張勇,張國華
納米鎢輔助氫氣還原氧化鎢制備超細(xì)鎢粉
張勇,張國華
(北京科技大學(xué) 鋼鐵冶金新技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,北京 100083)
在900~1 100 ℃溫度范圍內(nèi),氫氣還原純WO3粉會(huì)出現(xiàn)明顯的W晶粒長大現(xiàn)象。為了有效抑制W晶粒長大,在WO3粉中添加10%~40% (質(zhì)量分?jǐn)?shù))的納米W粉輔助氫氣還原氧化鎢制備超細(xì)W粉。研究納米鎢添加量(納米W)和還原溫度與時(shí)間對(duì)W粉形貌和粒度的影響,并研究影響機(jī)理。結(jié)果表明,不管是否添加納米W,W粉粒徑都隨還原溫度升高而增大。在沒有添加納米W粉時(shí),由于反應(yīng)過程中的CVT(chemical vapour transport,化學(xué)氣相傳輸),很難控制產(chǎn)物的形核和生長,所得還原W粉的粒徑為2.10~2.78 μm;添加納米W后,納米W在反應(yīng)過程中能減弱CVT并發(fā)揮形核劑的作用,從而使得W粉粒徑顯著減小。隨(納米W)增加,W粉粒徑逐漸減小,當(dāng)(納米鎢)為40%時(shí),還原W粉的粒徑為0.32~0.51 μm。
氫氣還原;超細(xì)W粉;形核和生長;化學(xué)氣相傳輸;反應(yīng)機(jī)理
金屬鎢具有高熔點(diǎn)、高硬度、高密度和低熱膨脹系數(shù)等一系列優(yōu)良的性質(zhì),是生產(chǎn)多種功能材料和結(jié)構(gòu)材料的主要原料,在航空、航天、軍事和原子能等領(lǐng)域得到廣泛應(yīng)用[1?2]。由于鎢熔點(diǎn)較高,鎢合金制品往往以W粉為原料,采用粉末冶金法制備。相比于微米粉末,采用超細(xì)粉末能顯著降低燒結(jié)溫度,可在較低的燒結(jié)溫度下制備具有高密度的細(xì)晶合金,從而可顯著提高合金的強(qiáng)度、硬度和耐磨性等性能[3?4]。因此,難熔金屬超細(xì)粉體及超細(xì)晶合金的制備成為近年研究和關(guān)注的熱點(diǎn)。W粉的制備方法主要有2種,氫氣還原氧化鎢[5?7]和碳還原氧化鎢[8?9]。對(duì)于氫氣還原氧化鎢,在反應(yīng)過程中會(huì)生成含鎢的氣相中間產(chǎn)物WO2(OH)2,當(dāng)其濃度很高時(shí),W可通過CVT(chemical vapour trans port, 化學(xué)氣相傳輸)方式生長[10?11],因此難以制備超細(xì)W粉。而碳還原氧化鎢制備超細(xì)粉末時(shí),難以準(zhǔn)確控制配碳量,使得W粉殘?zhí)剂窟^高。本課題組在之前的研究中提出了一種“缺碳預(yù)還原+氫氣深脫氧”的新工藝制備超細(xì)W粉和Mo粉[12?14],即先采用缺碳還原WO3(或MoO3)制備僅含少量WO2(或MoO2)的預(yù)還原W粉(或Mo粉),少量氧化物的存在可確保殘余碳的含量很低。接著采用氫氣對(duì)預(yù)還原粉體進(jìn)行深脫氧,得到高純、超細(xì)W粉(或Mo粉)。本文作者提出一種納米W輔助氫還原氧化鎢制備超細(xì)W粉的新工藝,即在三氧化鎢中配入一定量的納米W粉,利用鈉米W在反應(yīng)過程中的稀釋作用(對(duì)CVT機(jī)理的減弱)和形核劑的作用,有效調(diào)控鎢的形核和生長,從而得到超細(xì)W粉。通過研究納米W的添加量、還原溫度與還原時(shí)間對(duì)W粉形貌與粒度的影響,確定最佳的納米鎢添加量和還原工藝,為制備性能優(yōu)良的細(xì)晶鎢合金提供優(yōu)質(zhì)的W粉原料。
所用原料為WO3粉和納米W粉。WO3粉購自上海國藥集團(tuán)化學(xué)試劑有限公司,納米W粉是按照本課題組提出的“缺碳預(yù)還原+氫氣深還原”工藝制備的。圖1所示為WO3和納米W粉的SEM形貌。從圖中看出,WO3粉是由許多近球形納米晶粒組成的微米級(jí)顆粒,納米W粉的分散性很好,平均粒度為80 nm,形貌為近球形。圖2所示為氫氣還原氧化鎢制備W粉的實(shí)驗(yàn)裝置示意圖。
