0.05 level.
通過對不同耕作措施對N、P利用率的計(jì)算分析可知(表4),2017年不同耕作措施下種植玉米,NH、SM和PM的N、P利用率分別比對照提高6.47%和11.75%、7.92%和16.83%、217.03%和241.59%;PM處理N、P利用率明顯高于其他3種措施,NH、SM與CK之間的N、P利用率差異不顯著。2018年馬鈴薯NH、SM、PM處理下的N、P利用率分別提高26.40%和17.37%、89.43%和44.62%、97.31%和49.66%。其中,N肥利用率2個覆蓋措施SM和PM之間差異不顯著,其他各耕作措施之間差異顯著;P肥利用率CK和NH之間不顯著,SM和PM之間不顯著,其他各耕作措施之間差異顯著。
表4 不同耕作措施對玉米及馬鈴薯N、P利用率的影響
注:小寫字母表示不同處理在0.05水平顯著。
Note: Lower case letters indicate that different treatments are significant on levels of 0.05.
耕作活動是影響土壤理化性質(zhì)的重要人為因素之一。Almaraz等[25-27]研究表明,不同耕作措施由于對土壤的擾動程度、土壤溫度、土壤濕度、土壤通氣狀況、地表起伏度等影響不同,進(jìn)而引起土壤養(yǎng)分狀況的顯著差異。耕作方式對土壤有機(jī)質(zhì)分解的環(huán)境條件起到調(diào)節(jié)作用,常規(guī)耕作下,CO2全年平均通量明顯多于免耕和秸稈覆蓋,免耕、秸稈覆蓋等措施降低土壤干擾,減少了土壤CO2的排放,有利于土壤有機(jī)碳的積累。董智[28]研究認(rèn)為,地膜覆蓋雖顯著提高了玉米的產(chǎn)量卻不利于土壤養(yǎng)分含量的提高。秸稈覆蓋增加了土壤的有機(jī)質(zhì)和全氮等養(yǎng)分含量[29]。本研究結(jié)果也基本相似,相對于CK,NH、SM和PM 3種措施下的土壤有機(jī)質(zhì)和速效氮含量有所增加。但是對于土壤速效鉀、有效磷是一個消耗的過程,采用該3種措施后有所降低。這與當(dāng)?shù)仄赂剞r(nóng)田管理中磷鉀肥投入不足,而3種措施增加作物養(yǎng)分吸收有關(guān)。值得一提的是PM處理下土壤有效磷最低,且與其他3種耕作方式差異顯著,這與董智的研究結(jié)果相似,主要是因?yàn)閷幠仙絽^(qū)地膜覆蓋提高土壤溫度和作物產(chǎn)量,造成作物對磷素吸收率高引起的。
坡耕地作為一種易發(fā)生水土流失的特殊耕地類型,在考慮不同耕作措施對土壤養(yǎng)分的轉(zhuǎn)化、吸收等生物化學(xué)循環(huán)影響的同時,更要注重耕作措施對水土肥遷移途徑的阻控引起的土壤養(yǎng)分再分布特征。林藝等[30-32]研究表明,坡耕地由于水土流失引起的土壤氮、磷損失不容忽視。陳靜蕊等[33]通過不同耕作措施對陡坡耕地土壤養(yǎng)分流失的影響研究表明,單一的橫坡壟作對陡坡地的養(yǎng)分流失截留效果有限,而橫坡壟作+秸稈覆蓋組合處理可以顯著減少陡坡地的徑流,對土壤氮、磷養(yǎng)分有較好的保持、截留作用。本研究通過對坡耕地土壤養(yǎng)分在不同耕作措施下的坡面分布研究表明,CK處理下土壤養(yǎng)分隨著坡位自上而下逐漸增加,進(jìn)一步說明坡面緩坡耕地土壤養(yǎng)分存在坡面運(yùn)移風(fēng)險(xiǎn),土壤侵蝕引起的養(yǎng)分輸移是土壤養(yǎng)分分布變化的主要動力作用之一。