李振宇,王襯心,李進(jìn)軍,丁永軍,榮?彬
7A04鋁合金圓管構(gòu)件軸壓穩(wěn)定性研究
李振宇1, 2,王襯心2,李進(jìn)軍3,丁永軍3,榮?彬1, 2
(1. 濱海土木工程結(jié)構(gòu)與安全教育部重點(diǎn)實(shí)驗(yàn)室(天津大學(xué)),天津 300072;2. 天津大學(xué)建筑工程學(xué)院,天津 300072;3. 天津大學(xué)建筑設(shè)計(jì)研究院,天津 300073)
為研究7A04鋁合金圓管構(gòu)件的軸壓穩(wěn)定性,進(jìn)行了12個(gè)試件的軸壓穩(wěn)定性試驗(yàn),并建立了與之對(duì)應(yīng)的有限元模型,通過試驗(yàn)驗(yàn)證該模型后進(jìn)行了參數(shù)化分析,最后將整體軸壓穩(wěn)定系數(shù)的試驗(yàn)值、參數(shù)化分析值與根據(jù)各國規(guī)范計(jì)算的結(jié)果進(jìn)行了對(duì)比.研究結(jié)果表明:12個(gè)試件均為整體彎曲失穩(wěn)破壞;根據(jù)各國規(guī)范計(jì)算的整體軸壓穩(wěn)定系數(shù)值均低于其試驗(yàn)值與參數(shù)化分析值,其中我國的《鋼結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)》最接近,美國的新版規(guī)范最保守;根據(jù)試驗(yàn)及參數(shù)化分析數(shù)據(jù)提出了7A04鋁合金圓管構(gòu)件軸壓穩(wěn)定系數(shù)的建議計(jì)算公式.
7A04鋁合金;圓管構(gòu)件;軸壓穩(wěn)定性試驗(yàn);有限元模型;計(jì)算公式
鋁合金材料憑借自身重量輕、耐腐蝕、低溫韌性好、易于維護(hù)、可循環(huán)利用等優(yōu)點(diǎn)被廣泛應(yīng)用到現(xiàn)代工程結(jié)構(gòu)中[1].早在20世紀(jì)30年代,美國就開始研究鋁合金結(jié)構(gòu)并將其應(yīng)用在工程結(jié)構(gòu)中.1938年Templin等[2]采用軸壓試驗(yàn)考察了鋁合金柱的承載能力,試驗(yàn)表明鋁合金柱易發(fā)生失穩(wěn)破壞.隨后,Holt[3]、Clark等[4]、Hill[5]和Brungraber等[6]分別進(jìn)行了鋁合金軸心受壓構(gòu)件、受彎構(gòu)件以及壓彎構(gòu)件的承載力試驗(yàn),結(jié)合試驗(yàn)數(shù)據(jù)建立了軸壓、彎曲和壓彎作用下的鋁合金構(gòu)件力學(xué)模型并提出了相應(yīng)的承載力計(jì)算公式.歐洲國家對(duì)鋁合金軸心受壓構(gòu)件的研究略晚于美國.1970年以來,F(xiàn)aella等[7]、Bernard等[8-9]以及Valtinat等[10]分別采用數(shù)值分析和試驗(yàn)方法研究了鋁合金軸心受壓柱的軸壓穩(wěn)定系數(shù),并結(jié)合試驗(yàn)和數(shù)值分析數(shù)據(jù)擬合得到了用于計(jì)算鋁合金軸心受壓構(gòu)件穩(wěn)定承載力的3條柱子曲線.隨后,1976年Faella[11]采用數(shù)值分析方法研究了13種不同截面的鋁合金軸心受壓柱,發(fā)現(xiàn)不同截面鋁合金軸心受壓柱的整體穩(wěn)定性能和承載能力差異較大.在此基礎(chǔ)上,F(xiàn)rey[12]、Chapuis等[13-14]與Mazzolani[15]通過軸壓試驗(yàn)和壓彎試驗(yàn)考察了多種截面形式鋁合金柱的穩(wěn)定性和承載力,結(jié)果表明初始撓度和初始偏心對(duì)不同長細(xì)比鋁合金柱的整體穩(wěn)定性的影響程度不同.