国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

柑橘育苗缽裝填轉(zhuǎn)運(yùn)機(jī)設(shè)計(jì)與試驗(yàn)

2020-12-02 16:05徐勤超李善軍張衍林盧紅安
關(guān)鍵詞:偏移量攪拌機(jī)分流

徐勤超,李善軍,張衍林,孟 亮,盧紅安,謝 林

柑橘育苗缽裝填轉(zhuǎn)運(yùn)機(jī)設(shè)計(jì)與試驗(yàn)

徐勤超,李善軍※,張衍林,孟 亮,盧紅安,謝 林

(華中農(nóng)業(yè)大學(xué)工學(xué)院,農(nóng)業(yè)農(nóng)村部長江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

目前國內(nèi)柑橘育苗缽裝填轉(zhuǎn)運(yùn)基本靠人工作業(yè),生產(chǎn)效率低下。為了解決這一問題,該研究提出了一種可一次裝填105缽的間歇式柑橘育苗缽機(jī)械裝填轉(zhuǎn)運(yùn)機(jī),采用EDEM對(duì)裝填轉(zhuǎn)運(yùn)機(jī)基質(zhì)分流過程進(jìn)行分析,確定了基質(zhì)分流部件分流板偏移量及高度的參數(shù)組合,設(shè)計(jì)了卸料機(jī)構(gòu)的連桿傳動(dòng)方案,計(jì)算了各桿長度,分析了車架結(jié)構(gòu)的強(qiáng)度,確定了車架結(jié)構(gòu)的尺寸參數(shù),并設(shè)計(jì)了整機(jī)的控制電路。加工試驗(yàn)樣機(jī),在攪拌機(jī)設(shè)定轉(zhuǎn)速下,重復(fù)裝填轉(zhuǎn)運(yùn)試驗(yàn)10次。試驗(yàn)結(jié)果表明,樣機(jī)運(yùn)行穩(wěn)定,單次基質(zhì)裝填平均量330.5 kg,單次裝填缽數(shù)105缽,平均裝填時(shí)間約60 s,轉(zhuǎn)運(yùn)裝置行走速度可達(dá)1.2 m/s,苗缽卸載下落可靠,排列整齊;單個(gè)育苗缽的平均最大裝填量3.23 kg,最小裝填量3.03 kg,平均裝填量3.15 kg。樣機(jī)結(jié)構(gòu)設(shè)計(jì)合理,裝填效率高,能夠?qū)崿F(xiàn)均勻裝填、穩(wěn)定轉(zhuǎn)運(yùn)的作業(yè)要求。研究結(jié)果可為后續(xù)柑橘苗缽裝填轉(zhuǎn)運(yùn)設(shè)備的研制和優(yōu)化提供參考。

農(nóng)業(yè)機(jī)械;設(shè)計(jì);試驗(yàn);柑橘;育苗缽;裝填;轉(zhuǎn)運(yùn);EDEM

0 引 言

柑橘容器育苗具有緩苗快、成活率高等優(yōu)點(diǎn),正逐步成為一種主要的育苗栽培方式[1-3]。目前,中國的柑橘容器育苗機(jī)械化作業(yè)程度很低,主要依靠人工作業(yè),特別是苗缽裝填環(huán)節(jié),勞動(dòng)強(qiáng)度大,生產(chǎn)效率低,已成為產(chǎn)業(yè)發(fā)展的主要障礙。為了解決這一問題,亟需研制柑橘育苗缽機(jī)械化裝填轉(zhuǎn)運(yùn)設(shè)備,以提高容器育苗的整體效率。

目前,荷蘭、比利時(shí)、德國、美國等國家已有成熟的基質(zhì)裝填裝備,工作效率高、適用范圍較廣,部分機(jī)型已完成了與定植移栽裝備的無縫對(duì)接[4-10]。而國內(nèi)基質(zhì)裝填裝備的研發(fā)還處于起步階段,相關(guān)設(shè)備缺乏[11-17]。荷蘭JAVO公司生產(chǎn)的Standard型花盆基質(zhì)裝填機(jī)采用撥叉式機(jī)構(gòu)來實(shí)現(xiàn)自動(dòng)落盆,裝填效率高且能適應(yīng)質(zhì)量較大、質(zhì)地粗糙的砂以及含水率高的黏濕基質(zhì)。比利時(shí)Demtec公司開發(fā)的SMART花盆基質(zhì)裝填機(jī),結(jié)構(gòu)緊湊,動(dòng)力需求小,但是裝填過程中需要人工協(xié)助落盆,適用于小規(guī)模的生產(chǎn)需求[11]。德國Mayer公司的TM2600花盆基質(zhì)裝填機(jī)工作效率最高,最大工作效率高達(dá)每小時(shí)8 000盆。臺(tái)灣亦祥公司開發(fā)的花盆基質(zhì)裝盆機(jī)將花盆放入落料盤上的定位孔里進(jìn)行裝填,可以同時(shí)適用于軟質(zhì)和硬質(zhì)的容器,但該設(shè)備需人工來輔助完成落盆,且設(shè)備體積較大,結(jié)構(gòu)冗雜??傮w而言,因已有機(jī)器體積龐大、價(jià)格昂貴、動(dòng)力要求大、維修困難。柑橘育苗缽分軟質(zhì)和硬質(zhì)2種,不論是軟質(zhì)育苗袋還是硬質(zhì)育苗缽都不能穩(wěn)定地豎直裝填,需要輔助的定位和撐開裝置,目前還沒有與柑橘苗缽裝填工藝匹配的裝填轉(zhuǎn)運(yùn)機(jī)械[18-24]。

