顏蓓蓓,智雅濤,程占軍,胡?源,陳冠益
干建材中揮發(fā)性有機(jī)物散發(fā)關(guān)鍵參數(shù)測試方法及影響因素研究進(jìn)展
顏蓓蓓1,智雅濤1,程占軍1,胡?源2,陳冠益1
(1. 天津大學(xué)環(huán)境科學(xué)與工程學(xué)院,天津 300350;2. 河南省有色金屬地質(zhì)礦產(chǎn)局,鄭州 450016)
家具和裝修建材是室內(nèi)揮發(fā)性有機(jī)物(VOC)的主要污染源,會(huì)造成室內(nèi)空氣質(zhì)量低劣,對(duì)人體健康、室內(nèi)舒適性和工作效率產(chǎn)生嚴(yán)重影響.研究干建材VOC散發(fā)特性對(duì)控制室內(nèi)污染物濃度、提高空氣品質(zhì)具有重要意義.干建材中VOC的散發(fā)過程可分為:VOC在干建材內(nèi)部的擴(kuò)散傳質(zhì)過程和干建材表面的對(duì)流傳質(zhì)過程.從傳質(zhì)理論的角度來看,干建材VOC的散發(fā)特性可由3個(gè)關(guān)鍵參數(shù)表征,即初始可散發(fā)濃度m,0、干建材內(nèi)VOC的擴(kuò)散系數(shù)m和分離系數(shù).簡要總結(jié)了干建材VOC散發(fā)關(guān)鍵參數(shù)經(jīng)典測試方法(如流化床脫附法、常溫萃取法、濕杯法及雙艙法等),并分析了各方法的局限性,其中詳細(xì)介紹了直流艙濃度軌跡法(直流艙C-history法).詳細(xì)介紹并評(píng)價(jià)了循環(huán)密閉/通風(fēng)散發(fā)法與連續(xù)升溫-多氣固比(CTR-VVL)法.總結(jié)了采用不同測試方法(直流艙C-history法、CTR-VVL法、多次散發(fā)回歸法等)所測得的干建材VOC散發(fā)關(guān)鍵參數(shù)的實(shí)驗(yàn)數(shù)據(jù).總結(jié)了不同關(guān)鍵參數(shù)受溫度、濕度影響的理論模型,并對(duì)比分析了前人數(shù)據(jù)與不同模型的擬合結(jié)果.最后,還分析了干建材VOC散發(fā)研究方面存在的不足及進(jìn)一步研究的相關(guān)建議.
干建材;關(guān)鍵參數(shù);揮發(fā)性有機(jī)物;測試方法;影響因素
我國經(jīng)濟(jì)的發(fā)展和人們生活水平的提高,帶動(dòng)了新建建筑量的迅猛增長,2018年新開工房屋建筑面積約20.9億m2[1].許多建筑室內(nèi)裝修時(shí)使用的木材和各類有機(jī)合成材料裝飾品的種類和用量不斷增加.這類建材在生產(chǎn)和使用中的飾面材料、膠黏劑等含有大量揮發(fā)性有機(jī)物(VOC)[2],且新建建筑過于追求密閉性或節(jié)能造成室內(nèi)新風(fēng)量不足,從而導(dǎo)致室內(nèi)空氣品質(zhì)低劣.據(jù)統(tǒng)計(jì),人們每天80%以上的時(shí)間在室內(nèi)活動(dòng)[3],低劣的室內(nèi)空氣品質(zhì)會(huì)對(duì)人們的健康帶來嚴(yán)重影響[4-5].室內(nèi)空氣中已知的VOC高達(dá)500多種,多為甲醛及其他醛類、芳香烴、脂肪烴、酮類、酯類等[6],各類VOC的總和稱為總揮發(fā)性有機(jī)物(TVOC).當(dāng)空氣中VOC達(dá)到一定濃度時(shí),人會(huì)出現(xiàn)頭痛、惡心、四肢乏力等癥狀,如果長期接觸一定濃度的VOC會(huì)對(duì)人體產(chǎn)生嚴(yán)重危害[4-6].2017年10月27日,世界衛(wèi)生組織國際癌癥研究機(jī)構(gòu)(IARC)公布的致癌物清單中,甲醛、苯等被列為一類致癌物.研究干建材中VOC的散發(fā)特性可以為提高室內(nèi)空氣品質(zhì)、防治室內(nèi)空氣污染提供理論指導(dǎo).