同時(shí),采用Ramberg-Osgood本構(gòu)模型計(jì)算穩(wěn)定承載力時(shí),應(yīng)變硬化指數(shù)對(duì)鋁合金柱的整體穩(wěn)定性影響較大.此外,他們還依據(jù)試驗(yàn)結(jié)果提出了采用冪指數(shù)形式的鋁合金柱軸壓和壓彎穩(wěn)定承載力計(jì)算公式.國內(nèi)對(duì)鋁合金結(jié)構(gòu)的研究始于21世紀(jì).2000年—2008年,國內(nèi)多位學(xué)者[16-23]主要對(duì)不同截面形式(工字型、圓形、T型、方形和L型等)的6061系列鋁合金柱進(jìn)行了軸壓試驗(yàn)和數(shù)值分析,并結(jié)合試驗(yàn)及數(shù)值分析結(jié)果提出了軸壓穩(wěn)定承載力的計(jì)算公式.此后,胡日欽畢力格[24]與王譽(yù)瑾[25]對(duì)不同截面形式的6082系列鋁合金柱進(jìn)行了軸壓試驗(yàn)及有限元研究,并提出了相應(yīng)的穩(wěn)定承載力計(jì)算公式.王元清等[26-28]對(duì)軸心受壓的L形截面7A04鋁合金柱進(jìn)行了試驗(yàn)研究與有限元分析,并提出了基于EC9的穩(wěn)定承載力計(jì)算公式.
目前國內(nèi)外的研究工作主要集中于6061和6082系列鋁合金構(gòu)件,7A04鋁合金構(gòu)件的試驗(yàn)數(shù)據(jù)和研究結(jié)果相對(duì)較少,尚無法掌握7A04鋁合金構(gòu)件的力學(xué)性能和承載力計(jì)算方法,并且我國目前的《鋁合金結(jié)構(gòu)設(shè)計(jì)規(guī)范》(GB 50429—2007)[29]也未給出7A04高強(qiáng)鋁合金構(gòu)件的設(shè)計(jì)公式.為此,本文采用試驗(yàn)研究和非線性有限元分析相結(jié)合的方法對(duì)7A04鋁合金圓管構(gòu)件的軸壓穩(wěn)定性能進(jìn)行研究.
表1?試件實(shí)測(cè)幾何尺寸
Tab.1?Measured dimensions of the column specimens
圖1?材料性能試驗(yàn)的試件尺寸(單位:mm)
圖2?材料性能試驗(yàn)的加載設(shè)備
表2?力學(xué)性能參數(shù)
Tab.2?Mechanical properties of the specimens
圖3?應(yīng)力-應(yīng)變曲線
進(jìn)行軸壓試驗(yàn)前采用文獻(xiàn)[31]中的方法測(cè)量了所有試件的跨中初始彎曲值.每根試件在跨中沿圓周(環(huán)向)均勻設(shè)置8個(gè)測(cè)點(diǎn)(每個(gè)測(cè)點(diǎn)位于圓周的八等分點(diǎn)處),取8個(gè)測(cè)點(diǎn)中最大的初始彎曲值作為試件的整體初始彎曲值.試驗(yàn)后采用文獻(xiàn)[25]中的計(jì)算方法計(jì)算所有試件的跨中初始偏心值.本文所采用的初始幾何缺陷值為整體初始彎曲值與跨中初始偏心值的疊加,表3為各試件的初始幾何缺陷值.
表3?試件的初始幾何缺陷值
軸壓試驗(yàn)在500t壓力試驗(yàn)機(jī)上完成.試驗(yàn)裝置如圖4所示.為模擬試件兩端鉸接的邊界條件,在試件兩端設(shè)置了單刀鉸支座.試驗(yàn)時(shí)試件的放置位置如圖4(b)所示,即將試件的最大初始彎曲線(跨中初始彎曲值最大的測(cè)點(diǎn)所在的平行于圓管長度的縱向線)放置在垂直于刀鉸支座轉(zhuǎn)動(dòng)軸線的方向上,使試件的失穩(wěn)方向接近真實(shí)鉸接約束時(shí)的屈曲破壞情況,下文第3.3節(jié)對(duì)此進(jìn)行了驗(yàn)證.