NH、SM和PM 3種耕作措施與CK之間養(yǎng)分差異顯著,而3種措施之間差異不顯著,各耕作措施不同坡位之間差異極顯著,進(jìn)一步說明不同耕作措施坡耕地土壤養(yǎng)分變化和分布特征主要是由以下兩方面引起:一方面是耕作措施引起的土壤內(nèi)部變化,另一方面則是阻控水土流失路徑和動力所致。從本試驗(yàn)2017和2018年兩年來看,隨著耕作年限的增加,在保護(hù)性耕作措施條件下的坡位效應(yīng)逐步減弱,耕作措施之間的差異逐漸顯現(xiàn)。表明耕作措施可有效阻斷養(yǎng)分損失途徑,削弱土壤侵蝕動力,阻控土壤水分、養(yǎng)分的坡面運(yùn)移。本文只是用兩年試驗(yàn)數(shù)據(jù)的分析得出的初步結(jié)論,還有待進(jìn)一步獲取長期穩(wěn)定的試驗(yàn)數(shù)據(jù)來進(jìn)行驗(yàn)證和完善。
作物產(chǎn)量和肥料利用率是耕作措施對土壤生產(chǎn)力影響的最直接反應(yīng)。陳玉章等[34-35]研究表明,相對于傳統(tǒng)耕作,地膜覆蓋、秸稈覆蓋、免耕等耕作措施均顯著提高作物產(chǎn)量,且覆蓋要比不覆蓋措施產(chǎn)量高。高亞軍等[36]研究表明,歷年平均降雨量在600 mm左右的半濕潤易旱地區(qū)的楊凌和渭北旱塬的彬縣冬小麥田秸稈覆蓋不增產(chǎn),甚至顯著減產(chǎn),主要是由于秸稈覆蓋容易造成土壤溫度較低,影響出苗有關(guān)。謝瑞芝等[37]通過已發(fā)表文章統(tǒng)計(jì)分析得出,保護(hù)性耕作中減產(chǎn)的數(shù)據(jù)占10.92%。本研究結(jié)果表明,相對于CK,3種耕作措施均提高寧南山區(qū)緩坡耕地作物產(chǎn)量和肥料利用效率,且表現(xiàn)為覆蓋措施比不覆蓋措施較好。究其原因與保護(hù)性耕作措施減弱水土流失,引起土壤水分、養(yǎng)分的截留保蓄和再分布有關(guān),從而導(dǎo)致產(chǎn)量和肥力利用率提高,且產(chǎn)生坡位效應(yīng)。因此,今后應(yīng)該深入開展土壤養(yǎng)分、水分以及作物生物響應(yīng)的坡位效應(yīng)研究,對于我們更加精確的研究緩坡耕地不同耕作措施對土壤養(yǎng)分轉(zhuǎn)化、運(yùn)移特征及其養(yǎng)分循環(huán)機(jī)制和增產(chǎn)機(jī)理具有重要的意義。
1)相較于傳統(tǒng)平作,壟溝種植、壟溝+秸稈覆蓋和壟溝+地膜覆蓋3種耕作處理顯著提高耕層土壤有機(jī)質(zhì)和土壤速效氮含量,但3種耕作措施之間差異并不顯著;土壤有效磷、速效鉀有所降低,其中壟溝+地膜覆蓋措施下土壤有效磷顯著低于其他耕作處理。
2)土壤養(yǎng)分不同坡位之間的差異極顯著,表現(xiàn)出明顯的坡位效應(yīng)。傳統(tǒng)平作處理下耕層土壤有機(jī)質(zhì)含量和速效氮隨著坡位自上而下的變化而增加,表現(xiàn)出坡位流失風(fēng)險(xiǎn)。壟溝種植、壟溝+秸稈覆蓋和壟溝+地膜覆蓋3種措施能夠削弱坡位效應(yīng),由高到低依次為坡中、坡下、坡上。土壤速效鉀、有效磷的流失風(fēng)險(xiǎn)較小,措施之間的差異主要與肥料投入和作物吸收利用有關(guān)。
3)不同耕作措施對作物產(chǎn)量影響顯著。相對于傳統(tǒng)平作,壟溝種植、壟溝+秸稈覆蓋和壟溝+地膜覆蓋種植玉米和馬鈴薯均增產(chǎn)且具有顯著的坡位效應(yīng),N、P利用效率提高。
[1] 史云. 坡耕地治理措施對水土流失的影響[J]. 南方農(nóng)機(jī),2019,50(8):49.