基于此,本文提出了一種一次裝填105缽的間歇式育苗缽機(jī)械裝填轉(zhuǎn)運(yùn)機(jī),確定了關(guān)鍵部件的結(jié)構(gòu)參數(shù),設(shè)計(jì)了整機(jī)的控制電路,并加工了試驗(yàn)樣機(jī)進(jìn)行作業(yè)性能試驗(yàn),以驗(yàn)證裝填轉(zhuǎn)運(yùn)結(jié)構(gòu)設(shè)計(jì)的合理性及裝填效率,為后續(xù)柑橘苗缽裝填轉(zhuǎn)運(yùn)設(shè)備的研制和優(yōu)化提供參考。

1 裝填轉(zhuǎn)運(yùn)機(jī)結(jié)構(gòu)與工作原理

1.1 整機(jī)結(jié)構(gòu)

柑橘育苗缽裝填轉(zhuǎn)運(yùn)機(jī)由裝填裝置和轉(zhuǎn)運(yùn)裝置2個(gè)獨(dú)立的部分組成。裝填裝置包括機(jī)架、刮板機(jī)構(gòu)、驅(qū)動(dòng)機(jī)構(gòu);轉(zhuǎn)運(yùn)裝置包括車架、動(dòng)力系統(tǒng)、行走機(jī)構(gòu)和轉(zhuǎn)向機(jī)構(gòu),具體結(jié)構(gòu)如圖1。

裝填裝置和轉(zhuǎn)運(yùn)裝置配合使用,整機(jī)參數(shù)如表1。

1.2 工作原理

裝料前,操作解鎖轉(zhuǎn)動(dòng)裝置至解鎖狀態(tài),將連桿機(jī)構(gòu)的操作桿運(yùn)動(dòng)到解鎖裝置并鎖緊。此時(shí),連桿機(jī)構(gòu)的翻板運(yùn)動(dòng)到水平裝填狀態(tài)。將育苗缽撐開并放入隔間內(nèi),蓋上蓋板。啟動(dòng)轉(zhuǎn)運(yùn)裝置,控制轉(zhuǎn)運(yùn)裝置行駛到裝填裝置下方,通過轉(zhuǎn)運(yùn)裝置的導(dǎo)向輪與裝填裝置的導(dǎo)軌配合,引導(dǎo)轉(zhuǎn)運(yùn)裝置運(yùn)動(dòng)到裝料位置。裝料時(shí),打開控制開關(guān),裝填轉(zhuǎn)運(yùn)機(jī)啟動(dòng),攪拌罐輸送基質(zhì)到裝填裝置,經(jīng)基質(zhì)分流裝置分流后,刮土機(jī)構(gòu)將基質(zhì)均勻裝滿育苗缽,裝料完成,關(guān)閉開關(guān)。裝料后,啟動(dòng)轉(zhuǎn)運(yùn)裝置,控制其運(yùn)動(dòng)到卸料位置后停止,打開解鎖裝置,操作連桿機(jī)構(gòu)的操作桿運(yùn)動(dòng)至卸料狀態(tài),翻板在連桿機(jī)構(gòu)的作用下運(yùn)動(dòng)到豎直位置,隔間內(nèi)的育苗缽在重力作用下下落。

圖1 裝填轉(zhuǎn)運(yùn)機(jī)結(jié)構(gòu)示意圖

表1 柑橘育苗缽裝填轉(zhuǎn)運(yùn)機(jī)主要參數(shù)

2 裝填轉(zhuǎn)運(yùn)機(jī)關(guān)鍵部件設(shè)計(jì)

2.1 裝填裝置基質(zhì)分流部件設(shè)計(jì)

基質(zhì)分流部件對(duì)攪拌口的出料進(jìn)行分流,確?;|(zhì)被刮板刮入育苗缽前是均勻分布的,具體結(jié)構(gòu)如圖2。基質(zhì)沿著攪拌罐內(nèi)部的導(dǎo)流板流出,具有一定的切向速度,并不會(huì)落在基質(zhì)導(dǎo)流板的中線位置,而是有一定的偏移。由于分流板的存在,適量的基質(zhì)越過分流板,保證分流板正后方區(qū)域的基質(zhì)流量。因此,在其他結(jié)構(gòu)參數(shù)確定的情況下,適當(dāng)?shù)姆至靼逯虚g位置距基質(zhì)導(dǎo)流板中線的偏移量及分流板高度可以保證基質(zhì)被刮入育苗缽前是均勻分布的。本文采用EDEM建立裝填轉(zhuǎn)運(yùn)機(jī)出料分流模型進(jìn)行仿真分析,以獲得分流板偏移量及高度的最佳參數(shù)組合。