首先,在WO3粉中加入納米W粉,W粉的添加量(質(zhì)量分?jǐn)?shù),下同)分別為0、10%、20%和40%,放入瑪瑙研缽中混合30 min,得到WO3-納米W混合粉末。將混合粉末裝入坩堝,放置于石英管中,通入Ar氣排凈管內(nèi)的空氣。將硅?碳電爐內(nèi)的溫度升到目標(biāo)溫度(分別為900,1 000和1 100 ℃),然后將裝有反應(yīng)物的石英管放入電爐的恒溫區(qū),在Ar氣氣氛下使溫度穩(wěn)定在目標(biāo)溫度。將Ar氣切換成H2進(jìn)行氫還原,還原時(shí)間分別為0,5,10,20和60 min。待反應(yīng)完成后,再將氣氛切換成Ar氣,取出石英管,冷卻至室溫,再從石英管中取出樣品,得到還原W粉。
圖1 原料粉末的SEM形貌
(a) WO3powder; (b) Nano-tungsten powder
圖2 氫氣還原氧化鎢制備W粉的實(shí)驗(yàn)裝置示意圖
1—Gas flow meter; 2—Beaker flask with water;3—Empty beaker flask; 4—Quartz tube; 5—Rubber plug; 6—Si-C electrical furnace; 7—Heating element; 8—Alumina crucibles; 9—Firebrick.
用X射線衍射儀(XRD, Model TTRIII, Rigaku, Japan)對(duì)W粉進(jìn)行物相分析。利用場發(fā)射掃描電鏡(FE-SEM, ZEISS SUPRA 55, Germany)觀察W粉的形貌,并用納米粒度分析軟件(Nano-measurer)進(jìn)行粒度分析,每個(gè)樣品取3張掃描電鏡照片,每張照片至少測100個(gè)晶粒的尺寸。
圖3所示為WO3-納米W混合粉末在900 ℃還原1 h后的XRD譜。從圖中看出,雖然(納米W)不同,但還原產(chǎn)物都是W,沒有其他物相存在,表明WO3在900 ℃還原1 h后完全還原成W。實(shí)驗(yàn)結(jié)果表明,在更高的溫度下(1 000 ℃和1 100 ℃)還原1 h后,同樣得到純W粉。
圖3 WO3-納米W混合粉末氫還原后的XRD譜
圖4所示為WO3-20%納米W混合粉末及其在1 000 ℃分別還原5、10、20和60 min后的XRD譜。在氫氣還原反應(yīng)還未開始時(shí),主要物相為W18O49和W,表明此時(shí)發(fā)生歸中反應(yīng),WO3轉(zhuǎn)變?yōu)閃18O49;還原5 min后,主要物相變成WO2和W相,表明WO3很快被還原為WO2;反應(yīng)10和20 min后,還原產(chǎn)物的仍為WO2和W,但WO2的衍射峰逐漸變?nèi)?,W的衍射峰逐漸變強(qiáng);反應(yīng)60 min后,WO2峰消失,只存在W的衍射峰,說明還原完全,WO3全部轉(zhuǎn)化為W。
圖5所示為WO3-納米W混合粉末在900~1 100 ℃氫還原1 h后的SEM形貌,表1所列為混合粉末中的(納米W)與還原溫度對(duì)還原W粉粒徑的影響。從表1和圖5(a)~(d)看出,還原溫度為900 ℃時(shí),純WO3氫還原后所得W粉的粒徑為2.10 μm;(納米W)為10%時(shí),W粉粒徑略有減小,為1.43 μm;當(dāng)(納米W)增加到20%和40%時(shí),W粉粒徑顯著減小,分別為0.63 μm和0.32 μm。還原溫度為1 000 ℃和1 100 ℃時(shí),W粉粒徑隨納米鎢添加量的變化與還原溫度為900 ℃時(shí)的變化一致,當(dāng)(納米W)為40%時(shí),W粉粒徑分別為0.40 μm和0.51 μm。隨還原溫度從900 ℃升至1 100 ℃,純WO3的還原產(chǎn)物粒徑從2.10 μm增至2.78 μm;添加納米W輔助氫氣還原,所得W粉的粒度同樣是隨還原溫度升高而增大。
圖4 WO3-20%納米W混合粉末氫還原不同時(shí)間后的XRD譜
表1 w(納米W)與還原溫度對(duì)還原W粉粒徑的影響
圖6所示為WO3-20%納米鎢混合粉末及其在1 000 ℃分別還原5,10和20 min后的SEM形貌。從圖6(a)看出,還原前有2種形貌,一種為桿狀的W18O49,另一種是添加的近球形納米W顆粒。還原5 min后,桿狀W18O49基本消失,出現(xiàn)棒狀顆粒,由圖4可知其為WO2,同時(shí)近球形納米W顆粒隨處可見(見圖6(b))。還原10 min后,粉末形貌與還原5 min的一致,當(dāng)還原時(shí)間延長至到20 min時(shí),納米W顆粒顯著減少。