干建材中VOC在室內(nèi)環(huán)境中的散發(fā)過程可分為:VOC在干建材內(nèi)部的擴(kuò)散傳質(zhì)過程和干建材表面的對(duì)流傳質(zhì)過程.從傳質(zhì)理論的角度來看,干建材VOC的散發(fā)特性主要由3個(gè)關(guān)鍵參數(shù)決定:建材內(nèi)VOC初始可散發(fā)濃度m,0,為在外界環(huán)境VOC濃度為零的條件下,單位體積干建材能散發(fā)的VOC總物質(zhì)的量或質(zhì)量;VOC在材料內(nèi)的傳質(zhì)擴(kuò)散系數(shù)m,為在單位濃度梯度條件下,單位時(shí)間內(nèi)沿?cái)U(kuò)散方向垂直通過單位面積所傳輸物質(zhì)的量或質(zhì)量;VOC在空氣和材料分界面的分離系數(shù),為建材界面處固相濃度與氣相濃度之比[7].因此,測試并計(jì)算m,0、m、3個(gè)關(guān)鍵參數(shù)是研究干建材VOC散發(fā)特性的關(guān)鍵.本工作將重點(diǎn)介紹近年來對(duì)于干建材中VOC散發(fā)特性中3個(gè)關(guān)鍵參數(shù)m,0、m和的測試方法與室內(nèi)環(huán)境條件對(duì)m, 0、m和影響的研究進(jìn)展.
學(xué)者們基于不同關(guān)鍵參數(shù)本身的物理意義設(shè)計(jì)了不同的實(shí)驗(yàn)系統(tǒng)來直接測定,如用于測定m,0的流化床脫附(FBD)法[8]和常溫萃取法[9],測定m和的濕杯法[10]和雙艙法[11]等.
(1) FBD法[8]將干建材在低溫液氮槽中研磨成粉末,然后將粉末轉(zhuǎn)移至室溫條件下的流化床中進(jìn)行脫附,實(shí)驗(yàn)時(shí)間不超過7h.實(shí)驗(yàn)材料研磨成粉末破壞了干建材本身結(jié)構(gòu),不能直接反映干建材VOC的實(shí)際散發(fā)情況.
(2) 常溫萃取法[9]將干建材置于研磨器中研磨成粉末加速VOC散發(fā)到閉合的空氣環(huán)路中,當(dāng)散發(fā)平衡后采用清潔空氣將含VOC的空氣吹出,如此進(jìn)行多個(gè)散發(fā)周期,直至最后1個(gè)周期的平衡濃度低于第1個(gè)周期平衡濃度的1/100.常溫萃取法也存在破壞建材結(jié)構(gòu)的問題,同時(shí)需進(jìn)行多個(gè)散發(fā)周期試驗(yàn),實(shí)驗(yàn)時(shí)間通??蛇_(dá)4周左右,且在最后幾個(gè)周期內(nèi)環(huán)境艙內(nèi)VOC濃度較小,可能會(huì)增大相對(duì)誤差.
(3) 濕杯法[10]是將干建材固定在盛有VOC液體的杯子頂端,然后將杯子置于電子稱上,在恒溫條件下實(shí)時(shí)記錄通過干建材散發(fā)的VOC質(zhì)量,可計(jì)算得到m.但是需采用其他方法輔助確定m或中的一個(gè)參數(shù),才能求得另一個(gè).另外,濕杯內(nèi)的VOC濃度遠(yuǎn)高于室內(nèi)濃度,且m和VOC濃度正相關(guān)[11],通常會(huì)高估m(xù);由于采用純VOC液體,故每次實(shí)驗(yàn)只能測量1種VOC的m.