注:oo’為基質(zhì)導(dǎo)流板中線;f為分流板中間位置距離基質(zhì)導(dǎo)流板中線的偏移量,mm;h為分流板高度,mm。

2.1.1 EDEM仿真參數(shù)設(shè)置

基質(zhì)從攪拌罐中流出及分流的過程實(shí)質(zhì)是攪拌罐及基質(zhì)分流部件與顆粒以及顆粒與顆粒之間的接觸碰撞過程。為描述碰撞過程,采用Hert-Mindlin無滑移模型。攪拌機(jī)及裝填轉(zhuǎn)運(yùn)機(jī)材料為鋼,基質(zhì)參考華南地區(qū)沙質(zhì)土壤,各材料的力學(xué)特性參數(shù)[25]見表2、表3。

表2 材料參數(shù)

表3 材料接觸系數(shù)

基質(zhì)顆粒為添加了一定量有機(jī)質(zhì)的土壤,其粒徑主要分布在0.5~3.5 mm。通過統(tǒng)計(jì)分析,粒徑在2.5~3.5、1.5~2.5、0.5~1.5 mm三個(gè)區(qū)間的比例為1∶5∶10。因此,不同粒徑的基質(zhì)顆粒按照1∶5∶10比例建立球形顆粒模型。根據(jù)配套使用的JZC-300攪拌機(jī)參數(shù)(外形尺寸:2 260 mm×1 900 mm×2 750 mm;出料容量:300 L),建立簡化攪拌機(jī)模型。根據(jù)基質(zhì)導(dǎo)流板尺寸,取分流板2條邊長為200 mm,夾角為90°,基質(zhì)分流機(jī)構(gòu)離散元模型如圖3。

圖3 基質(zhì)分流機(jī)構(gòu)的離散元模型

2.1.2 EDEM仿真結(jié)果分析

為了分析基質(zhì)顆粒在經(jīng)過分流板分流后橫向分布的均勻性,將分流板后的導(dǎo)流區(qū)域劃分為8個(gè)均勻的計(jì)算域,從左到右依次編號(hào)為1~8,對(duì)每個(gè)計(jì)算域中包含的顆粒數(shù)量進(jìn)行統(tǒng)計(jì),如圖4所示。

注:1~8表示計(jì)算區(qū)域編號(hào)。

JZC-300攪拌機(jī)實(shí)際額定轉(zhuǎn)速為14.57 r/min,出料量300 L/min。因此,仿真時(shí)設(shè)置攪拌機(jī)轉(zhuǎn)動(dòng)角速度1.5 rad/s (14.57 r/min),根據(jù)出料量大小,初步設(shè)定分流板高度為210 mm,分析不同分流板偏移量時(shí)基質(zhì)顆粒的流動(dòng)情況,仿真結(jié)果如圖5a。

由圖5a可知,1號(hào)和8號(hào)計(jì)算域內(nèi)顆粒數(shù)量基本為0,這是由于1號(hào)和8號(hào)計(jì)算域?yàn)閮蓚?cè)擋板區(qū)域,理論上基質(zhì)顆粒數(shù)應(yīng)為0;處于中間位置的4號(hào)和5號(hào)計(jì)算域的顆粒數(shù)量始終低于其他區(qū)域,說明分流板的高度過高,阻擋了基質(zhì)顆粒越過分流板,基質(zhì)顆粒大多流向左右兩側(cè);當(dāng)分流板的偏移量為75 mm時(shí),2、3、6、7號(hào)計(jì)算域內(nèi)顆粒數(shù)量基本一致,因此初步確定分流板的偏移量為75 mm。

取分流板偏移量為75 mm,對(duì)不同的分流板高度進(jìn)行計(jì)算,仿真結(jié)果如圖5b。

由圖5b可知,隨著分流板高度逐漸降低,左右兩側(cè)的2、3、6、7號(hào)計(jì)算域內(nèi)的顆粒數(shù)量逐漸減少,而中間4、5號(hào)計(jì)算域內(nèi)的顆粒數(shù)量逐漸增多;當(dāng)分流板的偏移量為75 mm,高度195 mm時(shí),各計(jì)算域內(nèi)顆粒數(shù)量基本一致。因此,確定分流板相對(duì)基質(zhì)導(dǎo)流板中線的偏移量為75 mm、高度為195 mm。

圖5 EDEM仿真結(jié)果

2.2 轉(zhuǎn)運(yùn)裝置卸料機(jī)構(gòu)設(shè)計(jì)

轉(zhuǎn)運(yùn)裝置卸料機(jī)構(gòu)主要實(shí)現(xiàn)育苗缽的放置和卸載。該機(jī)構(gòu)的運(yùn)動(dòng)由連桿機(jī)構(gòu)實(shí)現(xiàn)(圖6)。裝填狀態(tài)下,連桿機(jī)構(gòu)的操作桿由解鎖裝置鎖定在機(jī)架上,翻板旋轉(zhuǎn)到水平位置;卸料狀態(tài)下,解鎖裝置打開,操作桿運(yùn)動(dòng)到初始操作位置,翻板旋轉(zhuǎn)到豎直狀態(tài)。