[2] 吳潔,孫旭,劉小艷,等. 論水土保持在治理生態(tài)環(huán)境中的應(yīng)用及發(fā)展[J]. 環(huán)境與發(fā)展,2017,29(10):170-172. Wu Jie, Sun Xu, Liu Xiaoyan, et al. Discussion on the application and future development of soiland water conservation in the treatment of ecological environment[J]. Environment and Development, 2017, 29(10): 170-172. (in Chinese with English abstract)
[3] Blum W E H. Soil degradation caused by industrialization and urbanization[J]. Advances in Geoecology, 1997, 31: 755-766.
[4] 陳正發(fā),史東梅,金慧芳,等. 基于土壤管理評估框架的云南坡耕地耕層土壤質(zhì)量評價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):256-267. Chen Zhengfa, Shi Dongmei, Jin Huifang, et al. Evaluation on cultivated-layer soil quality of sloping farmland in Yunnan based on soil management assessment framework (SMAF)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 256-267. (in Chinese with English abstract)
[5] Bronick C J, Lal R. Soil structure and management: A review[J]. Geoderma, 2004, 124(1):3-22.
[6] 范亞琳,劉賢趙,高磊,等. 不同培肥措施對紅壤坡耕地土壤有機(jī)碳流失的影響[J]. 土壤學(xué)報(bào),2019,56(3):638-649. Fan Yalin, Liu Xianzhao, Gao Lei, et al. Effects of fertility-building practices on soil organic carbon loss with sediment in sloping cropland of red soil[J]. Acta Pedologica Sinica, 2019, 56(3): 638-649. (in Chinese with English abstract)
[7] 張麗,張乃明,張仕穎,等. AMF和間作對作物產(chǎn)量和坡耕地土壤徑流氮磷流失的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):216-224. Zhang Li, Zhang Naiming, Zhang Shiying, et al. Effects of AMF and intercropping on crop yield and soil nitrogen and phosphorus loss by runoff on slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 216-224. (in Chinese with English abstract)
[8] Dalal R C, Carter O R. Soil organic matter dynamics and sequestration in Australian tropical soils[J]. Advances in Soil Science, 2000, 4: 283-314.
[9] 王旭. 陜北黃土高原坡耕地保護(hù)性耕作土壤養(yǎng)分恢復(fù)效果和水蝕防控效應(yīng)研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2013. Wang Xu. Nutrient Restoration Effect and Water Erosion Precention and Control of Slope Farmland of Conservative Tillage Loess Plateau in Northern Shaanxi[D]. Yanglin: Northwest Agriculture and Forestry University, 2013. (in Chinese with English abstract)
[10] 董會嬌. 不同土地利用方式水土流失規(guī)律研究[J]. 吉林水利,2018(2):51-53.
[11] Blaikie P, Brookfield H. Land Degradation and Society[M]. London: Methuen, 1987.