位移計(jì)的布置位置如圖5所示.為測(cè)量試件的軸向壓縮量,在試件兩端的刀鉸支座轉(zhuǎn)動(dòng)軸線上各對(duì)稱布置兩個(gè)位移計(jì).為測(cè)量試件的水平位移,在試件跨中布置兩個(gè)位移計(jì),并在試件上下1/4高度處各布置一個(gè)位移計(jì).
應(yīng)變片的布置如圖6所示,在每根試件的跨中和上下1/4高度處沿圓周均勻布置4個(gè)縱向應(yīng)變片,在跨中沿圓周均勻布置4個(gè)橫向應(yīng)變片.
圖5?位移計(jì)布置
圖6?應(yīng)變片布置
所有試件均為整體彎曲失穩(wěn)破壞,卸載后恢復(fù)了部分變形.圖7示出了典型的彎曲失穩(wěn)破壞情況.從荷載-軸向位移曲線(圖8)可以看出:荷載從零增至峰值荷載的過程中,各試件的軸向剛度變化并不大,位移增加也較緩慢;到達(dá)峰值荷載后,曲線出現(xiàn)了水平段,且試件長細(xì)比越大,曲線水平段越長,之后荷載開始下降,且試件的長細(xì)比越小荷載下降得越快.從典型的荷載-水平位移曲線(圖9)可以看出:在加載初期幾乎沒有水平位移,之后隨著荷載增大,位移緩慢增大,達(dá)到臨界荷載后,在荷載幾乎不減小的情況下位移迅速增大,隨后試件失穩(wěn)破壞.同時(shí)可以看到上下1/4高度處的水平位移幾乎相同,且小于跨中的水平位移,試件失穩(wěn)時(shí)近似為半波形狀.
圖7?典型的彎曲失穩(wěn)破壞(試件70-1960-2)
圖8?荷載-軸向位移曲線
Fig.8?Load-axial displacement curves
圖9 典型的荷載-水平位移曲線(試件70-1500-2)
根據(jù)試驗(yàn)實(shí)際情況創(chuàng)建模型的邊界條件,使模型形成在軸方向上兩端鉸接、在軸方向上兩端固接的邊界條件.
表4?穩(wěn)定承載力試驗(yàn)值和有限元計(jì)算值的對(duì)比
Tab.4?Comparison of the stability bearing capacity between FEA and experimental results
圖10?破壞形態(tài)對(duì)比(試件70-1960-2)
圖11?荷載-軸向位移曲線對(duì)比(試件70-1960-2)
圖12 荷載-跨中水平位移曲線對(duì)比(試件70-1960-2)
本文試驗(yàn)中采用的單刀鉸支座限制了試件的失穩(wěn)方向,與實(shí)際鉸接約束邊界條件不符,為使試件端部接近實(shí)際鉸接約束邊界條件,試驗(yàn)時(shí)將試件最大初始彎曲所在縱向線放置在彎曲方向上.為驗(yàn)證此做法的可行性,采用有限元分析軟件ABAQUS建立與第3.1節(jié)模型相比僅邊界條件不同的有限元模型.本節(jié)模型根據(jù)實(shí)際鉸接約束創(chuàng)建邊界條件,即模型在軸與軸方向上均形成兩端鉸接的邊界條件,使試件可以在任一方向上彎曲.改變邊界條件后模型的失穩(wěn)破壞形態(tài)和穩(wěn)定承載力均沒有變化,原因是對(duì)于理想鉸接約束軸壓構(gòu)件,失穩(wěn)發(fā)生在最薄弱受力方向上,本文試驗(yàn)中試件為雙軸對(duì)稱截面,試驗(yàn)時(shí)初始幾何缺陷方向與失穩(wěn)方向一致,即最薄弱受力方向與失穩(wěn)方向一致,所以試驗(yàn)結(jié)果與實(shí)際鉸接約束邊界條件下的有限元分析結(jié)果一致.