圖6 卸料機(jī)構(gòu)示意圖

為確定卸料機(jī)構(gòu)參數(shù),對(duì)連桿機(jī)構(gòu)的運(yùn)動(dòng)進(jìn)行分析,連桿機(jī)構(gòu)的運(yùn)動(dòng)簡圖如圖7a。原動(dòng)件1在初始位置時(shí),連架桿4、5處于豎直的卸料狀態(tài);原動(dòng)件1運(yùn)動(dòng)到水平鎖定位置時(shí),連架桿4、5運(yùn)動(dòng)到水平的裝填狀態(tài),連桿3保持平動(dòng)。圖7b為連桿機(jī)構(gòu)在裝填和卸載狀態(tài)的位置示意圖,為原動(dòng)件,為連桿,為翻板,實(shí)線表示裝填狀態(tài)位置,虛線表示各桿件卸載狀態(tài)位置。

圖7 連桿機(jī)構(gòu)圖

考慮連桿機(jī)構(gòu)連架桿的初始位置要求及空間布置要求,初步確定長度=17 mm、長度=30 mm、長度=183 mm、長度=15 mm、=90 mm、=350 mm。由圖7b的幾何關(guān)系確定各桿桿長:

連桿機(jī)構(gòu)要運(yùn)動(dòng)到卸載狀態(tài),桿長必須滿足條件:

+>(2)

其中

且=+,=。

經(jīng)過計(jì)算,250.1 mm,'=286 mm>,各桿件尺寸滿足圖7b所示的幾何關(guān)系。

2.3 轉(zhuǎn)運(yùn)裝置車架結(jié)構(gòu)設(shè)計(jì)

在柑橘育苗大棚內(nèi),一壟一般按每排7個(gè)放置育苗缽,而轉(zhuǎn)運(yùn)裝置由于運(yùn)動(dòng)的要求不能設(shè)計(jì)過長,因此設(shè)計(jì)一次轉(zhuǎn)運(yùn)15排,每排7個(gè)育苗缽。在內(nèi)框中設(shè)計(jì)15×7個(gè)育苗缽隔間,為方便卸料,隔間長寬略大于裝填完基質(zhì)的育苗缽的尺寸,因此內(nèi)框尺寸為1 599 mm×824 mm× 220 mm(長×寬×深),內(nèi)框置于支撐架上,具體結(jié)構(gòu)如圖8。

圖8 車架結(jié)構(gòu)圖

Fig. 8 Diagram of frame structure

轉(zhuǎn)運(yùn)裝置的支撐架是設(shè)備承重部分,上支撐柱主要承受育苗缽隔間的質(zhì)量,下支撐柱承受整機(jī)和基質(zhì)的質(zhì)量,因此支撐架上下框架采用不同強(qiáng)度的Q235方鋼,以減輕總體質(zhì)量。

支撐柱承受的壓強(qiáng)為

式中0為接觸位置所受的壓力,N;為接觸面積,m2;0為方鋼的外邊長,m;為方鋼的內(nèi)邊長,m。

根據(jù)理論計(jì)算,上支撐架上框選用30 mm×3 mm的方鋼,下框選用50 mm×5 mm的方鋼,支撐架上框約為86.3 kg,裝填裝置整體質(zhì)量約為234 kg,基質(zhì)質(zhì)量約為315 kg,計(jì)算可得支撐架應(yīng)力為1.5 MPa,遠(yuǎn)小于材料的屈服極限235 MPa,符合使用強(qiáng)度要求。

3 控制電路設(shè)計(jì)

裝填轉(zhuǎn)運(yùn)機(jī)一次裝填要求105缽,由于裝填過程的間歇特性,單次裝填基質(zhì)量要求基本一致,因此需要控制攪拌機(jī)出料時(shí)間來控制出料量。設(shè)備的主要用戶為果農(nóng),控制電路必須安裝簡單、運(yùn)行穩(wěn)定、成本低廉。因此,裝填轉(zhuǎn)運(yùn)設(shè)備主要采用三相交流接觸器(型號(hào)CJX2-1810,額定電流20 A)與時(shí)間繼電器(型號(hào)JS14P-M,延時(shí)范圍0.1~99.9 s)分別控制2臺(tái)電機(jī)實(shí)現(xiàn)基質(zhì)的喂入、攪拌和出料,具體控制流程如圖9。

提升電機(jī)控制電路通過雙接觸器控制攪拌電機(jī)正反轉(zhuǎn)實(shí)現(xiàn)基質(zhì)料斗的提升與下降;攪拌電機(jī)控制電路通過接觸器控制攪拌電機(jī)的正反轉(zhuǎn)實(shí)現(xiàn)攪拌和出料,時(shí)間繼電器控制電機(jī)的反轉(zhuǎn)時(shí)間。將攪拌電機(jī)控制電路與提升電機(jī)控制電路并聯(lián)接入總開關(guān)與電源線。