(4) 雙艙法[12]將干建材置于兩個(gè)艙室之間,其中一個(gè)艙室含有已知濃度的VOC,另一個(gè)為潔凈艙,通過記錄兩艙室內(nèi)VOC濃度變化,擬合確定被測建材的m與.該方法可同時(shí)確定多種VOC的關(guān)鍵參數(shù),但根據(jù)建材特性不同實(shí)驗(yàn)時(shí)間在2天~2周左右不等.
近年來,學(xué)者們提出了將干建材置于在密閉艙內(nèi)散發(fā),然后將VOC濃度變化數(shù)據(jù)與理論推導(dǎo)的公式擬合得到關(guān)鍵參數(shù)的方法,如多平衡態(tài)回歸(MSER)法[13]、多氣固比(VVL)法[14]、多次散發(fā)回歸(MEFR)法[15]及濃度軌跡(C-history)法[16-17]等,上述方法已有學(xué)者做過詳細(xì)總結(jié)介紹[18].但是,這幾種方法的實(shí)驗(yàn)階段需多次從密閉艙內(nèi)采樣,如果環(huán)境艙體積過小或累積采樣體積過大,則會(huì)對(duì)密閉艙內(nèi)的VOC質(zhì)量守恒有較大影響,從而導(dǎo)致測得的參數(shù)有偏差.為克服這一缺點(diǎn),Huang等[17]對(duì)密閉艙C-history法進(jìn)行改進(jìn)并提出了直流艙C-history方法.此方法分為密閉階段和通風(fēng)階段,在密閉階段當(dāng)環(huán)境艙內(nèi)VOC散發(fā)至平衡狀態(tài)后,從艙內(nèi)取樣并測量平衡濃度equ,然后通入干潔空氣并測量艙內(nèi)VOC濃度變化(見圖1).
圖1 直流艙C-history法環(huán)境艙中VOC濃度變化曲線
在密閉階段,根據(jù)質(zhì)量守恒與Henry定律可推?導(dǎo)得
式中為負(fù)載率,m3/m3.
在通風(fēng)階段,可推導(dǎo)得到環(huán)境艙內(nèi)VOC濃度a()與equ比值的對(duì)數(shù)和通風(fēng)時(shí)間為線性關(guān)系,即
式中:SL為斜率;INT為截距.
SL和INT為與m的函數(shù),式(1)為m,0與的函數(shù),由此可同時(shí)求得3個(gè)關(guān)鍵參數(shù).
密閉艙散發(fā)至平衡狀態(tài)通常不超過36h[17],通風(fēng)階段擬合的散發(fā)時(shí)間應(yīng)滿足以下條件:
式中:為干建材厚度,m;為散發(fā)時(shí)間,s.
在上述研究基礎(chǔ)上,學(xué)者仍在努力探索新的快捷準(zhǔn)確的關(guān)鍵參數(shù)測試方法.2015年以來出現(xiàn)了兩種新的測試方法:循環(huán)密閉/通風(fēng)散發(fā)(AAVE)法和連續(xù)升溫-多氣固比(CTR-VVL)法.
AAVE法[19]是在MEFR法[15]的基礎(chǔ)上改進(jìn)而提出的.MEFR法是將干建材置于恒溫恒濕的密閉艙內(nèi),持續(xù)監(jiān)測甲醛濃度變化,并至散發(fā)平衡.然后,取出干建材并密封,通入清潔空氣使艙內(nèi)甲醛濃度降至原平衡濃度10%以下,再將干建材置于密閉艙內(nèi)進(jìn)行散發(fā).重復(fù)操作4~6次,得到一系列甲醛平衡濃度equ,i,與根據(jù)質(zhì)量守恒和Henry定律推導(dǎo)的式(4)擬合計(jì)算m,0和.
MEFR法的各平衡濃度差equ,i-equ,i+1不能靈活控制.平衡濃度差過大或過小,皆會(huì)影響擬合精?度[19].另外,MEFR法需多次將干建材取出密封,實(shí)驗(yàn)過程較繁瑣、周期長(長達(dá)120h)且易受外界因素影響,從而降低實(shí)驗(yàn)精度.