為提出更適用于大長細(xì)比的7A04鋁合金圓管構(gòu)件的軸壓穩(wěn)定承載力計(jì)算公式,采用有限元分析軟件ABAQUS對(duì)62根不同截面尺寸及不同長細(xì)比的軸壓圓管構(gòu)件進(jìn)行參數(shù)化分析,截面尺寸(×)分別為70mm×3mm、70mm×5mm、75mm×5mm及100mm×5mm,長細(xì)比變化范圍為70~150.參數(shù)化分析的單元類型、材料屬性、邊界條件和加載方法均與本文第3節(jié)相同,初始幾何缺陷取為/2000.參數(shù)化分析計(jì)算的數(shù)據(jù)點(diǎn)繪制于圖13中.
1) 美國規(guī)范(2015頒布)
美國規(guī)范[33]采用極限狀態(tài)法進(jìn)行構(gòu)件的整體穩(wěn)定性設(shè)計(jì),并將軸壓屈曲應(yīng)力-長細(xì)比關(guān)系曲線分為屈服破壞、塑性屈曲破壞以及彈性屈曲破壞3個(gè)階段,每階段對(duì)應(yīng)一種計(jì)算公式,本文采用彈性屈服破壞階段的計(jì)算公式.
2) 歐洲規(guī)范和我國《鋁合金結(jié)構(gòu)設(shè)計(jì)規(guī)范》
3) 我國《鋼結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)》
本文根據(jù)上述5種規(guī)范中的方法計(jì)算了試驗(yàn)試件和參數(shù)化分析試件的軸壓穩(wěn)定系數(shù).表5為根據(jù)各種規(guī)范計(jì)算出的軸壓穩(wěn)定系數(shù)以及試驗(yàn)得到的軸壓穩(wěn)定系數(shù).軸壓穩(wěn)定系數(shù)的試驗(yàn)值及參數(shù)化分析值與各方法計(jì)算值的對(duì)比見圖13.由圖13可以看出在所研究的長細(xì)比范圍內(nèi),各規(guī)范的計(jì)算值均低于軸壓穩(wěn)定系數(shù)的試驗(yàn)值及參數(shù)化分析值,且長細(xì)比越小,差值越大.其中我國《鋼結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)》的計(jì)算值與試驗(yàn)值和參數(shù)化分析值最接近,最新版美國規(guī)范的計(jì)算值最低,我國《鋁合金結(jié)構(gòu)設(shè)計(jì)規(guī)范》和歐洲規(guī)范的計(jì)算值基本重合.
目前我國《鋁合金結(jié)構(gòu)設(shè)計(jì)規(guī)范》只給出了6×××系列、5×××系列和3×××系列的鋁合金構(gòu)件的軸壓穩(wěn)定系數(shù),并且通過前文的分析可知目前我國規(guī)范對(duì)7A04鋁合金圓管構(gòu)件軸壓穩(wěn)定系數(shù)的預(yù)測(cè)偏保守,為此本文提出更適用于7A04鋁合金圓管構(gòu)件軸壓穩(wěn)定承載力的計(jì)算公式.
圖13給出了根據(jù)建議計(jì)算公式得到的軸壓穩(wěn)定系數(shù)-正則化長細(xì)比曲線,可以看出建議計(jì)算公式與試驗(yàn)值及參數(shù)化分析值更吻合,更適用于預(yù)測(cè)7A04鋁合金圓管構(gòu)件軸壓穩(wěn)定承載力.
圖13 各規(guī)范計(jì)算的軸壓穩(wěn)定系數(shù)與軸壓穩(wěn)定系數(shù)的試驗(yàn)值及參數(shù)化分析值的比較
表5?軸壓穩(wěn)定系數(shù)的試驗(yàn)值和各種規(guī)范方法計(jì)算值的對(duì)比
Tab.5?Comparison of the stability factors between calculation methods and experimental results
(1) 所有試驗(yàn)試件均發(fā)生整體彎曲失穩(wěn)破壞,卸載后恢復(fù)了部分變形.試驗(yàn)時(shí)將試件初始彎曲最大線放置在彎曲方向上,彌補(bǔ)了用單刀鉸支座模擬端部鉸接邊界條件對(duì)試驗(yàn)結(jié)果的影響.