圖9 控制流程圖

4 樣機(jī)試驗(yàn)

根據(jù)裝填轉(zhuǎn)運(yùn)機(jī)關(guān)鍵部件及控制系統(tǒng)設(shè)計(jì)結(jié)果加工試驗(yàn)樣機(jī),如圖10。通過實(shí)際的裝填轉(zhuǎn)運(yùn)試驗(yàn),考核裝填轉(zhuǎn)運(yùn)過程的可靠性和穩(wěn)定性,并用電子稱(測量精度1 g;量程30 kg)分別稱量一次裝填完成后各苗缽的質(zhì)量,測試裝填的均勻性。

圖10 樣機(jī)試驗(yàn)

試驗(yàn)采用規(guī)格為15 cm×25 cm(口徑×高)、厚度為0.02的塑料育苗缽。試驗(yàn)基質(zhì)為華南地區(qū)沙質(zhì)土壤(土壤參數(shù)見表2)。出料裝置為JZC-300攪拌機(jī)(轉(zhuǎn)速14.57 r/min,平均出料量300 L/min,最大單次出料量為平均出料量的1.5倍)

試驗(yàn)由同一人操作,將基質(zhì)裝入攪拌車,育苗缽放入苗缽隔間,操作轉(zhuǎn)運(yùn)裝置運(yùn)動(dòng)到裝填裝置下方對(duì)應(yīng)位置,打開控制開關(guān),開始試驗(yàn)。裝填完成后,關(guān)閉控制開關(guān),操作轉(zhuǎn)運(yùn)裝置運(yùn)動(dòng)到指定地點(diǎn)卸料,試驗(yàn)結(jié)束,并稱量單個(gè)育苗缽裝填后的質(zhì)量。

當(dāng)攪拌機(jī)轉(zhuǎn)速達(dá)到設(shè)定轉(zhuǎn)速的1/2即基質(zhì)喂入速度為設(shè)定值1/2時(shí)進(jìn)行試驗(yàn)。試驗(yàn)過程中,由于喂入速度較低,基本沒有越過基質(zhì)分流部件流入裝填區(qū)域的基質(zhì),裝填區(qū)域前端中間部分靠近分流板的苗缽裝填速度明顯低于兩邊的苗缽,基質(zhì)損失量75 kg。

當(dāng)攪拌機(jī)轉(zhuǎn)速達(dá)到設(shè)定轉(zhuǎn)速的3/2即基質(zhì)喂入速度為設(shè)定值3/2時(shí)進(jìn)行試驗(yàn)。越過基質(zhì)分流部件流入的基質(zhì)較多,整車苗缽均能正常裝滿,且中間苗缽裝填速度明顯高于兩邊,基質(zhì)損失量68 kg。

攪拌機(jī)設(shè)定轉(zhuǎn)速下,重復(fù)裝填轉(zhuǎn)運(yùn)試驗(yàn)10次,平均單次基質(zhì)裝填量平均值330.5 kg,損失量平均值36 kg,損失率9.8%,各缽裝填量最大變異系數(shù)0.6%,單次裝填缽數(shù)105缽,不考慮放置空缽等準(zhǔn)備時(shí)間,單次平均裝填時(shí)間約60 s,轉(zhuǎn)運(yùn)裝置行走速度可達(dá)到1.2 m/s,育苗缽的裝料、卸載狀態(tài)良好,育苗缽排列整齊,10次試驗(yàn)各育苗缽平均質(zhì)量如表4。

表4 10次試驗(yàn)各育苗缽平均質(zhì)量

注:表中第一行數(shù)字1~7表示育苗缽所在列。

Note: The number 1-7 in the first row of table indicates the column where the seedling pot is located.

由表4可知,第1行各育苗缽基質(zhì)質(zhì)量占流入第1行總基質(zhì)質(zhì)量的百分比分別為14.25%、14.29%、14.29%、14.25%、14.34%、14.29%和14.25%,圖5所示的仿真曲線中(分流板偏移量為75 mm、高度為195 mm),區(qū)域2至區(qū)域7流入基質(zhì)質(zhì)量占基質(zhì)總量的百分比分別為16.99%、16.56%、16.56%、16.13%、16.87%、16.91%,而仿真區(qū)域的寬度為苗缽寬度的7/6倍,按照苗缽寬度等效,流入質(zhì)量占比在13.83%~14.56%之間,與試驗(yàn)值基本一致,驗(yàn)證了基質(zhì)分流部件結(jié)構(gòu)設(shè)計(jì)的合理性。

隨著行數(shù)的增加,基質(zhì)裝填量少量降低,這是由于采用刮板的裝填方式,靠近裝填開始位置的育苗缽基質(zhì)受上方刮過的基質(zhì)壓力作用,基質(zhì)更為緊實(shí),裝填量略大,且各缽裝填量大于理論裝填量。10次試驗(yàn)中,單個(gè)育苗缽平均裝填量最大值為3.23 kg,偏離平均值(3.15 kg)80 g,占2.5%,偏離理論裝填量(3 kg)230 g,占7.6%,最小值為3.03 kg,偏離平均值3.8%,偏離理論裝填量1%。裝填量偏離均值范圍為-3.8%~2.5%之間,滿足苗缽裝填均勻性要求。

