孔小婷 蘇品 程菊娥 杜曉華 羅路云 陳麗潔 翟忠英 張德詠 劉勇
摘要:【目的】探究大豆不同生育期葉際光合細(xì)菌群落結(jié)構(gòu)多樣性及其分布特征,揭示大豆生育期與光合細(xì)菌群落結(jié)構(gòu)變化間的關(guān)系,為促進(jìn)光合細(xì)菌在農(nóng)業(yè)生產(chǎn)中的應(yīng)用提供參考依據(jù)?!痉椒ā繉?duì)5個(gè)生育期(苗期、出枝期、花期、鼓粒期和成熟期)大豆葉際光合細(xì)菌的Puf M基因序列進(jìn)行PCR擴(kuò)增,并對(duì)PCR擴(kuò)增產(chǎn)物進(jìn)行Illumina高通量測(cè)序,分析大豆葉際光合細(xì)菌群落多樣性及分布特征。【結(jié)果】從大豆5個(gè)生育期葉片樣品中共檢測(cè)到光合細(xì)菌2門(mén)、5綱、36屬、84種。不同生育期大豆葉片樣品中光合細(xì)菌的群落組成和結(jié)構(gòu)存在一定差異,在相對(duì)豐度方面表現(xiàn)為成熟期>苗期> 出枝期>花期>鼓粒期;在多樣性方面表現(xiàn)為苗期>出枝期>花期>鼓粒期>成熟期。大豆不同生育期的葉際光合細(xì)菌在門(mén)、綱、屬和種分類(lèi)水平上的優(yōu)勢(shì)菌群及所占比例分別為變形菌門(mén)(Proteobacteria)(92.11%~99.29%)、α-變形菌綱(Alphaproteobacteria)(75.17%~97.40%)、甲基桿菌屬(Methylobacterium)(60.67%~95.09%)和扭脫甲基桿菌(Methylobacterium extorquens)(36.89%~87.88%),隨著分類(lèi)水平逐漸細(xì)化,不同生育期對(duì)大豆葉際光合細(xì)菌群落組成和分布的影響越大?!窘Y(jié)論】生育期對(duì)大豆葉際光合細(xì)菌群落結(jié)構(gòu)有重要影響,實(shí)際生產(chǎn)中可通過(guò)在大豆不同生育期施用不同的光合細(xì)菌以促進(jìn)優(yōu)勢(shì)群落形成,從而促進(jìn)大豆生長(zhǎng)。
關(guān)鍵詞: 大豆;生育期;葉際;光合細(xì)菌;高通量測(cè)序;多樣性
中圖分類(lèi)號(hào): S565.1? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)08-1977-08
Community structure characteristics of soybean phyllosphere photosynthetic bacteria in different growth stages
KONG Xiao-ting1,2, SU Pin1,2, CHENG Ju-e2, DU Xiao-hua2, LUO Lu-yun2,
CHEN Li-jie1,2, ZHAI Zhong-ying1,2, ZHANG De-yong1,2, LIU Yong1,2*
(1Longping Branch, Graduate School of Hunan University, Changsha? 410125, China; 2Institute of Plant Protection,
Hunan Academy of Agriculture Sciences, Changsha? 410125, China)
Abstract:【Objective】To explore the phyllosphere photosynthetic bacterial communities structure diversity and distribution of soybean at different growth stages, reveal the relationship between the growth period of soybean and the chan-ges of photosynthetic bacteria community structure, provide a scientific reference for promoting the application of photosynthetic bacteria in agricultural production. 【Method】The Puf M gene region of phyllosphere photosynthetic bacteria in five growth stages of soybean(seedling stages, branching stages, flowering stages, bulging stages and maturity stages)was amplified by PCR, and then the products of PCR amplification were sequenced with Illumina high throughput to analyze the diversity and distribution of phyllosphere photosynthetic bacteria. 【Result】A total of 84 species, 36 genera, 5 classes and 2 phyla of photosynthetic bacteria were detected in the leaves samples from five growth stages . There were some differences in the structure and composition of photosynthetic bacterial community in soybean leaves samples of different growth stages. In terms of relative abundance, maturity stages>seedling stages>branching stages>flowering stages>bulging stages; while in terms of diversity, seedling stages>branching stages>flowering stages>bulging stages> maturity stages. The dominant phyllosphere photosynthetic bacterial community at phyla, class, genus and species levels of five growth stages soybean and their proportions were Proteobacteria(92.11%-99.29%), Alphaproteobacteria(75.17%-97.40%), Methylobacterium(60.67%-95.09%), Methylobacterium extorquens(36.89%-87.88%). However,with the refinement of classification, the influence of growth stages on the composition and distribution of phyllosphere photosynthetic bacteria community became great. 【Conclusion]Soybean growth periods have an important influence on the structure of phyllosphere photosynthetic bacteria community. In agricultural production, different photosynthetic bacteria could be applied in different growth stages of soybean to promote the formation of dominant community and thus promote the growth of soybean.