AAVE法的實(shí)驗(yàn)過程與MEFR法類似,均對(duì)環(huán)境艙進(jìn)行循環(huán)密閉/通風(fēng)(見圖2[19]),在固定通風(fēng)時(shí)間內(nèi)根據(jù)VOC濃度變化計(jì)算排出的VOC質(zhì)量Δm.然后將密閉階段的平衡濃度equ,i與Δm按式(5)擬合解得、m,0.為保證擬合結(jié)果的準(zhǔn)確性,可通過調(diào)整通風(fēng)時(shí)間使各平衡濃度之差滿足式(6).AAVE法通風(fēng)階段不需要滿足將VOC濃度降至原平衡濃度10%以下.AAVE法實(shí)驗(yàn)過程中干建材始終置于環(huán)境艙內(nèi),可避免外界因素影響,且實(shí)驗(yàn)時(shí)間減少1/2.
式中:Δm為第次通風(fēng)過程中排出的VOC質(zhì)量,mg;m為建材體積,m3.
圖2?AAVE法環(huán)境艙空氣中VOC濃度變化曲線
CTR-VVL法[20]是在VVL法[14]基礎(chǔ)上發(fā)展提出的.VVL法在給定溫度下將不同負(fù)載率的干建材置于密閉艙內(nèi)待散發(fā)至平衡,測定各負(fù)載率下的平?衡濃度equ,i,然后與按式(7)進(jìn)行擬合測得m,0與:
CTR-VVL法主要用于研究溫度變化對(duì)m,0與影響.此方法也將不同負(fù)載率的干建材置于溫度為1的密閉艙內(nèi),散發(fā)至平衡狀態(tài).隨后升至溫度2,再散發(fā)至平衡狀態(tài).如此依次進(jìn)行實(shí)驗(yàn),如圖3所示[20].在研究溫度對(duì)干建材VOC散發(fā)影響時(shí),CTR-VVL法實(shí)驗(yàn)時(shí)間短,且實(shí)驗(yàn)過程中對(duì)同一塊實(shí)驗(yàn)材料進(jìn)行多實(shí)驗(yàn)條件下的散發(fā)研究,可避免因采用不同塊實(shí)驗(yàn)材料引起的微小誤差.將同一溫度下的實(shí)驗(yàn)數(shù)據(jù)采用式(7)擬合,可得該溫度下的與m,0.但是對(duì)較大的干建材,負(fù)載率對(duì)equ,i的影響較小,所以平衡濃度差equ,i-equ,i+1也較小,可能導(dǎo)致擬合結(jié)果的誤差較大[19].
圖3?CTR-VVL法環(huán)境艙空氣中VOC濃度曲線
CTR-VVL法仍存在破壞密閉艙內(nèi)VOC質(zhì)量守恒的問題,相關(guān)研究中[20-21]采用泵吸式甲醛分析儀測定甲醛濃度,分析后的氣體重新排入艙內(nèi),以降低誤差.但此做法可檢測的VOC種類受到檢測設(shè)備限制,如果在高溫高濕條件下采用此做法,采集的氣體可能會(huì)在檢測設(shè)備內(nèi)結(jié)露,影響檢測結(jié)果甚至破壞設(shè)備.
雖然不同測試方法在使用時(shí)有一定限制性,但隨著更多方法的提出,學(xué)者們可選擇性也越廣.針對(duì)不同研究目標(biāo),選擇合適的方法可規(guī)避不同方法的限制.
建材實(shí)際使用環(huán)境中的溫度、濕度等環(huán)境條件,隨著季節(jié)、天氣及晝夜的變化而變化.因此,深入研究環(huán)境因素對(duì)干建材中VOC散發(fā)特性的影響,對(duì)預(yù)測與控制室內(nèi)VOC濃度具有深遠(yuǎn)意義.