(a), (b), (c), (d)(nano-W) are 0, 10%, 20% and 40%, respectively, reduction at 900 ℃; (e), (f), (g), (h)(nano-W) are 0,10%, 20% and 40% respectively, reduction at 1 000 ℃; (i), (j), (k), (l)(nano-W) are 0, 10%, 20% and 40% respectively, reduction at 1 100 ℃
氫氣還原氧化鎢制備超細(xì)W粉的關(guān)鍵是調(diào)控鎢的形核和生長[15?17]。氫氣還原氧化鎢過程中存在兩種不同的反應(yīng)機(jī)理:假晶轉(zhuǎn)變機(jī)理和化學(xué)氣相傳輸(CVT)機(jī)理[18?20]。反應(yīng)機(jī)理主要取決于氫氣中水蒸氣的濃度:當(dāng)水蒸氣的分壓過高時(shí),生成高濃度的氣相水合物(WO2(OH)2),此時(shí)反應(yīng)主要遵循CVT機(jī)理,較高的WO2(OH)2濃度促進(jìn)W晶粒長大,導(dǎo)致生成的W粉粒度較大;而當(dāng)水蒸氣分壓較低時(shí),生成的WO2(OH)2濃度相對(duì)較低,此時(shí)反應(yīng)遵循假晶轉(zhuǎn)變機(jī)理,W的遷移受到限制,W原子只能沉積在未還原的反應(yīng)物上形核和生長,從而導(dǎo)致制備的W粉遺傳反應(yīng)物的形貌,無法形成均勻分散的超細(xì)鎢單晶,鎢粉粒度較大。在傳統(tǒng)的氫氣還原氧化鎢過程中,水蒸氣分壓和WO2(OH)2濃度較高,還原機(jī)理主要由CVT機(jī)理主導(dǎo),難以制備出超細(xì)W粉,還原1 h所得W粉的粒徑為2.10~2.78 μm。
根據(jù)圖4可知,在WO3粉末中添加納米W粉,在發(fā)生氫氣還原反應(yīng)之前,WO3與納米W發(fā)生歸中反應(yīng),轉(zhuǎn)變?yōu)閃18O49,主相為W18O49和納米W。當(dāng)還原5 min時(shí),W18O49被還原成WO2,主相變?yōu)閃O2和W。由于氫氣還原氧化鎢的氣?固反應(yīng)速度快于鎢與氧化鎢之間的固?固歸中反應(yīng),因此此時(shí)主要是氫氣還原W18O49生成WO2;且隨著WO2的快速生成,阻止W與WO3的歸中反應(yīng)繼續(xù)進(jìn)行,從而在氫還原過程中,大部分納米W晶粒發(fā)揮形核劑的作 用[21]。這些納米W核心大量分散在反應(yīng)物周圍,反應(yīng)過程產(chǎn)生的氣相傳輸相WO2(OH)2在濃度梯度的作用下被輸送到納米W晶粒附近并被氫氣還原,沉積到加入的納米W核心上,通過CVT機(jī)理生長。由于W顆粒均勻分散在WO3周圍,WO3顆粒被相互隔開,同時(shí)也降低單位體積內(nèi)的氧濃度,進(jìn)而降低氫氣還原過程中單位時(shí)間單位體積內(nèi)產(chǎn)生的WO2(OH)2的量,減弱了W原子的遷移,從而減緩W晶粒的長大。但由于加入的納米W與WO3發(fā)生歸中反應(yīng),消耗部分納米W顆粒,因此當(dāng)加入10%納米W時(shí),W粉的粒徑減小不明顯。隨納米鎢添加量增加,W顆粒在反應(yīng)中提供大量分散的形核中心,并且對(duì)WO2(OH)2的稀釋作用增強(qiáng),所得W粉的粒度減小。當(dāng)添加40%納米W時(shí),W粉的粒徑只有0.32~0.51 μm。如表1和圖5所示。
(a) 0 min; (b) 5 min; (c) 10 min; (d) 20 min
從圖5和表1看出,溫度對(duì)還原W粉粒徑也有顯著影響。無論是否添加納米W,W粉粒度都隨還原溫度升高而增大。這是因?yàn)楫?dāng)溫度較低時(shí),反應(yīng)速率較低,單位時(shí)間內(nèi)生成的水蒸氣和氣相WO2(OH)2的濃度都較低,鎢晶粒生長相對(duì)較慢;隨溫度升高,反應(yīng)速率加快,單位時(shí)間內(nèi)生成水蒸氣和WO2(OH)2濃度增加,從而促進(jìn)W晶粒的生長。
1) 采用氫氣還原WO3制備超細(xì)W粉,還原60 min后,WO3全部轉(zhuǎn)化為W。還原溫度為900~1 100 ℃時(shí),氫氣還原純WO3制備的W粉粒徑為2.10~2.78 μm。在WO3粉末中添加少量納米W后,W粉粒徑顯著減小,得到粒徑為0.32~0.63 μm的超細(xì)W粉。