1. 3. 2 葉際微生物DNA提取、擴(kuò)增和測(cè)序 使用 FastDNA Spin Kit for Soil試劑盒對(duì)大豆葉際微生物DNA進(jìn)行提取,以樣品DNA為模板,選用正向引物Puf M F(5'-TACGGSAACCTGTWCTAC-3')和反向引物Puf M WAW(5'-AYNGCRAACCACCANGCCC A-3')(Béjà et al.,2002;Yutin et al.,2005)對(duì)樣品進(jìn)行擴(kuò)增。PCR反應(yīng)體系50 μL:正、反向引物各2 μL,Mix 25 μL,DNA模板2 μL,無(wú)菌水補(bǔ)足至50 μL。擴(kuò)增程序:94 ℃預(yù)變性5 min;94 ℃ 30 s,60 ℃ 30 s,72 ℃ 30 s,進(jìn)行35個(gè)循環(huán);72 ℃延伸10 min,4 ℃保存。PCR擴(kuò)增產(chǎn)物采用1.5%瓊脂糖凝膠進(jìn)行電泳檢測(cè),將目的條帶切膠回收后送至北京諾禾致源有限公司進(jìn)行Illumina高通量測(cè)序。
1. 4 數(shù)據(jù)分析
從下機(jī)數(shù)據(jù)中拆分出各樣本數(shù)據(jù),截去特異性接頭序列和引物序列后使用Flash(V1.2.7)對(duì)所有序列進(jìn)行拼接(Mago? and Salzberg,2011),拼接序列經(jīng)嚴(yán)格過(guò)濾處理(Bokulich et al.,2013)得到高質(zhì)量的標(biāo)簽序列數(shù)據(jù)。利用Uparse v7.0.1001(Haas et al.,2011)以97%的相似度將所有標(biāo)簽序列聚類(lèi)成為分類(lèi)操作單元(OTU)。以 Puf M功能基因數(shù)據(jù)庫(kù)作為注釋文庫(kù),用Mothur對(duì)OTU進(jìn)行物種注釋。最后以樣本中數(shù)據(jù)量最少的OTU數(shù)為標(biāo)準(zhǔn)進(jìn)行均一化處理,得到標(biāo)準(zhǔn)化OTU表,進(jìn)行后續(xù)的α多樣性和β多樣性分析。
使用QIIME 1.9.1計(jì)算物種豐富度指數(shù)(Chao1)和多樣性指數(shù)(Shannon),通過(guò)Shannon指數(shù)和Chao1指數(shù)評(píng)估序列文庫(kù)的α多樣性。并采用主坐標(biāo)分析(PCoA)及多重響應(yīng)置換程序(MRPP)、相似性分析(Anosim)和非參數(shù)檢驗(yàn)方法(Adonis)對(duì)任意兩組間微生物群落的差異進(jìn)行評(píng)估。
1. 5 統(tǒng)計(jì)分析
采用SPSS 20.0對(duì)所測(cè)數(shù)據(jù)進(jìn)行單因素方差分析,并應(yīng)用Duncans新復(fù)極差法在P=0.05水平上對(duì)大豆不同生育期葉際光合細(xì)菌群落組成進(jìn)行差異顯著性分析。
2 結(jié)果與分析
2. 1 不同生育期大豆葉際光合細(xì)菌群落高通量測(cè)序結(jié)果
以97%的相似度對(duì)OTU進(jìn)行聚類(lèi),共得到3539個(gè)OTUs。全部高通量測(cè)序結(jié)果提交至NCBI SRA (登錄號(hào)PRJNA593671)。如圖1所示,各樣品的稀釋曲線均趨向平坦,滿足測(cè)序深度要求。物種注釋結(jié)果顯示本研究共鑒定得到光合細(xì)菌2門(mén)、5綱、36屬、84種。
