国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一道圓錐曲線問題的解法探究

2020-09-10 07:22劉華昌
語數(shù)外學習·高中版中旬 2020年11期
關(guān)鍵詞:平分線焦點橢圓

劉華昌

圓錐曲線問題是高中數(shù)學中的重要內(nèi)容,也是高考的必考內(nèi)容.由于圓錐曲線既具有方程的形式,也有對應的圖形,所以在解答圓錐曲線問題時,學生可以從多個不同的角度思考解題的方案,既可以從方程、向量等代數(shù)角度,還可以從平面幾何、解析幾何等幾何角度去思考解題的方案.開展一題多解訓練,不僅能幫助學生掌握一類題型的通性通法,還能鍛煉他們的發(fā)散性思維能力.

例題:已知橢圓E經(jīng)過點 ,對稱軸為坐標軸,焦點 在 軸上,離心率 .

(1)求橢圓E的方程;

(2)求 的角平分線所在直線 的方程.

本題主要考查了橢圓的對稱軸、焦點、離心率等性質(zhì),以及角的平分線,屬于中高檔難度的題目.第一問較為簡單,學生結(jié)合A點的坐標和離心率很快就能求出a、b、c的值,進而求得橢圓E的方程為 .本文主要探究一下第二問的解法.由于角平分線不僅與直線方程有關(guān),還與平面幾何知識相關(guān),所以學生從不同的角度出發(fā),可得到多種不同的解法.

利用直線方程的點斜式可得角平分線所在直線方程 .

焦點三角形頂角的角平分線與過焦點三角形頂點處的切線相互垂直,這也是橢圓中一個重要的光學性質(zhì)(由橢圓的一個焦點發(fā)出的光線,經(jīng)旋轉(zhuǎn)橢圓面反射后集中到另一個焦點).本題利用橢圓的光學性質(zhì),求出角平分線所在直線方程的斜率.在解題的過程中,還利用了導數(shù)來求橢圓切線方程.這就要求學生學會發(fā)現(xiàn)問題、分析問題、建立模型,運用數(shù)學方法解決問題.

引導學生對一道數(shù)學題目從多角度、多層次進行探究,不僅能讓學生的思路變得更加開闊,還有利于提高他們發(fā)現(xiàn)、分析和解決問題的能力.這能有效地促進學生數(shù)學思維能力的發(fā)展.

(作者單位:山東省聊城市茌平區(qū)第一中學)

猜你喜歡
平分線焦點橢圓
焦點
角平分線巧構(gòu)全等三角形
b=c的橢圓與圓
巧用點在橢圓內(nèi)解題
一個三角形角平分線不等式的上界估計
“兩會”焦點
折疊莫忘角平分線
橢圓的三類切點弦的包絡
彩世界
焦點
阿巴嘎旗| 南郑县| 泰顺县| 罗城| 龙南县| 镇安县| 建德市| 靖边县| 亳州市| 陆川县| 娄烦县| 龙泉市| 新密市| 双流县| 新龙县| 井陉县| 靖州| 仲巴县| 巴楚县| 咸阳市| 资中县| 浦县| 巨野县| 哈尔滨市| 瑞安市| 中卫市| 商水县| 萍乡市| 本溪| 汤阴县| 视频| 衡南县| 高陵县| 博乐市| 舒城县| 玉林市| 修文县| 静宁县| 安阳市| 兴和县| 玛多县|