[12] 史東梅,金慧芳,蔣光毅. 土壤侵蝕對坡耕地耕層質(zhì)量退化作用及其評價(jià)趨勢展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):118-126. Shi Dongmei, Jin Huifang, Jiang Guangyi. Degradation effect of soil erosion on tillage-layer quality of slope farmland and its evaluation trend[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 118-126. (in Chinese with English abstract)
[13] 許艷,張仁陟. 隴中黃土高原不同耕作措施下土壤磷動態(tài)研究[J]. 土壤學(xué)報(bào),2017,54(3):670-681. Xu Yan, Zhang Renzhi. Dynamics of soil phosphorus as affected by tillage on the loess plateau in central Gansu, China[J]. Acta Pedologica Sinica, 2017, 54(3): 670-681. (in Chinese with English abstract)
[14] 王改玲,郝明德,許繼光,等. 保護(hù)性耕作對黃土高原南部地區(qū)小麥產(chǎn)量及土壤理化性質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2011,17(3):539-544. Wang Gailing, Hao Mingde, Xu Jiguang, et al. Effect of conservation tillage on wheat yield and soil physicochemical properties in the south of loess plateau[J]. Plant Nutrition and Fertilizer Science, 2011, 17(3): 539-544. (in Chinese with English abstract)
[15] Igor Dekemati, Barbara Simon, Szergej Vinogradov, et al The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary[J]. Soil & Tillage Research, 2019, 194: 1-12.
[16] 譚春薦. 保護(hù)性耕作對坡耕地土壤養(yǎng)分維持及水蝕防控效應(yīng)研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2015. Tan Chunjian. Effects of Consercation Tillage on the Soil Nutrients Maintenance and Control of Water Erosion of Sloping Farmland[D]. Yangling: Northwest Agriculture and Forestry University, 2016. (in Chinese with English abstract)
[17] 張冬梅,張偉,姜春霞,等. 旱地玉米不同耕作覆蓋措施的土壤環(huán)境及產(chǎn)量效應(yīng)[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,24(6):26-37. Zhang Dongmei, Zhang Wei, Jia Chunxia, et al. Effects of different tillage and mulch treatments on the soil environment and yield of dryland maize[J]. Journal of China Agricultural University, 2019, 24(6): 26-37. (in Chinese with English abstract)
[18] 張霞,張育林,劉丹,等. 種植方式和耕作措施對土壤結(jié)構(gòu)與水分利用效率的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(3):250-261. Zhang Xia, Zhang Yulin, Liu Dan, et al. Effects of planting methods and tillage systems on soil structure and water use efficiency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 250-261. (in Chinese with English abstract)
[19] 李春喜,陳惠婷,馬守臣,等. 不同耕作措施對麥田土壤碳儲量和作物水氮利用效率的影響[J]. 華北農(nóng)學(xué)報(bào),2016,31(4):220-226. Li Chunxi, Chen Huiting, Ma Shouchen, et al. Effects of different tillage methods on carbon storage of soil and utilization efficiency of water and nitrogen in wheat[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(4): 220-226. (in Chinese with English abstract)
[20] 于亞莉,史東梅,蔣平. 不同土壤管理措施對坡耕地土壤氮磷養(yǎng)分流失的控制效應(yīng)[J]. 水土保持學(xué)報(bào),2017,31(1):30-36,42. Yu Yali, Shi Dongmei, Jiang Ping. Effect of different soil management measures on controlling soil nitrogen and phosphorus loss from slop farmland[J]. Journal of Soil and Water Conservation, 2017, 31(1): 30-36,42. (in Chinese with English abstract)
[21] 馬傳功,陳建軍,郭先華,等. 坡耕地不同種植模式對農(nóng)田水土保持效應(yīng)及土壤養(yǎng)分流失的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2016,33(1):72-79. Ma Chuangong, Chen Jianjun, Guo Xianhua, et al. Effects of different cropping patterns on soil and water conservation benefits and soil nutrients loss on sloping land[J]. Journal of Agricultural Resources and Environment, 2016, 33(1): 72-79. (in Chinese with English abstract)
[22] 周晗,嚴(yán)俊霞,李洪建,等. 晉西黃土區(qū)坡耕地不同下墊面水土流失對侵蝕性降雨的響應(yīng)[J]. 水土保持研究,2019,26(4):7-12. Zhou Han, Yan Junxia, Li Hongjian, et al, Response of soil and water loss on different underlying surfaces of sloping farmland to erosive rainfall in the loess area of western Shanxi Province[J]. Research of Soil and Water Conservation, 2019, 26(4): 7-12. (in Chinese with English abstract)
[23] 李海強(qiáng),郭成久,蔡楚雄,等. 水土保持措施對坡耕地土壤養(yǎng)分時空變異影響[J]. 土壤通報(bào),2017,48(3):707-714. Li Haiqiang, Guo Chenjiu, Cai Chuxiong, et al. Effect of soil and water conservation measures on temporal and spatial variability of soil nutrients in sloping farmland[J]. Chinese Journal of Soil Science, 2017, 48(3): 707-714. (in Chinese with English abstract)
[24] 中華人民共和國環(huán)境保護(hù)部. 土壤有機(jī)碳的測定重鉻酸鉀氧化-分光光度法:HJ615-2100[S]. 北京:中國環(huán)境科學(xué)出版社,2011.