溫度對(duì)干建材VOC散發(fā)影響很早就有學(xué)者研?究[22-23],但研究多集中在對(duì)VOC散發(fā)速率或環(huán)境艙內(nèi)VOC濃度的討論.學(xué)者們對(duì)室內(nèi)常見的干建材和VOC種類進(jìn)行了散發(fā)特性測試.干建材包括聚氯乙烯(PVC)材料(PVC地板),聚酯纖維材料(尼龍地毯、紡織地板、乳膠地毯),纖維板材(纖維板吊頂)、刨花板(PB)等,主要VOC包括甲醛、甲苯、三甲苯、正癸烷等,或氣味閾值較低的VOC如4-苯基環(huán)己烯、乙酸丁酯、2-乙基己醇等[22,24-26].對(duì)于以上實(shí)驗(yàn)結(jié)果通常采用經(jīng)驗(yàn)?zāi)P瓦M(jìn)行擬合與討論,研究發(fā)現(xiàn),大部分VOC的散發(fā)速率或環(huán)境艙內(nèi)濃度隨溫度升高而增大,且溫度越高影響程度越大[27-28],但VOC的種類與建材特性的不同組合又表現(xiàn)出不同特點(diǎn):同一干建材中,溫度對(duì)不同種類VOC的散發(fā)特性影響程度不相同[22,26];同一種VOC受溫度的影響又與建材本身特性相關(guān)[24-25];溫度對(duì)干建材初始散發(fā)階段影響較大,后期影響減弱.在材料通風(fēng)超過2~4周后,VOC散發(fā)受溫度影響將大大減弱[23,28-29].
上述經(jīng)驗(yàn)?zāi)P椭饕ㄒ浑A衰減模型、雙一階衰減模型、指數(shù)模型等[30],這些模型中的參數(shù)多為經(jīng)驗(yàn)值沒有明確的物理意義,缺乏對(duì)散發(fā)機(jī)制的探討,不能深入研究溫度對(duì)干建材VOC散發(fā)特性的影響.
為深入研究溫度對(duì)干建材VOC散發(fā)特性的影響,學(xué)者們將傳質(zhì)模型引入到溫度對(duì)干建材VOC散發(fā)特性影響的研究中.通過不同方法測量了干建材如中密度板(MDB)[20-21,31-34]及PB[20-21,33]中甲醛散發(fā)關(guān)鍵參數(shù),實(shí)驗(yàn)數(shù)據(jù)匯總于表1.Huang等[31]采用直流艙C-history法測試了25~80℃內(nèi)MDB中甲醛散發(fā)的關(guān)鍵參數(shù),Xiong等[32]采用MEFR法測試了25.2~50.5℃內(nèi)MDB中甲醛散發(fā)的關(guān)鍵參數(shù),Zhou等[21,33]和Xu等[34]采用CTR-VVL法測試了不同溫度下MDB與PB中甲醛散發(fā)的關(guān)鍵參數(shù).可見,m,0隨溫度升高而增大[20-21,31-34];在18~50℃范圍內(nèi)隨溫度升高降低[20-21,31-34],m升高[21,31,33],在50~80℃時(shí)隨溫度升高升高,m降低[31].但是Xiong等[32]研究發(fā)現(xiàn)在25~55℃內(nèi)隨溫度升高增大,與其他研究的結(jié)果不同.
僅通過實(shí)驗(yàn)觀察缺乏理論分析,很難預(yù)測實(shí)驗(yàn)溫度以外情況下的變化規(guī)律.因此,研究人員[20-21,31,35-36]通過理論分析利用數(shù)學(xué)模型研究溫度對(duì)VOC散發(fā)關(guān)鍵參數(shù)的影響.
Zhang等[35]從吸附理論角度,將Langmuir吸附方程與Henry定律方程相聯(lián)系,推導(dǎo)了均質(zhì)傳質(zhì)模型中分離系數(shù)與溫度變化的理論關(guān)系:
式中:1、2為常數(shù);為絕對(duì)溫度,K.
Liu等[20]基于Dubinin-Radushkevich吸附理論和Freundlich吸附理論,推導(dǎo)了多孔介質(zhì)傳質(zhì)模型中VOC的分離系數(shù)與溫度及干建材特性參數(shù)之間的關(guān)系式:
表1?不同方法測得關(guān)鍵參數(shù)匯總
Tab.1?Summary of key parameters measured by different methods
Deng等[38]從多孔介質(zhì)散發(fā)模型出發(fā),推導(dǎo)了擴(kuò)散系數(shù)m與溫度的關(guān)系:
式中1、2為常數(shù).