對(duì)不同生育期大豆葉際光合細(xì)菌樣品在門(mén)分類(lèi)水平上進(jìn)行序列鑒定分析,發(fā)現(xiàn)變形菌門(mén)(Proteobacteria)在各樣品的葉際光合細(xì)菌中占主導(dǎo)地位,其在各樣品中的相對(duì)豐度分別為92.11%(S1)、99.29%(S2)、97.77%(S3)、98.76%(S4)和97.17%(S5)。在綱分類(lèi)水平上,α-變形菌綱(Alphaproteobacteria)、γ-變形菌綱(Gammaproteobacteria)、Bata變形菌綱(Bataproteobacteria)和β-變形菌綱(Betaproteobacteria)的相對(duì)豐度分別為75.17%~97.40%、1.17%~11.46%、0.17%~5.47%和0~0.03%(圖2-A)。
在屬分類(lèi)水平上,S1的優(yōu)勢(shì)屬為甲基桿菌屬(Methylobacterium)(60.67%)、外硫紅螺菌屬(Ectothiorhodospira)(6.84%)和紅假單胞菌屬(Rhodopseudomonas)(4.59%);S2的優(yōu)勢(shì)屬為甲基桿菌屬(91.99%)、硫紅球菌屬(Thiorhodococcus)(2.54%)、外硫紅螺菌屬(1.22%)和Roseateles(1.29%);S3的優(yōu)勢(shì)屬為甲基桿菌屬(95.09%);S4的優(yōu)勢(shì)屬為甲基桿菌屬(94.82%)和紅桿菌屬(Rhodobacter)(1.70%);S5的優(yōu)勢(shì)屬為甲基桿菌屬(92.53%)和紅桿菌屬(1.03%)(圖2-B)。綜合大豆葉際光合細(xì)菌屬水平主要菌群相對(duì)豐度單因素方差分析結(jié)果(表1)可知,甲基桿菌屬、外硫紅螺菌屬和紅假單胞菌屬在大豆苗期與其他各生長(zhǎng)時(shí)期均存在顯著差異(P<0.05,下同)。甲基桿菌屬在大豆生育期呈先升高后降低的變化趨勢(shì),外硫紅螺菌屬和紅假單胞菌屬則呈逐漸降低并趨于穩(wěn)定的變化趨勢(shì)。
在種分類(lèi)水平上,大豆各生育期的主要優(yōu)勢(shì)種為扭脫甲基桿菌(Methylobacterium extorquens)(36.89%~87.88%)和耐輻射甲基桿菌(Methylobacterium radiotolerans)(6.05%~23.12%)(圖2-C)。由表2可知,扭脫甲基桿菌在大豆苗期的相對(duì)豐度占全部葉際光合細(xì)菌的0.37,相對(duì)于其他生長(zhǎng)發(fā)育期均具有顯著差異,相對(duì)豐度從苗期到成熟期呈先升高后降低的變化趨勢(shì);耐輻射甲基桿菌在大豆苗期的相對(duì)豐度最高,與其他生育期差異顯著,其相對(duì)豐度隨著大豆的生長(zhǎng)發(fā)育呈先降低后升高的變化趨勢(shì);沙氏外硫紅螺菌(E. shaposhnikovii)在大豆苗期相對(duì)豐度最高,隨后呈現(xiàn)顯著降低并趨向平穩(wěn)的變化趨勢(shì)。由圖3可知,隨著大豆的生長(zhǎng)發(fā)育,S1、S2、S3、S4和S5獨(dú)有的OTU分別占OTU總量的20.56%、8.84%、5.37%、7.63%和15.42%,所有樣品中共檢測(cè)到433個(gè)重合的OTUs,占所有樣品OTU總量的12.23%。
根據(jù)上述各分類(lèi)水平的結(jié)果,本研究發(fā)現(xiàn)隨著分類(lèi)水平逐漸細(xì)化,大豆不同生育期對(duì)葉際光合細(xì)菌群落組成和分布的影響越大。
2. 2 α多樣性分析結(jié)果
Shannon指數(shù)和Chao1指數(shù)被用來(lái)評(píng)估大豆葉際光合細(xì)菌群落α多樣性。大豆由苗期到成熟期,葉際光合細(xì)菌Shannon指數(shù)的變化范圍為4.27~5.57,在大豆苗期最高、成熟期最低,整體上呈逐漸降低的變化趨勢(shì)(圖4-A)。在大豆生長(zhǎng)發(fā)育期中,葉際光合細(xì)菌群落Chao1指數(shù)變化范圍為731.61~1115.6,在成熟期最高、花期最低,葉際光合細(xì)菌的物種豐富度從苗期到花期呈先逐漸下降再上升的變化趨勢(shì)(圖4-B)。結(jié)合圖1可知,大豆成熟期葉際光合細(xì)菌的物種豐富度高于其他生育期,表明葉際光合細(xì)菌群落多樣性受大豆生育期的影響。
