国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

主要經(jīng)濟(jì)雙殼貝類性別分化的分子機(jī)制概述*

2020-09-27 06:42周麗青楊金龍
漁業(yè)科學(xué)進(jìn)展 2020年5期
關(guān)鍵詞:性腺扇貝貝類

周麗青 趙 丹 吳 宙 吳 磊 楊金龍

主要經(jīng)濟(jì)雙殼貝類性別分化的分子機(jī)制概述*

周麗青1,2趙 丹2吳 宙3吳 磊4楊金龍2①

(1. 中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室 青島 266071;2. 上海海洋大學(xué) 水產(chǎn)種質(zhì)資源發(fā)掘與利用教育部重點(diǎn)實(shí)驗(yàn)室 上海 201306;3. 浙江海洋大學(xué)海洋科學(xué)與技術(shù)學(xué)院 舟山 316000;4. 江蘇海洋大學(xué)海洋生命與水產(chǎn)學(xué)院 連云港 222005)

本文簡(jiǎn)要概述了主要經(jīng)濟(jì)雙殼貝類性別分化分子機(jī)制研究進(jìn)展,介紹國(guó)內(nèi)外研究性別分化和性別決定的代表性雙殼貝類物種及主要研究成果,主要涉及牡蠣科(Ostreidae)、扇貝科(Pectinidae)、珍珠貝科(Pteriidae)等常見的經(jīng)濟(jì)物種,分子層面涵蓋了核酸、蛋白質(zhì)和激素等,通過綜述這些物種相關(guān)研究的現(xiàn)狀,展望雙殼貝類性別分化研究的發(fā)展趨勢(shì),以期加深對(duì)雙殼貝類性別分化和性腺發(fā)育的認(rèn)識(shí),為解析蝦夷扇貝()及其他雙殼貝類性別分化分子機(jī)制研究理清思路。

雙殼貝類;性別分化;基因;分子;核酸;激素;蛋白質(zhì)

貝類繁殖機(jī)制與性別分化一直是生物學(xué)研究目標(biāo)之一,因種類繁多、方式各異,目前對(duì)軟體動(dòng)物繁殖的分子機(jī)制仍知之甚少(Song, 2017; Zhang, 2014)。海洋軟體動(dòng)物,尤其雙殼貝類存在雌雄同體現(xiàn)象,但關(guān)于雌雄同體形成及性別分化的數(shù)據(jù),包括性別分化和性別決定過程的分子數(shù)據(jù),還不多見(Teaniniuraitemoana, 2014)。隨著分子生物學(xué)研究技術(shù)的快速發(fā)展,研究者們圍繞雙殼貝類性腺發(fā)育、繁殖特性及性別分化和性別決定開展的研究越來越深入。結(jié)合作者目前在蝦夷扇貝()性腺發(fā)育和性別分化開展的研究工作,本文簡(jiǎn)要介紹牡蠣科(Ostreidae)、扇貝科(Pectinidae)、珍珠貝科(Pteriidae)等常見的經(jīng)濟(jì)物種性別分化、性別決定和性腺發(fā)育的研究現(xiàn)狀,重點(diǎn)探討雙殼貝類性別分化研究的發(fā)展趨勢(shì),以期加深對(duì)雙殼貝類性別分化和性腺發(fā)育的認(rèn)識(shí)。一般來說,有機(jī)體的性別由 2個(gè)因素決定:遺傳因素或環(huán)境因素。、、Gata型鋅指蛋白I (zglp1)、蛋白o(hù)vo(ovo)和基因參與了貝類的遺傳性別決定與分化。激素用量、溫度、污染、養(yǎng)殖條件等因素也影響著貝類的性別決定,有時(shí)會(huì)引起性別逆轉(zhuǎn)。雙殼貝類性別分化或變化的分子機(jī)制研究綜述如下。

1 牡蠣科性腺發(fā)育與性別分化分子機(jī)制

牡蠣()俗稱海蠣子,是世界第一大養(yǎng)殖貝類。除了可食用外,牡蠣也是海洋生態(tài)系統(tǒng)的重要成員,對(duì)內(nèi)灣和近海水域藻華的調(diào)控有重要作用。牡蠣種類也很多,有些牡蠣有性生殖系統(tǒng)比較神奇,由雌雄異體、性別變化和偶爾的雌雄同體組成,盡管很多研究人員已經(jīng)對(duì)牡蠣進(jìn)行了大量研究,但對(duì)性別決定和分化的分子機(jī)制的認(rèn)識(shí)仍然存在很多盲區(qū),關(guān)于繁殖調(diào)控的分子通路研究也很少。有關(guān)牡蠣性腺發(fā)育和性別分化相關(guān)研究見表1。