攪拌機(jī)設(shè)定轉(zhuǎn)速下,裝填過程中機(jī)器運(yùn)轉(zhuǎn)平穩(wěn),不考慮放置空缽等準(zhǔn)備時(shí)間,單次裝填時(shí)間約60 s,裝填缽數(shù)105缽,而人工裝填速度每人每小時(shí)60~80個(gè),裝填效率大大提高。

5 結(jié) 論

1)研制了一種柑橘育苗缽裝填轉(zhuǎn)運(yùn)機(jī)械,能夠?qū)崿F(xiàn)苗缽基質(zhì)均勻裝填、穩(wěn)定轉(zhuǎn)運(yùn)的要求,裝填效率高。

2)樣機(jī)試驗(yàn)表明,樣機(jī)結(jié)構(gòu)設(shè)計(jì)合理,平均單次基質(zhì)裝填量330.5 kg,苗缽裝填數(shù)105缽,不考慮放置空缽等準(zhǔn)備時(shí)間,攪拌機(jī)設(shè)定轉(zhuǎn)速下,裝填時(shí)間約60 s,轉(zhuǎn)運(yùn)裝置行走速度1.2 m/s,裝填均勻性滿足生產(chǎn)要求。

研究結(jié)果可為后續(xù)柑橘苗缽裝填轉(zhuǎn)運(yùn)設(shè)備的研制和優(yōu)化提供參考。

[1]郭文武,葉俊麗,鄧秀新. 新中國果樹科學(xué)研究70年—柑橘[J]. 果樹學(xué)報(bào),2019,36(10):1264-1272. Guo Wenwu, Ye Junli, Deng Xiuxin. Fruit scientific research in new China in the past 70 years:Citrus[J]. Journal of Fruit Science, 2019,36(10):1264-1272. (in Chinese with English abstract)

[2]單楊. 中國柑橘工業(yè)的現(xiàn)狀、發(fā)展趨勢與對(duì)策[J]. 中國食品學(xué)報(bào),2008,8(1):1-8. Shan Yang. Present situation, development trend and countermeasures of citrus industry in China[J]. Journal of Chinese Institute of Food Science and Technology, 2008, 8(1): 1-8. (in Chinese with English abstract)

[3]陳洪明,李太盛,盧祎. 柑橘無病毒苗木繁育關(guān)鍵技術(shù)[J]. 南方農(nóng)業(yè),2007,1(3):33-35. Chen Hongming, Li Taisheng, Lu Yi. Key techniques of virus-free citrus seedling breeding[J]. Southern Agriculture, 2007, 1(3): 33-35. (in Chinese with English abstract)

[4]Coker R, Posadas B, Langlois S, et al. Current automation practices among greenhouse and mixed nursery/ greenhouse operations in selected Gulf South States[J]. Mississippi Agricultural & Forestry Experiment Station, 2014, 77(12): 8.

[5]Dian Y, Soranat R. Design of semi-automatic plant media bagging machine for container plant nursery[J]. Journal of Advanced Agricultural Technologies, 2018, 5(1): 36-40.

[6]Singh R R, Meena L K, Singh P. High tech nursery management in horticultural crops: a way for enhancing income[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(6): 3162-3172.

[7]劉霓紅,蔣先平,程俊峰,等. 國外有機(jī)設(shè)施園藝現(xiàn)狀及對(duì)中國設(shè)施農(nóng)業(yè)可持續(xù)發(fā)展的啟示[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):1-7. Liu Nihong, Jiang Xianping, Cheng Junfeng, et al. Current situation of foreign organic greenhouse horticulture and its inspiration for sustainable development of Chinese protected agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018,34(15):1-7. (in Chinese with English abstract)

[8]辜松,楊艷麗,張躍峰,等. 荷蘭溫室盆花自動(dòng)化生產(chǎn)裝備系統(tǒng)的發(fā)展現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(19):1-8. Gu Song, Yang Yanli, Zhang Yuefeng, et al. Development status of automated equipment systems for greenhouse potted flowers production in Netherlands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 1-8. (in Chinese with English abstract)

[9]Ellis C M. Potting machines and methods: United States patent, 6594949B2[P]. 2003-07-22.

[10]Siedlaczek U. Machine for potting flower pots: United States patent, 7637052B2[P]. 2009-12-29.