2. 3 β多樣性分析結(jié)果
由圖5可知,同一生育期的樣品均能較緊密地結(jié)合在一起,其相似性較高,不同生育期菌群群落可明顯地區(qū)分開(kāi)。PCoA分析結(jié)果表明,PC1對(duì)大豆葉際光合細(xì)菌群落結(jié)構(gòu)的差異貢獻(xiàn)度為71.73%,PC2對(duì)大豆葉際光合細(xì)菌群落結(jié)構(gòu)的差異貢獻(xiàn)度為13.22%。大豆苗期葉際光合細(xì)菌群落所處象限為單獨(dú)象限,即大豆苗期的葉際微生物群落結(jié)構(gòu)與其他各生長(zhǎng)發(fā)育階段存在顯著差異;出枝期與花期間距離較近、鼓粒期與成熟期間距離較近,表明彼此間光合細(xì)菌群落結(jié)構(gòu)差異相對(duì)較小;大豆出枝期與成熟期間的距離相對(duì)較遠(yuǎn),表明大豆出枝期與成熟期間光合細(xì)菌群落結(jié)構(gòu)的差異相對(duì)較大。多重響應(yīng)置換程序、相似性分析和非參數(shù)檢驗(yàn)方法進(jìn)一步驗(yàn)證不同生育期具有顯著差異(表3),大豆不同生育期能顯著影響葉際光合細(xì)菌的群落組成和結(jié)構(gòu)。
3 討論
葉際微生物作為一種生態(tài)學(xué)指標(biāo)在生態(tài)穩(wěn)定與環(huán)境安全評(píng)價(jià)中發(fā)揮著重要作用(Morris and Monier,2003)。目前,關(guān)于葉際微生物的研究主要集中在細(xì)菌和真菌多樣性等方面(Zhang et al.,2018;Vokou et al.,2019),而對(duì)葉際光合細(xì)菌多樣性的研究較少。光合細(xì)菌在農(nóng)業(yè)生產(chǎn)中主要應(yīng)用于促進(jìn)農(nóng)作物生長(zhǎng)和品質(zhì)改善(Koh and Song,2007)。已有研究表明,紫色光合細(xì)菌可通過(guò)葉面噴施和根際灌溉來(lái)促進(jìn)作物生長(zhǎng)(Wu et al.,2013),但光合細(xì)菌在植物葉際的存在及作用研究仍較缺乏。本研究利用高通量測(cè)序技術(shù)對(duì)5個(gè)不同生育期大豆葉際光合細(xì)菌群落組成和結(jié)構(gòu)進(jìn)行研究,掌握了大豆不同生育期葉際光合細(xì)菌的群落結(jié)構(gòu)演替變化規(guī)律,對(duì)評(píng)價(jià)生育期對(duì)葉際光合細(xì)菌多樣性的影響具有重要意義。
本研究通過(guò)分析5個(gè)不同生育期大豆葉際光合細(xì)菌群落多樣性變化規(guī)律,發(fā)現(xiàn)在相對(duì)豐度方面表現(xiàn)為成熟期>苗期>出枝期>花期>鼓粒期,在多樣性方面表現(xiàn)為苗期>出枝期>花期>鼓粒期>成熟期。隨著大豆的生長(zhǎng)發(fā)育,Shannon指數(shù)在大豆苗期最高、成熟期最低,整體上呈逐漸降低的變化趨勢(shì),由此可知葉際光合細(xì)菌群落多樣性隨著大豆的生長(zhǎng)發(fā)育呈逐漸降低趨勢(shì)。在β多樣性分析中,主坐標(biāo)分析PCoA和相異性分析結(jié)果表明大豆各生育期間的光合細(xì)菌群落結(jié)構(gòu)存在顯著差異。植物葉際微生物群落組成結(jié)構(gòu)受生長(zhǎng)季節(jié)的顯著影響,植物生長(zhǎng)早期葉際微生物受土壤的影響較大,隨著植物的生長(zhǎng),植物葉際逐漸形成其獨(dú)特的微生物群落結(jié)構(gòu)(Copeland et al.,2015)。故推測(cè)大豆苗期葉際光合細(xì)菌群落結(jié)構(gòu)與其他生育期差異顯著的原因是大豆葉際光合細(xì)菌群落組成在苗期時(shí)受土壤微生物的影響較大,隨著大豆的生長(zhǎng)發(fā)育,葉際光合細(xì)菌群落結(jié)構(gòu)逐漸趨向穩(wěn)定。