(2) 本文建立的有限元模型可以準(zhǔn)確模擬7A04鋁合金圓管構(gòu)件的軸壓穩(wěn)定性能,可用此模型進(jìn)行參數(shù)化分析計(jì)算.
(3) 根據(jù)各種規(guī)范計(jì)算的軸壓穩(wěn)定系數(shù)均低于試驗(yàn)及參數(shù)化分析得到的軸壓穩(wěn)定系數(shù),且長細(xì)比越小,差值越大.我國《鋼結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)》與試驗(yàn)值和參數(shù)化分析值最接近,最新版美國規(guī)范最為保守,我國《鋁合金結(jié)構(gòu)設(shè)計(jì)規(guī)范》和歐洲規(guī)范基本重合.
(4) 根據(jù)試驗(yàn)值和有限元參數(shù)化分析結(jié)果,基于我國《鋼結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)》提出了大長細(xì)比7A04鋁合金圓管構(gòu)件軸壓穩(wěn)定系數(shù)的建議計(jì)算公式.與各規(guī)范中的計(jì)算方法相比,建議計(jì)算公式對(duì)7A04鋁合金圓管構(gòu)件軸壓穩(wěn)定承載力的預(yù)測(cè)更為準(zhǔn)確.
[1] 王中興. 鋁合金受彎構(gòu)件局部穩(wěn)定與相關(guān)穩(wěn)定研究現(xiàn)狀[C]// 中國鋼結(jié)構(gòu)協(xié)會(huì)結(jié)構(gòu)穩(wěn)定與疲勞分會(huì)第14屆學(xué)術(shù)交流會(huì)暨教學(xué)研討會(huì)論文集. 合肥,2014:84-91.
Wang Zhongxing. Research status of local bucking and interactive bucking of aluminum alloy structure in bending[C]// Proceedings of the 14th Academic Exchange Conference and Teaching Seminar of Structural Stability and Fatigue Branch of Steel Structure Association of China. Hefei,2014:84-91(in Chinese).
[2] Templin R L,Strum R G,Hartman E C,et al. Column Strength of Various Aluminum Alloys[R]. Pittsburgh:Alcoa Technical Paper,1938.
[3] Holt M. Tests on built-up columns of structural aluminum alloys[J]. Transactions of the American Society of Civil Engineers,1940,195(1):196-217.
[4] Clark J W,Rolf R L. Design of aluminum tubular members[J]. Journal of the Structural Division,1964,90(6):259-292.
[5] Hill H N. Design of welded aluminum structures[J]. Journal of Structural Engineering,ASCE,1962,127(2):126-133.
[6] Brungraber R J,Clark J W. Strength of welded aluminum columns[J]. Journal of the Structural Division,1960,86(8):33-58.
[7] Faella C,Mazzolani F M. Simulation of the behavior of inelastic industrial bars under axial load[J]. Construction Metal,1974(4).
[8] Bernard A. Study on Buckling of Aluminum Industrial Bars[R]. ECCS Committee 16,Doc. 1. 1-73-3,1973.
[9] Bernard A,F(xiàn)rey F,Janss J,et al. Research on the Buckling Behavior of Aluminum Columns[R]. Report CIDA. Zurich,1973.
[10] Valtinat G,Muller R. Alu-alloy Welded Column Buckling Research Program:Numerical Computations[R]. ECCS Committee 16,Doc. 16-76-3,1976.
[11] Faella C. Influence of Geometrical Imperfections on the Buckling Behavior of Aluminum Compression Bars[R]. La Ricerca,1976.
[12] Frey F. Buckling,Lateral Buckling and Eccentric Buckling of Aluminum Alloy Columns,Beams,and Bean-columns[R]. ECCS Committee 16,Doc. 16-77-1,1977.
[13] Chapuis J,Galambos T. Restrained crooked aluminum columns[J]. Journal of Structural Division,1982,108(3):511-524.
[14] Chapuis J,Galambos T. Reliability of aluminum beam-columns[J]. Journal of Structural Division,1982,108(4):720-727.
[15] Mazzolani F M. Aluminum Alloy Structures[M]. 2nd Ed. London:Chapman & Hall,1995.