表1 牡蠣科性腺發(fā)育及性別分化過程中的分子生物學(xué)研究

續(xù)表1

續(xù)表1

相關(guān)文獻(xiàn)以品種和報(bào)道時(shí)間為序排布,從表1可以看出,長(zhǎng)牡蠣()因?yàn)榉植挤秶鷱V泛,對(duì)其性腺發(fā)育和性別分化的研究開展得最多。從20世紀(jì)90年代起,至2008年前后,科研人員嘗試檢測(cè)性激素含量和分析促性腺激素釋放激素受體基因表達(dá)情況,來闡述性腺發(fā)育或性別分化的過程;2012~2013年期間,也有關(guān)于長(zhǎng)牡蠣GnRH樣肽前體基因的表達(dá)位點(diǎn)和生物活性的報(bào)道,及性腺轉(zhuǎn)化生長(zhǎng)因子β ()在牡蠣生殖過程中的作用,又如Ni等(2013)用酶聯(lián)免疫吸附法研究福建牡蠣雌二醇-17β(E2)和睪酮(Testosterone, T)含量的變化,獲得一個(gè)編碼牡蠣雌激素受體(ER),認(rèn)為ER可能在牡蠣性腺發(fā)育中起重要作用;Naimi等(2009)分別觀察了長(zhǎng)牡蠣、和基因()在雌雄配子發(fā)生周期中的表達(dá)特征;同年,F(xiàn)abioux等(2009)采用RNA干擾技術(shù)敲除性腺細(xì)胞中的基因,從而證明對(duì)牡蠣生殖細(xì)胞發(fā)育具有重要意義,開啟了一系列性別分化相關(guān)基因鑒定及功能的研究。隨著分子生物學(xué)和生物信息學(xué)分析技術(shù)的發(fā)展,轉(zhuǎn)錄組、基因組、蛋白質(zhì)組和代謝組等組學(xué)分析技術(shù)和精密檢測(cè)設(shè)備的研發(fā),使進(jìn)一步揭示牡蠣性腺發(fā)育和性別分化機(jī)制終將成為可能,并明確了牡蠣性別分化過程是個(gè)多基因參與、環(huán)境和遺傳因素相互作用的遺傳通路,這些研究也為扇貝、珠母貝等其他貝類的相關(guān)研究奠定了基礎(chǔ)。從最早的激素含量檢測(cè)分析,到性別分化相關(guān)基因的序列及功能分析,再到組學(xué)分析,目標(biāo)只有一個(gè),就是探討牡蠣性別分化機(jī)制,從而實(shí)現(xiàn)對(duì)牡蠣的性別和繁殖調(diào)控,有利于牡蠣的遺傳改良。

2 扇貝科性腺發(fā)育與性別分化分子機(jī)制

櫛孔扇貝()是中國(guó)重要的水產(chǎn)養(yǎng)殖品種,然而,頻繁的大規(guī)模病害已嚴(yán)重影響到產(chǎn)業(yè)的發(fā)展,遺傳連鎖圖譜對(duì)櫛孔扇貝的遺傳改良和選擇性育種有借鑒作用。因此,研究人員構(gòu)建了櫛孔扇貝性別相關(guān)AFLP遺傳連鎖圖譜,其中,有1個(gè)性別標(biāo)記在雌性第19個(gè)連鎖組上,重組率為0,LOD為27.3,而對(duì)應(yīng)的雄性中沒有這個(gè)標(biāo)記,雌性中這個(gè)特殊的標(biāo)記(P2f230)一旦得到證實(shí),將來可以分離、克隆、測(cè)序和轉(zhuǎn)化為Sequence characterized amplified region (SCAR),將其定位于染色體上作為性別決定的基因(Li, 2005)。在雙殼貝類雌雄間性狀無明顯差異、尚未見有性染色體的報(bào)道及性別決定因子或性別決定機(jī)制不清楚的情況下,構(gòu)建分子標(biāo)記高密度遺傳連鎖圖譜將為品種改良奠定基礎(chǔ),多種雙殼貝類遺傳連鎖圖譜構(gòu)建中均發(fā)現(xiàn),雄性遺傳連鎖圖譜中基因重組率要低于雌性,說明減數(shù)分裂時(shí),雌性基因連鎖互換的頻率要高于雄性,櫛孔扇貝(Wang, 2005)和蝦夷扇貝(Chen, 2012)也是如此,與(Liu, 2017)、長(zhǎng)牡蠣(Li, 2004)和貽貝() (Lallias, 2007)相似。