[25] Almaraz J J, Zhou X, Mabood F, et al. Greenhouse gas fluxes associated with soybean production under two tillage systems in southwestern Quebec[J]. Soil and Tillage Research, 2009, 104(1): 134-139.
[26] 徐鈺,劉兆輝,朱國梁,等. 不同農(nóng)業(yè)管理措施對華北地區(qū)麥田溫室氣體排放的影響[J]. 中國土壤與肥料,2016(2):7-13. Xu Yu, Liu Zhaohui, Zhu Guoliang, et al. Effects of greenhouse gas emission under different agricultural management practices in wheat field in the North China Plain[J]. Soil and Fertilizer Sciences in China, 2016(2): 7-13. (in Chinese with English abstract)
[27] 呂錦慧,武均,張軍,等. 不同耕作措施下旱作農(nóng)田土壤CH4、CO2排放特征及其影響因素[J]. 干旱區(qū)資源與環(huán)境,2018,32(12):26-33. Lü Jinhui, Wu Jun, Zhang Jun, et al. Characteristics and influencing factors of soil CH4and CO2emissions under different tillage measures[J]. Journal of Arid Land Resources and Environment, 2018, 32(12): 26-33. (in Chinese with English abstract)
[28] 董智. 秸稈覆蓋免耕對土壤有機(jī)質(zhì)轉(zhuǎn)化積累及玉米生長的影響[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2013. Dong Zhi. Accumulation of Soil Organic Matter and Maize Growing Process by Different Stover Mulching Quantity in No-Tillage System[D]. Shengyang: Shenyang Agricultural University, 2013. (in Chinese with English abstract)
[29] 解文艷. 旱作褐土覆蓋耕作措施對土壤環(huán)境的影響及玉米生長的響應(yīng)[D]. 太原:太原理工大學(xué),2015. Xie Wenyan. Effect of Different Mulching Methods on Soil Environment of Rainfed Cinnamon Soil and Related Maize Responses[D]. Taiyuan: Taiyuan University of Technology, 2015. (in Chinese with English abstract)
[30] 林藝,秦鳳,鄭子成,等. 不同降雨條件下壟作坡面地表微地形及土壤侵蝕變化特征[J]. 中國水土保持科學(xué),2015,13(3):32-38. Lin Yi, Qin Feng, Zheng Zicheng, et al. Characteristics of variations in soil surface micro-topography and soil erosion on the cross ridge slope under different rainfall conditions[J]. Science of Soil and Water Conservation, 2015, 13(3): 32-38. (in Chinese with English abstract)
[31] 周怡雯,戴翠婷,劉窯軍,等. 耕作措施及雨強(qiáng)對南方紅壤坡耕地侵蝕的影響[J]. 水土保持學(xué)報(bào),2019,33(2):49-54. Zhou Yiwen, Dai Cuiting, Liu Yaojun, et al. Effects of cultivation measures and rainfall intensities on the slope erosion in red soil sloping cropland[J]. Journal of Soil and Water Conservation, 2019, 33(2): 49-54. (in Chinese with English abstract)
[32] 任瑞雪,張風(fēng)寶,楊明義,等. 坡面侵蝕過程中泥沙有機(jī)碳流失特征分析[J]. 水土保持學(xué)報(bào),2017,31(6):15-19. Ren Ruixue, Zhang Fengbao, Yang Mingyi, et al. Characteristics of sediment organic carbon loss during slope erosion process[J]. Journal of Soil and Water Conservation, 2017, 31(6): 15-19. (in Chinese with English abstract)
[33] 陳靜蕊,劉佳,王惠明,等. 保護(hù)性耕作措施對陡坡地養(yǎng)分流失的影響[J]. 中國土壤與肥料,2018(1):146-152. Chen Jingrui, Liu Jia, Wang Huiming, et al. Effect of conservation tillage on soil nutrient loss from a steep hillslope soil[J]. China Soil and Fertilizer, 2018(1): 146-152. (in Chinese with English abstract)
[34] 陳玉章,柴守璽,范穎丹,等. 覆蓋模式對旱地冬小麥土壤溫度和產(chǎn)量的影響[J]. 中國農(nóng)業(yè)氣象,2014,35(4):403-409. Chen Yuzhang, Chai Shouxi, Fan Yingdan, et al. Effects of mulching models on soil temperature and yield of winter wheat in rainfed area[J]. Chinese Journal of Agrometeorology, 2014, 35(4): 403-409. (in Chinese with English abstract)