物種分析結(jié)果表明,變形菌門(mén)是大豆不同生育期葉際光合細(xì)菌群落中最豐富的細(xì)菌類(lèi)群,與Bulgarelli等(2013)、Dong等(2019)的研究結(jié)果一致。本研究中,變形菌門(mén)主要包括α-變形菌綱(75.17%~97.4%)和γ-變形菌綱(1.17%~11.46%),且其相對(duì)豐度表現(xiàn)為α-變形菌綱>γ-變形菌綱,與Laforest-Lapointe等(2016)研究加拿大溫帶森林細(xì)菌群落豐度分布的結(jié)果一致,表明葉際細(xì)菌群落組成中α-變形菌綱占據(jù)著葉際細(xì)菌群落的絕對(duì)優(yōu)勢(shì)。本研究結(jié)果表明,甲基桿菌屬是大豆不同生育期葉際光合細(xì)菌的主要優(yōu)勢(shì)屬,甲基桿菌屬作為大豆葉際細(xì)菌的優(yōu)勢(shì)屬在其他植物葉際細(xì)菌群落的研究中也有報(bào)道。Delmotte等(2009)研究表明甲基桿菌屬在大豆、三葉草和擬南芥葉際微生物群落中具有較高的豐度;Wellner等(2011)研究發(fā)現(xiàn)甲基桿菌是三葉草和耳菜草葉面微生物群落的優(yōu)勢(shì)菌。甲基桿菌是最早報(bào)道在植物葉片上能進(jìn)行光合作用的細(xì)菌,對(duì)植物葉片表面具有重要作用,其能促進(jìn)植物種子萌發(fā)和植物生長(zhǎng)(Lidstrom and Chistoserdova,2002;Madhaiyan et al.,2007)。
4 結(jié)論
不同生育期大豆葉片中光合細(xì)菌的群落組成和結(jié)構(gòu)存在一定差異,變形菌門(mén)在大豆不同生育期中均為最優(yōu)勢(shì)的光合細(xì)菌類(lèi)群,大豆成熟期葉際光合細(xì)菌種類(lèi)最多,苗期葉際光合細(xì)菌分布最均勻,表明大豆生育期對(duì)葉際光合細(xì)菌群落結(jié)構(gòu)有重要影響。因此,實(shí)際生產(chǎn)中可通過(guò)在大豆不同生育期施用不同的光合細(xì)菌以促進(jìn)優(yōu)勢(shì)群落形成,從而促進(jìn)大豆生長(zhǎng)。
參考文獻(xiàn):
穆金艷,趙蘭枝,王振宇. 2017. 不同濃度光合細(xì)菌對(duì)水培油麥菜產(chǎn)量及品質(zhì)的影響[J]. 北方園藝,(15):56-60. [Mu J Y,Zhao L Z,Wang Z Y. 2017. Effects of different concentrations of photosynthetic bacteria on yield and quality of Lactuca sativa L.[J]. Northern Horticulture,(15):56-60.]
吳太虎,毛佳文,陳鋒,顧彪,李抄. 2015. 痕量微生物快速檢測(cè)系統(tǒng)[J]. 光學(xué)精密工程,23(11): 3061-3068. [Wu T H,Mao J W,Chen F,Gu B,Li C. 2015. Rapid trace microbia detection system[J]. Optics and Precision Engineering,23(11): 3061-3068.]
徐華東,狄亞楠,曹延珺,王立海,王海濱. 2019. 可培養(yǎng)土壤微生物數(shù)量與紅松活立木干基腐朽程度的關(guān)系[J]. 東北林業(yè)大學(xué)學(xué)報(bào),47(1): 52-55. [Xu H D,Di Y N,Cao Y J,Wang L H,Wang H B. 2019. Relationship between cultural soil microbial quantity and butt decay degree of Pinus koraiensis standing trees[J]. Journal of Northeast Forestry University,47(1): 52-55.]