Zhou等[21]根據(jù)多孔介質(zhì)傳質(zhì)模型中有效擴(kuò)散系數(shù)e與單相傳質(zhì)模型中擴(kuò)散系數(shù)m之間關(guān)系,基于吸附勢理論和多級(jí)串聯(lián)分形毛細(xì)管束模型[20],推導(dǎo)了VOC擴(kuò)散系數(shù)m與溫度的關(guān)系:
式中與為由建材與甲醛的物理性質(zhì)共同決定的常數(shù).
Huang等[31]應(yīng)用統(tǒng)計(jì)物理理論,研究了溫度對(duì)m, 0占建材中甲醛總濃度total, 0比例(可散發(fā)率)的影響,然后將m, 0分離后得到其與溫度之間的關(guān)系:
式中1、2為常數(shù).
Zhou等[21]根據(jù)吸附勢與氣體分子動(dòng)能的關(guān)系,結(jié)合建筑材料中吸附勢的概率分布,推導(dǎo)了VOC初始可散發(fā)濃度m, 0的理論計(jì)算關(guān)系式:
式中:為由建材與甲醛物理性質(zhì)共同決定的常數(shù);為吸附勢能,J;A為阿伏伽德羅常數(shù);為玻耳茲曼常數(shù),J/K;m為吸附劑比體積,m3/mg;V為某孔徑下的孔隙體積,m3;N為某孔徑下的孔隙數(shù)量;為常數(shù).
將表1中溫度對(duì)m,0影響的研究數(shù)據(jù)與式(12)進(jìn)行擬合(見圖4(a)),可見擬合性均較好,說明該模型適用性廣.經(jīng)分析,式(8)、式(10)對(duì)溫度低于50℃的與m數(shù)據(jù)有較好擬合性(圖4(b)、(c)),當(dāng)溫度高于50℃時(shí),與m變化趨勢不再符合式(8)和式(10).可能當(dāng)溫度高于50℃時(shí)干建材對(duì)VOC分子的吸附性質(zhì)發(fā)生了改變.Liu等[20]及Zhou等[21]提出的模型(9)、(11)、(13),其中涉及較多干建材本身特性的參數(shù),在使用前需測定干建材的相關(guān)參數(shù)值.理論上模型(9)、(11)、(13)適用于干建材內(nèi)任意VOC散發(fā)關(guān)鍵參數(shù)的預(yù)測,但是相關(guān)文獻(xiàn)中僅對(duì)甲醛進(jìn)行了實(shí)驗(yàn)驗(yàn)證.
雖然式(8)、(12)與文獻(xiàn)數(shù)據(jù)擬合性較好,但是推導(dǎo)公式時(shí)的假設(shè)具有一定局限性或與其他研究觀點(diǎn)不一致.如Langmuir吸附理論以固體表面吸附性均一為前提假設(shè),而Liu等[20]認(rèn)為干建材表面吸附性并不均一;Huang等[31]假設(shè)干建材內(nèi)沒有化學(xué)反應(yīng),只考慮游離甲醛在干建材內(nèi)部的擴(kuò)散作用,而Xiong等[39]及Liang等[40]認(rèn)為干建材中的甲醛主要由脲醛樹脂水解生成.根據(jù)He等[41]研究表明,干建材散發(fā)的甲醛包括游離甲醛和由脲醛樹脂水解產(chǎn)生的甲醛兩部分,散發(fā)初期游離甲醛在干建材的甲醛散發(fā)中占據(jù)主導(dǎo),但隨著散發(fā)時(shí)間的增加,水解產(chǎn)生的甲醛占干建材散發(fā)甲醛總濃度的比例逐漸增加.因此,模型(12)適用于短期干建材VOC散發(fā)研究.