[11]楊雅婷,陳永生,胡檜,等. 國內(nèi)外花盆基質(zhì)裝填機(jī)研發(fā)現(xiàn)狀[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2013,34(1):47-50. Yang Yating, Chen Yongsheng, Hu Hui, et al. Experience of development of pot filling machine at home and abroad[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(1): 47-50. (in Chinese with English abstract)

[12]張林,崔秀芳,張美斌,等. 基于育苗袋育苗法的制備機(jī)結(jié)構(gòu)設(shè)計(jì)及關(guān)鍵部件仿真分析[J]. 福建農(nóng)林大學(xué)學(xué)報(bào):自然科學(xué)版,2019,48(4):539-545. Zhang Lin, Cui Xiufang, Zhang Meibin, et al. Structure design and key component simulation analysis of preparation machine based on nursery bag raising method[J]. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2019, 48(4): 539-545. (in Chinese with English abstract)

[13]楊雅婷,陳永生,胡檜,等. 花盆基質(zhì)裝填機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2014,35(1):170-175. Yang Yating, Chen Yongsheng, Hu Hui, et al. Design and experiments of pot filling machine[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(1): 170-175. (in Chinese with English abstract)

[14]顧俊杰,劉斌. 盆栽花卉自動(dòng)上盆設(shè)備[J]. 中國花卉園藝,2008,8(20):50. Gu Junjie, Liu Bin. Auto pot putting device for pot flower[J]. China Flowers and Horticulture, 2008, 8(20): 50. (in Chinese with English abstract)

[15]韓綠化,毛罕平,趙慧敏,等. 蔬菜穴盤育苗底部氣吹式缽體松脫裝置設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):37-45. Han Lühua, Mao Hanping, Zhao Huimin, et al. Design of root lump loosening mechanism using air jets to eject vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019,35(4):37-45. (in Chinese with English abstract)

[16]吳兆遷,史延輝. 2RJB―080型育苗基質(zhì)攪拌機(jī)的設(shè)計(jì)計(jì)算[J]. 林業(yè)機(jī)械與木工設(shè)備,2012,40(9):32-34. Wu Zhaoqian, Shi Yanhui. Design calculation of 2RJB -080 nursery medium mixer[J]. Forestry Machinery & Woodworking Equipment, 2012, 40(9): 32-34. (in Chinese with English abstract)

[17]謝俊花,程改青,張飛. 營養(yǎng)缽裝料機(jī)設(shè)計(jì)[J]. 安徽農(nóng)業(yè)科學(xué),2008(12):5235-5236. Xie Junhua, Cheng Gaiqing, Zhang Fei. Research on the design of earth bowl machine[J]. Anhui Agricultural Science, 2008(12): 5235-5236. (in Chinese with English abstract)

[18]張欣悅,李連豪,汪春,等. 2BS-420 型水稻植質(zhì)缽育秧盤精量播種機(jī)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(6):56-61. Zhang Xinyue, Li Lianhao, Wang Chun, et al. Type 2BS-420 precision seeder for rice seedling-growing tray made of paddy-straw[J]. Journal of Agricultural Machinery, 2013, 44(6): 56-61. (in Chinese with English abstract)

[19]柴永生,張書豹,侯慶東,等. 新型育苗缽育苗播種機(jī)的設(shè)計(jì)和結(jié)構(gòu)分析[J]. 農(nóng)機(jī)化研究,2014,36(2):113-116. Chai Yongsheng, Zhang Shubao, Hou Qingdong, et al. Design and analysis on a new seedling-pot seeder[J]. Journal of Agricultural Mechanization Research, 2014, 36(2): 113-116. (in Chinese with English abstract)

[20]渠聚鑫,郭克君,湯晶宇,等. 林業(yè)育苗穴盤基質(zhì)裝填機(jī)結(jié)構(gòu)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2013,35(5):88-91. Qu Juxin, Guo Kejun, Tang Jingyu, et al. Structural design of substrate filling machine for forestry nursery plug[J]. Journal of Agricultural Mechanization Research, 2013, 35(5): 88-91. (in Chinese with English abstract)

[21]魏俞涌,陸軍,盛奎川,等. 設(shè)施園藝基質(zhì)填料機(jī)設(shè)計(jì)與性能研究[J]. 浙江大學(xué)學(xué)報(bào): 農(nóng)業(yè)與生命科學(xué)版,2013,39(3):318-324. Wei Yuyong, Lu Jun, Sheng Kuichuan, et al. Design and performance investigation for substrate filler in protected horticulture[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2013, 39(3): 318-324. (in Chinese with English abstract)

[22]高原源,王秀,馮青春,等. 穴盤育苗基質(zhì)覆土裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2018,40(5):98-104. Gao Yuanyuan, Wang Xiu, Feng Qingchun, et al. Design and experiment of soil-covering device of plug seedling[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 98-104. (in Chinese with English abstract)

[23]張洋,范開鈞,初麒,等. 育苗紙缽自動(dòng)裝盤裝置的試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2020,46(4):180-183. Zhang Yang, Fan Kaijun, Chu Qi, et al. Experiment study on seedling paper-pot automatic feeding device for plug tray[J]. Journal of Agricultural Mechanization Research, 2020, 46(4): 180-183. (in Chinese with English abstract)

[24]白帆,吳昊,肖冰,等. 國內(nèi)外林木育苗生產(chǎn)技術(shù)裝備概述[J]. 林業(yè)機(jī)械與木工設(shè)備,2018,46(1):4-12. Bai Fan, Wu Hao, Xiao Bing, et al. Overview of tree seedling production technology and equipment at home and abroad[J]. Forestry Machinery & Woodworking Equipment, 2018, 46(1): 4-12. (in Chinese with English abstract)

[25]中國農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2007:563.