蝦夷扇貝是中國(guó)和日本重要的養(yǎng)殖貝類。除具有商業(yè)價(jià)值,還因其養(yǎng)殖群體中一定比例的雌雄同體在性別決定和分化機(jī)制研究中的價(jià)值而備受關(guān)注。為確定蝦夷扇貝分子性別分化的開始,篩選早期性別鑒定的分子標(biāo)記,對(duì)5~13月齡貝的性腺進(jìn)行組織學(xué)檢查,發(fā)現(xiàn)10月齡在性腺形態(tài)上發(fā)生性別分化,8個(gè)性別決定或分化候選基因的性腺表達(dá)譜顯示,只有2個(gè)基因表現(xiàn)出性別二型表達(dá),雌性性腺中含有豐富的FOXL2,雄性性腺中含有大量DMRT1L,研究將有助于更好地理解雙殼類性別分化的分子機(jī)制(Li, 2018)。利用Illumina測(cè)序技術(shù)對(duì)成熟期雄性和雌性性腺轉(zhuǎn)錄組文庫(kù)進(jìn)行配對(duì)和末端測(cè)序,通過BlastX與Swiss-Prot和NR開放數(shù)據(jù)庫(kù)相比,9354個(gè)unigenes與已知的獨(dú)特蛋白質(zhì)顯著匹配。根據(jù)注釋信息,至少有30個(gè)與性別決定和分化相關(guān)的基因,如、、和被篩選和鑒定(Yang, 2016)。也有研究對(duì)蝦夷扇貝3個(gè)雌性和3個(gè)雄性性腺的轉(zhuǎn)錄組進(jìn)行測(cè)序和分析,研究了先前在脊椎動(dòng)物中報(bào)道的關(guān)鍵性別決定基因,并推測(cè)存在于雙殼類貝類中,即、、和等。這些基因均具有保守的功能結(jié)構(gòu)域,并在性腺中被檢測(cè)到,其中,偏向雌性,和偏向雄性,表明這3個(gè)基因可能是扇貝性別決定或分化的關(guān)鍵候選基因(Li, 2016)。為進(jìn)一步研究雙殼類性別決定和分化的分子機(jī)制提供了資料。

許多軟體動(dòng)物常發(fā)生性逆轉(zhuǎn),性激素可能會(huì)參與這一過程。在成體蝦夷扇貝中,促性腺激素釋放激素和17β-雌二醇(E2)參與了雄貝的性成熟過程。成熟期,和分別在扇貝的雌性和雄性性腺中表達(dá)。性逆轉(zhuǎn)期,扇貝性腺器官培養(yǎng)時(shí),性激素處理降低了性逆轉(zhuǎn)期大部分扇貝性腺的表達(dá)。然而,在培養(yǎng)的成熟性腺中,無論是E2還是睪酮(T)作用,和的表達(dá)都沒有明顯的變化,提示性激素處理可能影響性逆轉(zhuǎn)期的性腺發(fā)育(Otani, 2017)。促性腺激素釋放激素(GnRH)是控制脊椎動(dòng)物生殖周期的核心,由于GnRH同源激素也存在于無脊椎動(dòng)物中,因此,可能在雙殼貝類中的也具有共同的祖先GnRH樣肽。比較蝦夷扇貝GnRH樣肽前體的cDNA轉(zhuǎn)錄本與其他無脊椎動(dòng)物和脊椎動(dòng)物的未加工的和成熟的氨基酸序列,確定了它的表達(dá)位點(diǎn)和生物活性。用抗章魚GnRH樣肽免疫細(xì)胞化學(xué)證明,扇貝神經(jīng)組織中存在GnRH樣肽,扇貝GnRH樣肽對(duì)體外培養(yǎng)的扇貝雄性性腺精原細(xì)胞分裂有促進(jìn)作用,但對(duì)體外培養(yǎng)的鵪鶉垂體細(xì)胞釋放LH無促進(jìn)作用(Treen, 2012)。