2) 隨納米W添加量增加,W粉的粒徑減小,當(dāng)添加量為40%時(shí),W粉粒徑為0.32~0.51 μm。
3) 還原溫度對(duì)W粉粒徑也有顯著的影響。不管是否添加納米W,W粉粒徑都隨還原溫度升高而增大。
[1] ZHANG S W, WEN Y, ZHANG H J. Low temperature preparation of tungsten nanoparticles from molten salt[J]. Powder Technology, 2014, 253: 464?466.
[2] FANG Z Z, WANG X, RYU T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2): 288?299.
[3] WON C W, NERSISYAN H H, WON H I, et al. Refractory metal nanopowders: synthesis and characterization[J]. Current Opinion in Solid State and Materials Science, 2010, 14(3/4): 53?68.
[4] KURISHITA H, AMANO Y, KOBAYASHI S, et al. Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications[J]. Journal of Nuclear Materials, 2007, 367/370: 1453?1457.
[5] WU X W, LUO J S, LU B Z, et al. Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(S3): 785?789.
[6] SCHUBERT W D, LASSNER E. Production and characterization of hydrogen-reduced submicron tungsten powders. Part Ⅱ: Controlled decomposition of APT and hydrogen reduction of the oxides[J]. International Journal of Refractory Metals and Hard Materials, 1991, 10(4): 171?183.
[7] AZIMIRAD R, KHOSRAVI P, MOSHFEGH A Z. Influence of hydrogen reduction on growth of tungsten oxide nanowires[J]. Journal of Experimental Nanoscience, 2012, 7(6): 597?602.
[8] MA J, ZHU S G. Direct solid-state synthesis of tungsten carbide nanoparticles from mechanically activated tungsten oxide and graphite[J]. International Journal of Refractory Metals & Hard Materials, 2010, 28(5): 623?627.
[9] VENABLES D S, BROWN M E. Reduction of tungsten oxides with hydrogen and with hydrogen and carbon[J]. Thermochimica Acta, 1996, 285(2): 361?382.
[10] ZIMMERL T, SCHUBERT W D, BICHERL A, et al. Hydrogen reduction of tungsten oxides: Alkali additions, their effect on the metal nucleation process and potassium bronzes under equilibrium conditions[J]. International Journal of Refractory Metals and Hard Materials, 2017, 62: 87?96.