濕度對(duì)干建材VOC散發(fā)的影響要比溫度的影響更復(fù)雜.早期的研究與溫度影響研究類似,都是對(duì)干建材中VOC的散發(fā)速率或環(huán)境艙內(nèi)濃度進(jìn)行分析.干建材及VOC種類選取也與溫度研究類似,如MDB[37]、尼龍地毯[22]、PVC地板[22]、膠合木地板?等[42],污染物如甲醛、甲苯、乙苯、二甲苯、乙酸丁酯、2-乙基己醇等.研究表明[23,37,42],隨著相對(duì)濕度的增加,大多數(shù)干建材中VOC的散發(fā)速率增大或環(huán)境艙空氣中的VOC濃度增加.原因如下:①相對(duì)濕度的升高促進(jìn)脲醛樹脂水解,從而導(dǎo)致甲醛濃度增加[39];②其他VOC可能由于水分子傾向于吸附在干建材的親水性吸附點(diǎn)上,進(jìn)而使VOC分子從親水性吸附點(diǎn)解吸[42].但是,在有些情況下相對(duì)濕度對(duì)干建材VOC散發(fā)的影響卻可以忽略甚至起到抑制作用.如Wolkoff等[22]完成了PVC地板在溫度為在23℃、相對(duì)濕度為0%和50%條件下的VOC散發(fā)實(shí)驗(yàn),結(jié)果發(fā)現(xiàn)相對(duì)濕度的變化對(duì)2-乙基己醇和苯酚散發(fā)濃度幾乎沒有變化;Fang等[24]完成了尼龍地毯分別在18℃、23℃、28℃條件下的TVOC散發(fā)實(shí)驗(yàn),結(jié)果發(fā)現(xiàn)相對(duì)濕度的變化對(duì)TVOC散發(fā)無明顯影響.van Netten等[25]發(fā)現(xiàn)提高相對(duì)濕度抑制紙面石膏板中甲醛的散發(fā),出現(xiàn)此現(xiàn)象的原因仍不明確.上述實(shí)驗(yàn)數(shù)據(jù)同樣多采用經(jīng)驗(yàn)?zāi)P头治?,缺乏機(jī)理解釋.
隨著傳質(zhì)模型引入到干建材VOC散發(fā)特性的研究中,可知相對(duì)濕度(RH)增加,干建材中VOC的m,0增加[37,40],甲醛的m,0升高可能是相對(duì)濕度升高促進(jìn)脲醛樹脂水解生成甲醛[39],其他VOC可能是由于相對(duì)濕度增加促使VOC分子脫附導(dǎo)致[43];m變化不明顯[37,39],的變化無明顯規(guī)律.如隨相對(duì)濕度增加,甲醛的增加[37,39-40],甲苯的略有下降.甲醛的增加可能是在較高濕度條件下干建材的含濕量增加,從而吸收甲醛所致,而相對(duì)濕度增加可能使水分子與甲苯分子競爭吸附點(diǎn)導(dǎo)致下降.
相對(duì)濕度對(duì)干建材VOC散發(fā)的機(jī)理研究較少,現(xiàn)有的模型多是通過對(duì)實(shí)驗(yàn)數(shù)據(jù)直接擬合得到.Huang等[37-38]在25℃條件下,研究了濕度對(duì)干建材中甲醛與己醛的散發(fā)特性參數(shù)的影響,擬合發(fā)現(xiàn)m,0與均符合公式:
式中1、2為常數(shù).
Liang等[40]也在25℃條件下,研究發(fā)現(xiàn)甲醛的m, 0隨濕度變化符合公式:
式中1、2為常數(shù).
通過對(duì)Huang等[37-38]、Liang等[40]的數(shù)據(jù)與理論公式的相互對(duì)比(見圖5),發(fā)現(xiàn)兩者均有較好相互擬合性,并且Huang等[37-38]測得甲醛和己醛的也有較好的線性關(guān)系.Xiong等[39]從理論上推導(dǎo)出甲醛m,0與相對(duì)濕度的關(guān)系符合式(14),但是m與尚無理論研究.濕度對(duì)干建材VOC散發(fā)影響仍需要在機(jī)理研究方面繼續(xù)完善.
隨著對(duì)溫度和濕度的單因素影響研究的深入,近年來多因素聯(lián)合影響也有學(xué)者進(jìn)行了探索,但研究較少.Fang等[24]研究了地毯及PVC地板在不同溫度、濕度條件下TVOC的散發(fā)情況,地毯在各條件下TVOC的初始可散發(fā)濃度并無明顯差異;PVC地板中TVOC的可散發(fā)濃度隨溫度和相對(duì)濕度的提高而增大.對(duì)于多因素影響的理論分析大都是通過分離變量法將單因素影響模型直接結(jié)合而得到.Xiong?等[39]分析得到溫度、濕度對(duì)干建材VOC散發(fā)特性參數(shù)Cm,0的聯(lián)合影響符合:
式中1、2、3為常數(shù).