楊芳,田俊嶺,楊盼盼,馮宏,賀廣生,陳旭東,盧鈺升,譚志遠(yuǎn),彭桂香. 2014. 高效光合細(xì)菌菌劑對(duì)番茄品質(zhì)、土壤肥力及微生物特性的影響[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),35(1): 49-54. [Yang F,Tian J L,Yang P P,F(xiàn)eng H,He G S,Chen X D,Lu Y S,Tan Z Y,Peng G X. 2014. Effects of inoculant of photosynthetic bacteria on tomato quality,soil fertility and soil microbial characteristics[J]. Journal of South China Agricultural University,35(1): 49-54.]
曾益波,劉駿,趙國(guó)盛,吳希陽(yáng),陳岳,蘇品,張德詠,劉勇. 2018. 光合細(xì)菌PSB06浸種對(duì)水稻促生作用研究[J]. 雜交水稻,33(3): 50-53. [Zeng Y B,Liu J,Zhao G S,Wu X Y,Chen Y,Su P,Zhang D Y,Liu Y. 2018. Promoting effects of soaking seed with photosynthetic bacterium PSB06 on rice growth[J]. Hybrid Rice,33(3): 50-53.]
Atamna-Ismaeel N,F(xiàn)inkel O,Glaser F,von Mering C,Vorholt J A,Koblí?ek M,Belkin S,Béjà O. 2012. Bacterial anoxygenic photosynthesis on plant leaf surfaces[J]. Environmental Microbiology Reports,4(2): 209-216.
Béjà O,Suzuki M T,Heidelberg J F,Nelson W C,Preston C M,Hamada T,Eisen J A,F(xiàn)raser C M,DeLong E F. 2002. Unsuspected diversity among marine aerobic anoxy-genic phototrophs[J]. Nature,415(6872): 630-633.
Bokulich N A,Subramanian S,F(xiàn)aith J J,Gevers D,Gordon J I,Knight R,Mills D A,Caporaso J G. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods,10(1): 57-59.
Bulgarelli D,Schlaeppi K,Spaepen S,Ver Loren van Themaat E,Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology,64(1): 807-838.
Compant S,Duffy B,Nowak J,Clément C,Barka E A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases:Principles,mechanisms of action,and future prospects[J]. Applied and Environmental Microbio-logy,71(9): 4951-4959.
Copeland J K,Yuan L,Layeghifard M,Wang P W,Guttman D S. 2015. Seasonal community succession of the phyllosphere microbiome[J]. Molecular Plant-Microbe Interactions,28(3):274-285.
Csotonyi J T,Swiderski J,Stackebrandt E,Yurkov V. 2010. A new environment for aerobic anoxygenic phototrophic bacteria: Biological soil crusts[J]. Environmental Microbiology Report,2(5): 651-656.
Danhorn T,F(xiàn)uqua C. 2007. Biofilm formation by plant-associa-ted bacteria[J]. Annual Review of Microbiology,61(1): 401-422.
Delmotte N,Knief C,Chaffron S,Innerebner G,Roschitzki B,Schlapbach R,von Mering C,Vorholt J A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America,106(38): 16428-16433.
Dong C J,Wang L L,Li Q,Shang Q M. 2019. Bacterial communities in the rhizosphere,phyllosphere and endosphere of tomato plants[J]. PLoS One,14(11): e0223847.
Du H L,Jiao N Z,Hu Y H,Zeng Y H. 2006. Real-time PCR for quantification of aerobic anoxygenic phototrophic bacteria based on pufM gene in marine environment[J]. Journal of Experimental Marine Biology,329(1): 113-121.
Haas B J,Gevers D,Earl A M,F(xiàn)eldgarden M,Ward D V,Gia-nnoukos G,Ciulla D,Tabbaa D,Highlander S K,Sodergren E,Methé B,DeSantis T Z,The Human Microbiome Consortium,Petrosino J F,Knight R,Birren B W. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research,21(3): 494-504.
Haas J C,Streeta N R,Sj?din A,Lee N M,H?gberge M N,N?sholm T,Hurry V. 2018. Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest[J]. Soil Biology and Biochemistry,125:197-209.