3 珍珠貝科性腺發(fā)育與性別分化分子機(jī)制

珍珠貝養(yǎng)殖是近年來備受關(guān)注的一種集約化珍珠生產(chǎn)方式,珠母貝是生產(chǎn)珍珠的主要生物。這吸引了專家對(duì)珠母貝的生長(zhǎng)和繁殖進(jìn)行研究,研究的目標(biāo)是通過利用控制繁殖的育種計(jì)劃生產(chǎn)有活力的珠母貝種群。在許多動(dòng)物中,基因同源序列常被用作特定生殖細(xì)胞檢測(cè)的分子標(biāo)記。珠母貝()成熟親貝和稚貝基因同源序列(povlg1)原位雜交結(jié)果表明,1月齡幼貝中,內(nèi)臟團(tuán)兩側(cè)對(duì)稱分布的一團(tuán)生殖細(xì)胞最初由多個(gè)細(xì)胞組成。2月齡幼貝,這些細(xì)胞遷移到內(nèi)臟團(tuán)的腹側(cè)邊緣。4月齡幼貝,這些細(xì)胞團(tuán)沿內(nèi)臟團(tuán)的外圍遷移,遷移過程中細(xì)胞數(shù)量和大小不斷增加。這種對(duì)未成熟生殖細(xì)胞分布和遷移的觀察,將為控制性腺發(fā)育和珍珠質(zhì)量提供有用的信息(Sano, 2015)。馬氏珠母貝()是我國(guó)人工培育海水珍珠的最主要珠母貝,在其養(yǎng)殖群體中,有少數(shù)雌雄同體個(gè)體,并在一定條件下出現(xiàn)性轉(zhuǎn)化。因此,克隆鑒定馬氏珠母貝的基因既可豐富基因家族的成員,探討基因在貝類中的保守性,也為進(jìn)一步克隆貝類的性別決定和分化的候選基因及探討貝類性別決定和分化機(jī)制提供基礎(chǔ)資料(于非非等, 2007)。

采用第二代測(cè)序方法和RNAseq技術(shù),對(duì)生產(chǎn)黑珍珠的黑唇珠母貝()不同發(fā)育階段的雄性和雌性性腺標(biāo)本進(jìn)行了測(cè)序,在Illumina測(cè)序、組裝和注釋之后,差異表達(dá)分析鑒定了1993種不同類型性腺間差異表達(dá)的contigs;樣本聚類分析解釋了性腺基因差異表達(dá)的大部分變異;對(duì)這些contigs的分析揭示了已知的編碼與性別決定和/或分化有關(guān)的蛋白質(zhì)的特異基因的存在,如雄性的和,雌性的和卵黃原蛋白特異性表達(dá)基因、和,在不同生殖階段(性別不確定、性反轉(zhuǎn)和性腺衰退)的表達(dá)譜表明這3個(gè)基因可能參與了黑唇珠母貝的精卵轉(zhuǎn)換。這些為研究雌雄同體海洋軟體動(dòng)物的繁殖提供了一種新的轉(zhuǎn)錄組學(xué)分析方法,鑒定了雄性先熟、雌雄同體黑唇珠母貝的性別分化和潛在的性別決定基因(Teaniniuraitemoana, 2014)。同樣是基于RNAseq數(shù)據(jù)集,嚴(yán)格的表達(dá)分析鑒定了1937個(gè)在性腺組織學(xué)分類中差異表達(dá)的contigs;9個(gè)候選基因被鑒定為性別通路的標(biāo)記:7個(gè)為雌性通路,2個(gè)為雄性通路(Teaniniuraitemoana, 2015)。這些是探究該物種和其他相關(guān)物種性別反轉(zhuǎn)、性別分化和性別決定論的有用工具。

具有家族的典型特征,與簇有顯著的同源性。定量PCR反應(yīng)測(cè)定發(fā)現(xiàn),配子發(fā)生過程中性腺中的mRNA在成熟個(gè)體中表達(dá)量最高;經(jīng)原位雜交證實(shí),在精子、精細(xì)胞、卵母細(xì)胞和卵黃原細(xì)胞中均有表達(dá);用RNA干擾技術(shù)敲除,導(dǎo)致mRNA表達(dá)水平下降,注射-dsRNA組為排放期雄性性腺,濾泡破裂,精子釋放。結(jié)果表明,的可能參與雄性性腺發(fā)育,維持雄性生殖功能(Wang, 2018)。采用RACE-PCR技術(shù),從馬氏珠母貝雄性性腺的SMART cDNA中克隆了基因的全長(zhǎng)cDNA序列。同源性比對(duì)顯示,編碼的氨基酸序列與海膽()、線蟲()、青鳉()、斑馬魚()、爪蟾()和小鼠()的基因的同源性并不高,但它們的DM結(jié)構(gòu)域是高度保守的。RT-PCR結(jié)果認(rèn)為,基因可能參與了馬氏珠母貝性別發(fā)育的調(diào)控(于非非等, 2009)。利用RACE-PCR技術(shù)從SMART cDNA文庫(kù)中克隆到一個(gè)基因的cDNA全長(zhǎng),通過熒光定量PCR技術(shù),對(duì)該基因在不同組織及發(fā)育不同時(shí)期性腺中的表達(dá)情況進(jìn)行分析。結(jié)果顯示,馬氏珠母貝這個(gè)基因與長(zhǎng)牡蠣基因的同源性最高,為80%,故命名為;系統(tǒng)進(jìn)化樹分析也顯示,與長(zhǎng)牡蠣基因的親緣關(guān)系最近。熒光定量PCR分析組織表達(dá)特異性及時(shí)序表達(dá)圖譜顯示,基因可能在馬氏珠母貝早期神經(jīng)系統(tǒng)發(fā)育和性別發(fā)育的調(diào)控方面起重要作用(于非非等, 2016)。利用RACE-PCR技術(shù)獲得企鵝珍珠貝()基因cDNA的全長(zhǎng)序列,通過熒光定量PCR分析基因在各組織中的表達(dá)特征,以及在早期雌性性腺、成熟期雌性性腺、早期雄性性腺、成熟期雄性性腺和排放期雄性性腺中的表達(dá)變化結(jié)果,推測(cè)可能與企鵝珍珠貝雄性性腺的發(fā)育有關(guān),可能參與了企鵝珍珠貝雄性性別分化和性腺發(fā)育的生理過程(潘珍妮等, 2017)。同樣地,企鵝珍珠貝基因與黑蝶真珠蛤()和馬氏珠母貝有高度同源性(>81%);在企鵝珍珠貝各組織中均有表達(dá),在足中表達(dá)量最高(<0.05),雄性性腺中其次;在成熟期雄性性腺中檢測(cè)到最大表達(dá)量(<0.05),在發(fā)育早期的雄性性腺、退化期雄性性腺和成熟期雌性性腺中表達(dá)量較低,其中,發(fā)育早期雌性性腺表達(dá)量最低(<0.05)(許開航等, 2018)。