[16] 羅永峰,季?躍,芮?淵. 鋁合金結(jié)構(gòu)軸心壓桿穩(wěn)定性研究[J]. 同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2001,29(4):401-405.
Luo Yongfeng,Ji Yue,Rui Yuan. Stability analysis of the aluminum alloy members under axial compressions[J]. Journal of Tongji University:Natural Science Edition,2001,29(4):401-405(in Chinese).
[17] 季?躍,羅永峰,芮?淵. 鋁合金軸心壓桿穩(wěn)定性設(shè)計(jì)方法[C]// 第9屆空間結(jié)構(gòu)學(xué)術(shù)會(huì)議. 杭州,2000.
Ji Yue,Luo Yongfeng,Rui Yuan. Design method for stability of aluminum alloy axial compression bar[C]// The 9th Conference on Spatial Structure. Hangzhou,2000(in Chinese).
[18] 李?明,陳揚(yáng)驥,錢若軍. 工字形鋁合金軸心壓桿穩(wěn)定系數(shù)的試驗(yàn)研究[J]. 工業(yè)建筑,2001,31(1):52-54.
Li Ming,Chen Yangji,Qian Ruojun. Experimental research on stability parameters for I-section aluminum alloy bars loaded by axial compressive force[J]. Industrial Construction,2001,31(1):52-54(in Chinese).
[19] 沈祖炎,郭小農(nóng). 對(duì)稱截面鋁合金擠壓型材壓桿的穩(wěn)定系數(shù)[J]. 建筑結(jié)構(gòu)學(xué)報(bào),2001,22(4):31-36.
Shen Zuyan,Guo Xiaonong. Column curves of aluminum alloy extruded members with symmetrical sections[J]. Journal of Building Structures,2001,22(4):31-36(in Chinese).
[20] 李新忠. 軸心受壓鋁合金圓管構(gòu)件穩(wěn)定承載力研究[D]. 西安:西安建筑科技大學(xué),2004.
Li Xinzhong. Stability Analysis of Axially Loaded Aluminum Alloy Pipe[D]. Xi’an:Xi’an University of Architectural and Technology,2004(in Chinese).
[21] 郭小農(nóng),沈祖炎,李元齊,等. 鋁合金軸心受壓構(gòu)件理論和試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào),2007,28(6):118-128.
Guo Xiaonong,Shen Zuyan,Li Yuanqi,et al. Theoretical and experimental research on aluminum alloy members under axial compression[J]. Journal of Building Structures,2007,28(6):118-128(in Chinese).
[22] Zhu J,Young B. Experimental investigation of aluminum alloy circular hollow section columns[J]. Engineering Structures,2006,28(2):207-215.
[23] Zhu J,Young B. Numerical investigation and design of aluminum alloy circular hollow section columns[J]. Thin-Walled Structures,2008,46(12):1437-1449.
[24] 胡日欽畢力格. 角型高強(qiáng)鋁合金軸心受壓構(gòu)件穩(wěn)定承載力研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2013.
Huriqin Bilige. Research on the Stability of High Strength Aluminum Alloy Angle Members under Axial Compression[D]. Harbin:Harbin Institute of Technology,2013(in Chinese).
[25] 王譽(yù)瑾. 6082-T6鋁合金軸心受壓構(gòu)件穩(wěn)定性能研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2015.
Wang Yujin. Investigation on the Stability of Aluminum Alloy 6082-T6 Members in Axial Compression[D]. Harbin:Harbin Institute of Technology,2015(in Chinese).
[26] 王元清,王中興,胡曉光. 大截面7A04高強(qiáng)鋁合金角形柱軸壓整體穩(wěn)定試驗(yàn)研究[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2016,49(9):936-943.
Wang Yuanqing,Wang Zhongxing,Hu Xiaoguang. Experimental study on the overall stability of 7A04 high strength aluminum alloy angle columns of large section under axial compression[J]. Journal of Tianjin University:Science and Technology,2016,49(9):936-943(in Chinese).
[27] 王元清,王中興,胡曉光. 7A04高強(qiáng)鋁合金L形截面柱軸壓整體穩(wěn)定性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào),2016,37(6):174-182.