[35] 王秀康,李占斌,邢英英. 覆膜和施肥對玉米產(chǎn)量和土壤溫度、硝態(tài)氮分布的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2015,21(4):884-897. Wang Xiukang, Li Zhanbin, Xing Yingying. Effects of mulching and fertilization on maize yield, soil temperature and nitrate-N distribution[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 884-897. (in Chinese with English abstract)
[36] 高亞軍,李生秀. 旱地秸稈覆蓋條件下作物減產(chǎn)的原因及作用機(jī)制分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005, 21(7):15-19. Gao Yajun, Li Shengxiu. Cause and mechanism of crop yield reduction under straw mulch in dryland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(7): 15-19. (in Chinese with English abstract)
[37] 謝瑞芝,李少昆,李小君,等. 中國保護(hù)性耕作研究分析:保護(hù)性耕作與作物生產(chǎn)[J]. 中國農(nóng)業(yè)科學(xué),2007,40(9):1914-1924. Xie Ruizhi, Li Shaokun, Li Xiaojun, et al. The analysis of conservation tillage in China-conservation tillage and crop production: reviewing the evidence[J]. Scientia Agricultura Sinica, 2007, 40(9): 1914-1924. (in Chinese with English abstract)
Effects of tillage measures on soil nutrients distribution and fertilizer use efficiency on gentle slope farmland
Lei Jinyin1, Lei Xiaoting1, Zhou Lina1※, He Jinqin1, Jia Aiping2, Yu Jianjun3, Zhang Hui3, Lu Fang3
(1.,,750002,; 2.,750002,; 3.,756000,)
The research was carried out on 10° slope land of southern Ningxia during 2017-2018, and four different tillage measures, including conventional tillage (CK), furrow-ridge tillage (NH), furrow-ridge + straw mulching (SM) and furrow-ridge+plastic mulching (PM) were employed. The results showed that NH、SM and PM significantly increased the content of soil organic matter and available nitrogen compared with CK, increasing by 18.50% and 14.47%, 18.22% and 17.64%, 21.75% and 18.71%, respectively, however, there was no significant difference between the three tillage measures. The topsoil organic matter and available nitrogen of CK treatment increased from up slope to down slope showing the risk of losing from slope land. Whereas, NH, SM and PM exhibited the function of weakening the slope location effect, with the order of organic matter and available nitrogen from high to low: mid slope> down slope > up slope. Compared with CK, the soil available phosphorus and available potassium on slope land was decreased, where the soil available phosphorus under PM significantly was lower than others. The soil available phosphorus and available potassium showed low losing risk from slope land. The difference between tillages is mainly related to fertilizer input and crop absorption and utilization. NH, SM and PM significantly increased the crop yields, and the yield of maize and potato were increased by 27.03 % and 2.89%, 12.85% and 9.29%, 204.56% and 21.52%, respectively, showing significant slope location effect. From the perspective of slope distribution, as the slope position changes from up slope to down slope, corn yields gradually increased under NH, SM and PM. Potato