4 總結(jié)與展望

雙殼貝類常有性逆轉(zhuǎn)現(xiàn)象,從已有的研究報(bào)道來看,除環(huán)境因素之外,遺傳物質(zhì)對(duì)性別的調(diào)控作用是主要因素,性激素可能會(huì)參與這一過程。水產(chǎn)養(yǎng)殖業(yè)是動(dòng)物性食物生產(chǎn)增長(zhǎng)速度最快的領(lǐng)域,貝類是水產(chǎn)養(yǎng)殖的主要對(duì)象之一,采用現(xiàn)代生物技術(shù)以滿足人們對(duì)水產(chǎn)養(yǎng)殖產(chǎn)品的數(shù)量和質(zhì)量增長(zhǎng)的需求日益迫切。然而,主要經(jīng)濟(jì)貝類種類較多,且繁殖特性和性別分化各有特點(diǎn),盡管開展了大量相關(guān)研究,仍有很多未知亟待解答。通過對(duì)蝦夷扇貝雌雄2個(gè)性別3個(gè)不同發(fā)育階段的大樣本量性腺轉(zhuǎn)錄組數(shù)據(jù),進(jìn)行加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析,發(fā)現(xiàn)turquoise和green基因模塊的基因與雄性性狀密切相關(guān),coral1和black基因模塊的基因與雌性性狀密切相關(guān),在性別決定和性別分化中起非常重要的作用(Zhou, 2019),目前,我們正在開展、、等基因功能驗(yàn)證分析。隨著轉(zhuǎn)錄組、基因組和蛋白質(zhì)組學(xué)分析技術(shù)的發(fā)展,使得我們能以更開闊的視野探尋雙殼貝類性別分化的分子機(jī)制,將來有望對(duì)雙殼貝類進(jìn)行性別和生殖調(diào)控,培育高產(chǎn)、抗逆、抗病新品種(系)貝類,保護(hù)和增殖瀕?;蛘湎∝愵愘Y源。

Cavelier P, Cau J, Morin N,. Early gametogenesis in the Pacific oyster: New insights using stem cell and mitotic markers. Journal of Experimental Biology, 2017, 220(21): 3988–3996

Chen M, Chang YQ, Zhang J,. A genetic linkage map of Japanese scallopbased on amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers. African Journal of Biotechnology, 2012, 11(46): 10517–10526

Corporeau C, Groisillier A, Jeudy A,. A functional study of transforming growth factor-Beta from the gonad of Pacific oyster. Marine Biotechnology, 2011, 13(5): 971–980

Dheilly NM, Lelong C, Huvet A,. Gametogenesis in the Pacific oyster: A microarrays-based analysisidentifies sex and stage specific genes. PLoS One, 2012, 7(5): e36353

Fabioux C, Corporeau C, Quillien V,.RNA interference in oyster –silencing inhibits germ cell development. FEBS Journal, 2009, 276(9): 2566–2573

Franco A, Jouaux A, Mathieu M,. Proliferating cell nuclear antigen in gonad and associated storage tissue of the Pacific oyster: Seasonal immunodetection and expression in laser microdissected tissues. Cell and Tissue Research, 2010, 340(1): 201–210