[11] LENZ M, GRUEHN R. Developments in measuring and calculating chemical vapor transport phenomena demonstrated on Cr, Mo, W and their compounds[J]. Chemical Reviews, 1997, 97(8): 2967?2994.
[12] SUN G D, WANG K F, SONG C M, et al. A low-cost, efficient, and industrially feasible pathway for large scale preparation of tungsten nanopowders[J]. International Journal of Refractory Metals and Hard Materials, 2019, 78: 100?106.
[13] WANG D H, SUN G D, ZHANG G H. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75: 70?77.
[14] SUN G D, ZHANG G H, JI X P, et al. Size-controlled synthesis of nano Mo powders via reduction of commercial MoO3with carbon black and hydrogen[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 11?22.
[15] SUN G D, ZHANG G H. Novel pathway to prepare Mo nanopowder via hydrogen reduction of MoO2containing Mo nanoseeds produced by reducing MoO3with carbon black[J]. JOM, 2019, 72(1): 347?353.
[16] SUN G D, ZHANG G H, JIAO S Q, et al. Shape-controlled synthesis of ultrafine molybdenum crystals via salt-assisted reduction of MoO2with H2[J]. The Journal of Physical Chemistry C, 2018, 122(18): 10231?10239.
[17] SUN G D, WANG K F, JI X P, et al. Preparation of ultrafine/ nano Mo particles via NaCl-assisted hydrogen reduction of different-sized MoO2powders[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 243?252.
[18] SCHULMEYER W V, ORTNER H M. Mechanisms of the hydrogen reduction of molybdenum oxides[J]. International Journal of Refractory Metals and Hard Materials, 2002, 20(4): 261?269.
[19] WANG L, ZHANG G H, WANG J S, et al. Study on hydrogen reduction of ultrafine MoO2to produce ultrafine Mo[J]. The Journal of Physical Chemistry C, 2016, 120(7): 4097?4103.
[20] DANG J, ZHANG G H, CHOU K C. A morphological study of the reduction of MoO2by hydrogen[J]. High Temperature Materials and Processes, 2015, 34(5): 417?424.
[21] ZHANG Y, JIAO S Q, CHOU K C, et al. Size-controlled synthesis of Mo powders via hydrogen reduction of MoO2powders with the assistance of Mo nuclei[J]. International Journal of Hydrogen Energy2020, 45(3): 1435?1443.
Preparation of ultrafine tungsten powder by nano-tungsten assisting hydrogen reduction of tungsten oxide
ZHANG Yong, ZHANG Guohua
(State Key Laboratory of Advanced Metallurgy, University of Science and Technology, Beijing 100083, China)
In the temperature range of 900?1 100 ℃, the prepared W powder by hydrogen reduction of pure WO3powder will have obvious crystal growth. In order to suppress the growth of W grains, the ultrafine tungsten powders were prepared by 10%?40% (mass fraction) nano-tungsten powder assisting hydrogen reduction of WO3. The effects of reaction temperature and the additive amount of nano-tungsten W((nano-W)) on the morphology and particle sizes of the products were studied, and the reaction mechanism of the two methods was also discussed. The results show that whether nano W is added or not, the particle size of W powder increases with the increase of reduction temperature. Without the addition of nano W powder, it is difficult to control the nucleation and growth of the product due to the chemical vapor transport (CVT) in the reaction process. The particle size of the reduced W powder is 2.10?2.78 μm. However, the addition of nano W can weaken the effect of CVT accompanied with nucleating agent in the reaction process, which makes the particle size of W powder decrease significantly. With the increase of(nano-W) content, the particle size of reduced tungsten powder decreases gradually. When(nano-W) is 40%, the particle size of reduced tungsten powder is 0.32?0.51 μm.
hydrogen reduction; ultrafine tungsten powders; nucleation and growth; CVT (chemical vapour transport); reaction mechanism
TF123.7+2
A
1673-0224(2020)05-375-06
國家自然科學(xué)基金資助項(xiàng)目(51734002)
2020?07?13;
2020?07?25
張國華,研究員,博士。電話:010-62332252;E-mail: ghzhang0914@ustb.edu.cn
(編輯 湯金芝)