yields of CK increased gradually with the slope position changes from up slope to down slope; Its NH and PM increased firstly and then decreased, with the highest yield on mid slope and the lowest on down slope; Its SM decreased firstly and then increased, with the highest yield on down slope and the lowest on mid slope. Two mulching tillage methods, SM and PM, significantly improved crop N, P fertilizer use efficiency, and in the first maize planting season they were increased by 7.92% and 16.83%, 217.03% and 241.59%, respectively, while in the second potato-planting season, they were increased by 89.43% and 44.62%, 97.31% and 49.66%, respectively. The variance analysis was performed on the soil nutrients and crop yields at different slope positions under different tillages in 2017 and 2018. From the perspective of soil organic matter and crop yield analysis, tillages and slope positions both showed extremely significant differences between 2017 (<0.01) and significant differences in 2018 (<0.05). From the perspective of available nitrogen analysis, tillages showed significant differences(=1.88,<0.05)in 2017 and extremely significant differences(=117.71,<0.01)in 2018,slope positions both showed extremely significant differences in 2017 and 2018(=3.43 and=19.60,<0.01). From the perspective of available phosphorus analysis, tillages showed significant differences(=1.35,<0.05)in 2017 and no significant difference (=0.5,>0.05) in 2018, slope positions showed extremely significant differences(=6.74,<0.01)in 2017 and significant differences (=3.91,<0.05)in 2018. From the perspective of available potassium analysis, tillages showed no significant difference(=21.63,>0.05)in 2017 and extremely significant differences(=5.72,<0.01)in 2018,slope positions showed significant differences(=10.89,<0.05)in 2017 and no significant differences(=1.18,>0.05)in 2018.Hence, it was believed that protective tillages focused on furrows and mulches can effectively block the nutrients lose, combat soil nutrients migration on slop farmland, and increase crop yield and fertilizer use efficiency.
soil; erosion; tillage method; gentle slop land; slop location effect; fertilizer use efficiency
雷金銀,雷曉婷,周麗娜,等. 耕作措施對緩坡耕地土壤養(yǎng)分分布及肥料利用率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(18):127-134.doi:10.11975/j.issn.1002-6819.2020.18.016 http://www.tcsae.org
Lei Jinyin, Lei Xiaoting, Zhou Lina, et al. Effects of tillage measures on soil nutrients distribution and fertilizer use efficiency on gentle slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 127-134. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.18.016 http://www.tcsae.org
2019-05-27
2020-08-03
國家自然科學(xué)基金項(xiàng)目(41561059);寧夏回族自治區(qū)科技支撐項(xiàng)目(2011ZYN156);寧夏農(nóng)林科學(xué)院全產(chǎn)業(yè)鏈創(chuàng)新示范項(xiàng)目(NZ13123)
雷金銀,副研究員,博士,主要從事水土資源高效利用與生態(tài)環(huán)境構(gòu)建等方面研究。Email:leijinyin@126.com
周麗娜,副研究員,主要從事農(nóng)業(yè)生態(tài)及植物營養(yǎng)等方面研究。Email:linazhou@163.com
10.11975/j.issn.1002-6819.2020.18.016
S512.11
A
1002-6819(2020)-18-0127-08