Wang Yuanqing,Wang Zhongxing,Hu Xiaoguang. Experimental study on overall stability of 7A04 high strength aluminum alloy L-shaped section columns under axial compression[J]. Journal of Building Structures,2016,37(6):174-182(in Chinese).
[28] Wang Y Q,Wang Z X,Hu X G et al. Experimental study and parametric analysis on the stability behavior of 7A04 high-strength aluminum alloy angle columns under axial compression[J]. Thin-Walled Structures,2016,108:305-320.
[29] 中華人民共和國建設(shè)部. GB 50429—2007 鋁合金結(jié)構(gòu)設(shè)計(jì)規(guī)范[S]. 北京:中國計(jì)劃出版社,2008.
Ministry of Construction of the People’s Republic of China. GB 50429—2007?Code for Design of Alumi-num Structures[S]. Beijing:China Planning Press,2008(in Chinese).
[30] 中華人民共和國國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. GB/T?16865—2013 變形鋁、鎂及其合金加工制品拉伸試驗(yàn)用試樣及方法[S]. 北京:中國標(biāo)準(zhǔn)出版社,2014.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. GB/T?16865—2013 Test Pieces and Method for Tensile Test for Wrought Aluminum and Magnesium Alloys Products[S]. Beijing:Standards Press of China,2014(in Chinese).
[31] 施?剛,班慧勇,石永久,等. 結(jié)構(gòu)構(gòu)件整體幾何初始缺陷測(cè)量方法:中國,CN102288081A[P]. 2011-12-21.
Shi Gang,Ban Huiyong,Shi Yongjiu,et al. Measurement Method of the Global Initial Geometric Imperfection of Structural Members:China,CN102288081A [P]. 2011-12-21(in Chinese).
[32] Ramberg W,Osgood W R. Description of Stress-Strain Curves by Three Parameters:Technical Note 902[R]. Washington DC:National Advisory Committee for Aeronautics,1943:1-12.
[33] The Aluminum Association. Aluminum Design Manual [S]. Arlington,2015.
[34] BS EN1999-1-1:2007. Eurocode 9:Design of Aluminum Structures—General Structural Rules[S]. European Committee for Standardization,Brussels,2007.
[35] 中華人民共和國住房和城鄉(xiāng)建設(shè)部.GB 50017—2017 鋼結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)[S]. 北京:中國建筑工業(yè)出版社,2017.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50017—2017?Code for Design of Steel Structures[S]. Beijing:China Architecture & Building Press,2017(in Chinese).
Stability of 7A04 Aluminum Alloy Circular Tubes Under Axial Compression
Li Zhenyu1, 2,Wang Chenxin2,Li Jinjun3,Ding Yongjun3,Rong Bin1, 2
(1. Key Laboratory of Coast Civil Structure and Safety of Ministry of Education(Tianjin University),Tianjin 300072,China;2. School of Civil Engineering,Tianjin University,Tianjin 300072,China;3. Tianjin University Research Institute of Architectural Design,Tianjin 300073,China)
To assess the stability of 7A04 aluminum alloy circular tubes under axial compression,12 specimens were tested and the corresponding finite element model was established. The finite element model was verified by performing several tests. Then,parametric analysis was conducted. Finally,the experimental and parametric analysis values of the overall stability coefficient were compared with those calculated by several current design codes. Results showed that all of the specimens failed because of overall flexural buckling. Moreover,the values of the overall stability coefficient calculated by current design codes were lower than the experimental and parametric analysis values of the overall stability coefficient,among which the design codes for steel structures in China were the closest,whereas the new design codes in the United States were the most conservative. On the basis of the experimental and parametric analysis data,the formula for calculating the axial compression stability coefficient of 7A04 aluminum alloy circular tubes was proposed.
7A04 aluminum alloy;circular tube;axial compression stability test;finite element model;calculation formula
TU395
A
0493-2137(2020)10-1036-09
10.11784/tdxbz201908037
2019-08-21;
2019-12-22.
李振宇(1979—??),男,副研究員,lizhenyu@tju.edu.cn.
李進(jìn)軍,13132262383@163.com.
(責(zé)任編輯:劉文革)