Hirano S S,Upper C D. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen,ice nucleus,and epiphyte[J]. Microbiology and Molecular Bio-logy Reviews,64(3): 624-653.
Hirose S,Nagashima K V P,Matsuura K,Haruta S. 2012. Diversity of purple phototrophic bacteria,inferred from puf M gene,within epilithic biofilm in Tama River,Japan[J]. Microbes and Environments,27(3): 327-329.
Jackson C R,Denney W C. 2011. Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern magnolia(Magnolia grandiflora)[J]. Microbial Ecology,61(1):113-122.
Koh R H,Song H G. 2007. Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions[J]. Journal of Microbiology and Biotechnology,17(11): 1805-1810.
Laforest-Lapointe I,Messier C,Kembel S W. 2016. Host species identity,site and time drive temperate tree phyllosphere bacterial community structure[J]. Microbiome,4(1): 27.
Lidstrom M E,Chistoserdova L. 2002. Plants in the pink: Cytokinin production by methylobacterium[J]. Journal of Bacteriology,184(7): 1818.
Lindow S E,Brandl M T. 2003. Microbiology of the phyllosphere[J]. Applied and Environmental Microbiology,69(4): 1875-1883.
Madhaiyan M,Poonguzhali S,Sa T. 2007. Characterization of 1-aminocyclopropane-1-carboxylate(ACC) deaminase con-taining Methylobacterium oryzaeand interactions with auxins and ACC regulation of ethylene in canola(Brassica campestris)[J]. Planta,226(4): 867-876.
Mago? T,Salzberg S L. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics,27(21): 2957-2963.
Manching H C,Carlson K,Kosowsky S,Smitherman C T,Stapleton A E. 2018. Maize phyllosphere microbial community niche development across stages of host leaf growth[J]. F1000 Research,6:1698.
Morris C E,Monier J M. 2003. The ecological significance of biofilm formation by plant-associated bacteria[J]. Annual Review of Phytopathology,41: 429-453.
Sapkota R,Knorr K,Jorgensen L N,O'Hanlon K A,Nicolaisen M. 2015. Host genotype is an important determinant of the cereal phyllosphere mycobiome[J]. The New Phytologist,207(4): 1134-1144.
Su P,Tan X Q,Li C G,Zhang D Y,Cheng J,Zhang S B,Zhou X G,Yan Q P,Peng J,Zhang Z,Liu Y,Lu X Y. 2017. Photosynthetic bacterium Rhodopseudomonas palus-tris GJ-22 induces systemic resistance against viruses[J]. Microbial Biotechnology,10(3):612-624.
Vokou D,Genitsaris S,Karamanoli K,Vareli K,Zachari M,Voggoli D,Monokrousos N,Halley J M,Sainis I. 2019. Metagenomic characterization reveals pronounced seasona-lity in the diversity and structure of the phyllosphere bacterial community in a mediterranean ecosystem[J]. Microorganisms,7(11): 518.
Wellner S,Lodders N,K?mpfer P. 2011. Diversity and biogeo-graphy of selected phyllosphere bacteria with special emphasis on Methylobacterium spp.[J]. Systematic and Applied Microbiology,34(8): 621-630.
Whipps J M,Hand P,Pink D,Bending G D. 2008. Phyllosphere microbiology with special reference to diversity and plant genotype[J]. Journal of Applied Microbiology,105(6): 1744-1755.
Wu J,Wang Y M,Lin X G. 2013. Purple phototrophic bacterium enhances stevioside yield by stevia rebaudiana bertoni via foliar spray and rhizosphere irrigation[J]. PLoS One,8(6): e67644.
Yutin N,Suzuki M T,Beja O. 2005. Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs[J]. Appl Environ Microbiol,71(12): 8958-8962.
Zhang Z,Luo L Y,Tan X Q,Kong X,Yang J G,Wang D H,Zhang D Y,Jin D C,Liu Y. 2018. Pumpkin. powdery mildew disease severity influences the fungal diversity of the phyllosphere[J]. PeerJ,6: e4559.
(責(zé)任編輯 麻小燕)
收稿日期:2019-12-11
基金項(xiàng)目:國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(31701764)
作者簡(jiǎn)介:*為通訊作者,劉勇(1966-),研究員,主要從事田間蔬菜病蟲(chóng)害防治研究工作,E-mail:haoasliu@163.com??仔℃茫?993-),主要從事植物保護(hù)研究工作,E-mail:569079899kxt@hnu.edu.cn