Frías-Espericueta MG, Osuna-Lópeza JI, Páez-Osuna F. Gonadal maturation and trace metals in the mangrove oyster: Seasonal variation. Science of the Total Environment, 1999, 231(2–3): 115–123

Guévélou E, Huvet A, Galindo-Sánchez CE,. Sex-specific regulation of AMP-activated protein kinase (AMPK) in the Pacific oyster. Biology of Reproduction, 2013, 89(4): 100, 1–15

Huvet A, Béguel JP, Cavaleiro NP,. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oysters. Journal of Experimental Biology, 2015, 218(11): 1740–1747

Huvet A, Fleury E, Corporeau C,. In vivo RNA interference of a gonad-specific transforming growth factor-β in the Pacific oyster. Marine Biotechnology, 2012, 14(4): 402–410

In VV, Ntalamagka N, O’Connor W,. Reproductive neuropeptides that stimulate spawning in the Sydney rock oyster (). Peptides, 2016, 82: 109–119

Lallias D, Lapègue S, Hecquet C,. AFLP-based genetic linkage maps of the blue mussel (). Animal Genetics, 2007, 38(4): 340–349

Li L, Xiang JH, Liu X,. Construction of AFLP-based genetic linkage map for Zhikong scallop,Jones et Preston and mapping of sex-linked markers. Aquaculture, 2005, 245(1–4): 63–73

Li L, Guo XM. AFLP-based genetic linkage maps of the Pacific oysterThunberg. Marine Biotechnology, 2004, 6(1): 26–36

Li RJ, Zhang LL, Li WR,.andare Yin and Yang genes for determining timing of sex differentiation in the bivalve mollusk. Frontiers in Physiology, 2018, 9: 01166

Li Y, Siddiqui G, Wikfors GH.Gmelin using protein profiles of hemolymph by Proteinchip?and SELDI-TOF-MS technology. Aquaculture, 2010, 309: 258– 264

Li YP, Zhang LL, Sun Y,. Transcriptome sequencing and comparative analysis of ovary and testis identifies potential key sex-related genes and pathways in scallop. Marine Biotechnology, 2016, 18(4): 453–465

Li YQ, Siddiqui G, Wikfors GH. Determination of sex and gonadal development of eastern oystersGmlin through protein profiles of hemolymph by SELDI- TOF-MS technology. Abstracts, 103rd Annual Meeting, March 27–31, 2011, 524

Liu B, Teng SS, Shao YQ,. A genetic linkage map of blood clam () based on simple sequence repeat and amplified fragment length polymorphism markers. Journal of Shellfish Research, 2017, 36(1): 31–40

Luo LZ, Zhang QH, Kong X,. Differential effects of zinc exposure on male and female oysters () as revealed by label-free quantitative proteomics. Environmental Toxicology and Chemistry, 2017, 36(10): 2602–2613

Matsumoto T, Osada M, Osawa Y,. Gonadal estrogen profile and immunohistochemical localization of steroidogenic enzymes in the oyster and scallop during sexual maturation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1997, 118(4): 811–817

Naimi A, Martinez AS, Specq ML,. Identification and expression of a factor of the DM family in the oyster. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2009, 152(2): 189–196

Naimi A, Martinez AS, Specq ML,. Molecular cloning and gene expression of Cg-Foxl2 during the development and the adult gametogenetic cycle in the oyster. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2009, 154(1): 134–142

Ni JB, Zeng Z, Ke CH. Sex steroid levels and expression patterns of estrogen receptor gene in the oysterduring reproductive cycle. Aquaculture, 2013, 376–379: 105–116

Otani A, Nakajima T, Okumura T,. Sex reversal and analyses of possible involvement of sex steroids in scallop gonadal development in newly established organ-culture systems. Zoological Science, 2017, 34(2): 86–92

Pan ZN, Yu XY, Wang MF,. Molecular cloning and expression analysis of Dmrt2 gene from. Marine Sciences, 2017, 41(10): 117–124 [潘珍妮, 余祥勇, 王梅芳, 等. 企鵝珍珠貝Dmrt2基因的克隆及表達(dá)分析. 海洋科學(xué), 2017, 41(10): 117–124]

Reis IMM, Mattos JJ, Garcez RC,. Histological responses and localization of the cytochrome P450 (CYP2AU1) inexposed to phenanthrene. Aquatic Toxicology, 2015, 169: 79–89

Rodet F, Lelong C, Dubos MP,. Molecular cloning of a molluscan gonadotropin-releasing hormone receptor orthologue specifically expressed in the gonad. Biochimica et Biophysica Acta, 2005, 1730(3): 187–195