Design and test of seedling pot filling and transporting machine for citrus

Xu Qinchao, Li Shanjun※, Zhang Yanlin, Meng Liang, Lu Hong’an, Xie Lin

(,,,,430070,)

Container seedling raising of citrus has the advantages of fast survival and high survival rate after transplanting, and is becoming the main way of citrus cultivation. At present, the level of mechanization of vitrus container seedling cultivation in China is very low, mainly relying on manual operation, especially seedling pot filling, with high labor intensity and low production efficiency, which has become the main obstacle of industrial development. In order to sole this problem, a mechanical solution of filling and transporting 105 pots at one time was proposed. The machine consists of two independent parts: filling device and transporting device. The filling device included frame, scraping mechanism and driving mechanism; the transporting device included frame, power system, driving mechanism and steering mechanism. Before filling, he unlocking device was set to unlocking state. Then, the operating rod of the linkage mechanism was moved to the unlocking device and locked. At the same time, the flaps of the linkage mechanism moved to the horizontal filling state. Secondly, opened the seedling pots, putted the pot into the compartment in turn and covered with covering plate. Thirdly, started the transporting device, and moved the transporting device to the filling position with the guidance of the guiding wheel on the transporting device and guiding rail on the filling device. Then, turned on the control switch, the filling and transporting machine started, the substrate was scraped into the seeding pots after separating by the splitter plate. After filling, started the transporting device and moved it to unloading position. Unlocked the unlocking device, and moveed the operating rod of the linkage mechanism to the unloading state. The flaps moved to the vertical position under the action of the linkage mechanism, and the seedling pots in the compartments falled under the action of gravity. The optimal offset and height of splitter plate were determined based on the analysis of the substrate flow process by EDEM software, the scheme of the unloading part was designed, the length of each rod was calculated, the strength of the frame was analyzed, and the parameters of the frame were determined. Based on this, the control circuit was designed and the test prototype was made. The experimental results showed that the prototype machine ran stable in 10 tests, the mean substrate filling amount was 330.5 kg, the filling number of seedling pots was 105, the filling time was about 60 s under the setting speed of mixer,, the speed of the transport device was 1.2 m/s, and the seedling pots were unloaded and aligned well. The maximum average filling amount of single seedling port in 10 tests was 3.23 kg, which was 2.5% higher than average filling amount, and the minimum average filling amount of single seedling port in 10 tests was 3.03 kg, which was 3.8% lower than average filling amount. The designed machine can provide reference for the development and optimization of the citrus seedling pot filling and transporting machine.

agricultural machinery; design; experiments; citrus; seedling pot; filling; transporting; EDEM

徐勤超,李善軍,張衍林,等. 柑橘育苗缽裝填轉(zhuǎn)運(yùn)機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(18):66-72.doi:10.11975/j.issn.1002-6819.2020.18.009 http://www.tcsae.org

Xu Qinchao, Li Shanjun, Zhang Yanlin, et al. Design and test of seedling pot filling and transporting machine for citrus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 66-72. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.18.009 http://www.tcsae.org

2020-04-09

2020-07-28

重慶市技術(shù)創(chuàng)新與應(yīng)用發(fā)展專項(xiàng)重點(diǎn)項(xiàng)目(cstc2019jscx-gksbX0095);現(xiàn)代農(nóng)業(yè)(柑橘)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金項(xiàng)目(CARS-26);國家重點(diǎn)研發(fā)計(jì)劃(2017YFD0202001);柑橘全程機(jī)械化科研基地建設(shè)項(xiàng)目(農(nóng)計(jì)發(fā)[2017]19號(hào))

徐勤超,博士,講師,主要從事水果生產(chǎn)機(jī)械化技術(shù)與裝備研究。Email:hlxqc@mail.hzau.edu.cn

李善軍,博士,副教授,博士生導(dǎo)師,主要從事水果生產(chǎn)機(jī)械化技術(shù)與裝備研究。Email:shanjunlee@mail.hzau.edu.cn

10.11975/j.issn.1002-6819.2020.18.009

TP241.3;S225.93

A

1002-6819(2020)-18-0066-07

猜你喜歡
偏移量攪拌機(jī)分流
涉罪未成年人分流與觀護(hù)制度比較及完善
基于格網(wǎng)坐標(biāo)轉(zhuǎn)換法的矢量數(shù)據(jù)脫密方法研究
食用菌培養(yǎng)料攪拌機(jī)使用與維修保養(yǎng)
她在哪兒
她在哪兒
NSA架構(gòu)分流模式
基于AutoLISP的有軌起重機(jī)非圓軌道動(dòng)態(tài)仿真
長江河口南北槽分流口工程及瑞豐沙地形變化對(duì)分流比的影響
卷煙硬度與卷接、包裝工序相關(guān)性分析
清潔攪拌機(jī)的小妙招