Rodet F, Lelong C, Dubos MP,. Alternative splicing of a single precursor mRNA generates two subtypes of gonadotropin- releasing hormone receptor orthologues and their variants in the bivalve mollusc. Gene, 2008, 414(1–2): 1–9

Rodrigues-Silva C, Flores-Nunes F, Vernal JI,. Expression and immunohistochemical localization of the cytochrome P450 isoform 356A1 (CYP356A1) in oyster. Aquatic Toxicology, 2015, 159: 267–275

Sano N, Kimata S, Obata M,. Distribution and migration of immature germ cells in the pearl oysterwith the expression pattern of the vasa ortholog by in situ hybridization. Journal of Shellfish Research, 2015, 34(3): 803–809

Santerre C, Sourdaine P, Adeline B,. Cg-SoxE and Cg-β- catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2014, 167: 68–76

Santerre C, Sourdaine P, Martinez AS. Expression of a natural antisense transcript of Cg-Foxl2 during the gonadic differentiation of the oyster: First demonstration in the gonads of a lophotrochozoa species. Sexual Development, 2012, 6(4): 210–221

Santerre C, Sourdaine P, Marc N,. Oyster sex determination is influenced by temperature — First clues in spat during first gonadic differentiation and gametogenesis. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2013, 165(1): 61–69

Song SS, Yu H, Li Q. Genome survey and characterization of reproduction-related genes in the Pacific oyster. Invertebrate Reproduction and Development, 2017, 61(2): 97–109

Teaniniuraitemoana V, Huvet A, Levy P,. Gonad transcriptomeanalysis of pearl oyster: Identification of potential sex differentiation and sex determining genes. BMC Genomics, 2014, 15(1): 491

Teaniniuraitemoana V, Huvet A, Levy P,. Molecular signatures discriminating the male and the female sexual pathways in the pearl oyster. PLoS One, 2015, 10(3): e0122819

Treen N, Itoh N, Miura H,. Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: A primitive endocrine system controlling reproduction. General and Comparative Endocrinology, 2012, 176(2): 167–172

Wang LL, Song LS, Chang YQ,. A preliminary genetic map of Zhikong scallop (Jones et Preston 1904). Aquaculture Research, 2005, 36(7): 643–653

Wang Q, Shi Y, He MX., a potential factor in sexual development in the pearl oyster. Journal of Oceanology and Limnology, 2018, 36(6): 2337–2350

Wei PY, He PP, Zhang XZ,. Identification and characterization of microRNAs in the gonads ofusing high-throughput sequencing. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics , 2019, 31: 100606

Xu F, Kong LF, Zhang Y,. Complete genome sequencing and functional analysis of oyster. Science and Technology Information, 2016(6): 162–163 [許飛, 孔令鋒, 張揚(yáng), 等. 牡蠣全基因組測(cè)序與功能解析. 科技資訊, 2016(6): 162–163]

Xu KH, Wang MF, Yu XY,. Molecular cloning and expression analysis of Sox9 gene from. Journal of Guangdong Ocean University, 2018, 38(2): 15–22 [許開航, 王梅芳, 余祥勇, 等. 企鵝珍珠貝Sox9基因的克隆及表達(dá)分析. 廣東海洋大學(xué)學(xué)報(bào), 2018, 38(2): 15–22]

Xu R, Li Q, Yu H,. Oocyte maturation and origin of the germline as revealed by the expression of nanos-like in the Pacific oyster. Gene, 2018, 663: 41–50

Yang D, Yin C, Chang YQ,. Transcriptome analysis of male and female mature gonads of Japanese scallop. Genes and Genomics, 2016, 38(11): 1041–1052

Yu FF, Zhou L, Wang MF,. Cloning and sequence analysis of three DM domain in. Journal of Agricultural Biotechnology, 2007, 15(5): 905–906 [于非非, 周莉, 王梅芳, 等. 馬氏珠母貝() 3個(gè)DM結(jié)構(gòu)域的克隆及序列分析. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2007, 15(5): 905–906]

Yu FF, Gui JF, Zhou L,. Cloning and expression characterization of Dmrt5 in. Acta Hydrobiologica Sinica, 2009, 33(5): 844–850 [于非非, 桂建芳, 周莉, 等. 馬氏珠母貝Dmrt5基因的克隆及時(shí)序表達(dá)模式分析. 水生生物學(xué)報(bào), 2009, 33(5): 844–850]

Yu FF, Wang MF, Gui JF,. Molecular cloning and expression patterns of Sox11 gene in. Acta Hydrobiogica Sinica, 2016, 40(1): 71–75 [于非非, 王梅芳, 桂建芳, 等. 馬氏珠母貝Sox11基因的克隆及時(shí)序表達(dá)模式分析. 水生生物學(xué)報(bào), 2016, 40(1): 71–75]

Yue CY, Li Q, Yu H. Gonad transcriptome analysis of the Pacific oysteridentifies potential genes regulating the sex determination and differentiation process. Marine Biotechnology, 2018, 20(2): 206–219

Zhang N, Xu F, Guo XM. Genomic analysis of the Pacific oyster () reveals possible conservation of vertebrate sex determination in a mollusc. G3(Bethesda), 2014, 4: 2207–2217

Zhang X, Li Q, Kong LF,. DNA methylation frequency and epigenetic variability of the Pacific oysterin relation to the gametogenesis. Fisheries Science, 2018, 84(5): 789–797

Zhong XX, Li Q, Kong LF,. Quantitative trait locus analysis of meat yield and shell shape traits in the Pacific oyster,. Journal of Fishery Sciences of China, 2015, 22(3): 574–579 [仲曉曉, 李琪, 孔令鋒, 等. 長(zhǎng)牡蠣出肉率與殼形性狀的QTL定位分析. 中國(guó)水產(chǎn)科學(xué), 2015, 22(3): 574–579]

Zhou LQ, Liu ZH, Dong YH,. Transcriptomics analysis revealing candidate genes and networks for sex differentiation of yesso scallop (). BMC Genomics, 2019, 20(1): 671

Zhou ZY, Li Q, Yu H,. Cloning and expression analysis ofgene of Pacific oyster (). Periodical of Ocean University of China, 2018, 48(6): 45–54 [周祖陽(yáng), 李琪, 于紅, 等. 長(zhǎng)牡蠣基因cDNA克隆和表達(dá)分析. 中國(guó)海洋大學(xué)學(xué)報(bào), 2018, 48(6): 45–54]

Review: Molecular Mechanism of Sex Differentiation in Major Economic Bivalves

ZHOU Liqing1,2, ZHAO Dan2, WU Zhou3, WU Lei4, YANG Jinlong2①

(1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071; 2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 3. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000; 4. College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005)

In this review, we have provided an overview of the current knowledge on the different molecular mechanisms of sex differentiation in major economic bivalves. The representative species of bivalves were introduced to understand the different mechanisms of sex differentiation or sex determination. The review provides a brief summary of the recent discoveries on sex differentiation in oysters, scallops, pearl oysters, and other common economically important bivalve species. The review highlights the various sex differentiation-associated molecular mechanisms by focusing on the involvement of nucleic acids, proteins, hormones, and so on. The current research trends on sex differentiation in bivalves have been discussed, which may help to advance our understanding of the sex differentiation and gonadal development of the Yesso scallop and other bivalves.

Bivalves; Sex differentiation; Genes; Molecule; Nucleic acid; Hormone; Protein

YANG Jinlong, E-mail: jlyang@shou.edu.cn

S917.4

A

2095-9869(2020)05-0023-09

10.19663/j.issn2095-9869.20191213001

http://www.yykxjz.cn/

周麗青, 趙丹, 吳宙, 吳磊, 楊金龍. 主要經(jīng)濟(jì)雙殼貝類性別分化的分子機(jī)制概述. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(5): 194–202

Zhou LQ, Zhao D, Wu Z, Wu L, Yang JL. Review: Molecular mechanism of sex differentiation in major economic bivalves. Progress in Fishery Sciences, 2020, 41(5): 194–202

* 國(guó)家自然科學(xué)基金(31672637)、國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFD0900800)和浙江重中之重開放基金(KF2018008)共同資助[This work was supported by National Natural Science Foundation of China (31672637), National Key Research and Development Program of China (2018YFD0900800), and Zhejiang Provincial Top Discipline of Bioengineering (Level A) of China (KF2018008)]. 周麗青,E-mail: zhoulq@ysfri.ac.cn

楊金龍,教授,E-mail: jlyang@shou.edu.cn

2019-12-13,

2020-02-08

(編輯 馮小花)

猜你喜歡
性腺扇貝貝類
男性腰太粗 性腺功能差
“長(zhǎng)”出來的珍寶
小兒腸套疊氣體灌腸X線對(duì)性腺輻射劑量和放射防護(hù)研究
扇貝的眼睛在哪里
鮮美貝類可能暗藏毒素
扇貝的眼睛“排排站”
烤扇貝:貝殼反復(fù)利用,殼比肉還貴
認(rèn)識(shí)麻痹性貝類毒素
吃扇貝要去腸腺
真兩性畸形性腺惡變—例報(bào)告