Liang等[42]分析得到初始可散發(fā)濃度m,0與溫度、濕度之間的關(guān)系:
式中1、2、3為常數(shù).
由于Xiong等[39]與Liang等[42]在濕度對(duì)VOC散發(fā)影響分別采用了式(14)、(15)造成所推導(dǎo)的式(16)、(17)有所不同.
圖5?Huang等[37-38]與Liang等[40]的數(shù)據(jù)與模型相互擬合曲線
本文介紹了近年新提出的AAVE法及CTR-VVL法,并簡要介紹了MERF、VVL、C-history等測試方法,在研究干建材VOC散發(fā)方面各測試方法已經(jīng)發(fā)展的比較成熟,可以快速準(zhǔn)確地計(jì)算出干建材VOC散發(fā)特性參數(shù).在環(huán)境因素對(duì)干建材VOC散發(fā)影響方面,溫度影響的理論分析和實(shí)驗(yàn)研究較深入,而濕度影響還停留在實(shí)驗(yàn)層面,僅甲醛的m,0受相對(duì)濕度影響進(jìn)行了理論分析,與m的理論分析不足.溫度、濕度聯(lián)合影響的實(shí)驗(yàn)研究仍多采用單因素分別變化的方式,缺少通過交叉實(shí)驗(yàn)的綜合驗(yàn)證及理論分析.《室內(nèi)空氣質(zhì)量標(biāo)準(zhǔn)》(GB/T 18883—2002)中規(guī)定了室內(nèi)空氣中甲醛、苯、甲苯、二甲苯、苯并芘等種類的VOC濃度要求,現(xiàn)在VOC散發(fā)研究多集中在甲醛、甲苯,而對(duì)苯、二甲苯、苯并芘等的研究較少.綜上所述,未來需要在濕度對(duì)干建材VOC散發(fā)影響的理論分析和模型驗(yàn)證、溫度、濕度綜合影響的交叉實(shí)驗(yàn)驗(yàn)證以及其他種類VOC的散發(fā)特性等方面繼續(xù)開展研究.
[1] 國家統(tǒng)計(jì)局. 2018年1—12月全國房地產(chǎn)開發(fā)投資和銷售情況[R]. 2019-01.
National Bureau of Statistics. Investment and Sales of National Real Estate Development from January to December 2018[R]. 2019-01(in Chinese).
[2] World Health Organization,Regional Office for Europe. Indoor air quality:Organic pollutant[J]. Environmental Technology Letters,1989,10(9):855-858.
[3] Klepeis N E,Nelson W C,Ott W R,et al. The national human activity pattern survey(NHAPS):A resource for assessing exposure to environmental pollutants [J]. Journal of Exposure Analysis and Environmental Epidemiology,2001,11(3):231-252.
[4] Yang Tao,Xiong Jianyin,Tang Xiaochen,et al. Predicting indoor emissions of cyclic volatile methylsiloxanes from the use of personal care products by university students[J]. Environmental Science & Technology,2018,52(24):14208-14215.
[5] Xiong Jianyin,He Zhangcan,Tang Xiaochen,et al. Modeling the time-dependent concentrations of primary and secondary reaction products of ozone with squalene in a university classroom[J]. Environmental Science & Technology,2019,53(14):8262-8270.
[6] Dorgan C B,Dorgan C E,Kanarek M S,et al. Health and productivity benefits of improved indoor air quality [J]. ASHRAE Transactions,1998,104:658-666.
[7] Little J C,Hodgson A T,Gadgil A J. Modeling emissions of volatile organic-compounds from new carpets [J]. Atmos Environ,1994,28(2):227-234.
[8] Cox S S,Little J C. Measuring concentrations of volatile organic compounds in vinyl flooring[J]. Journal of the Air & Waste Management Association,2011,51(6):1195-1201.
[9] Smith J F,Gao Z,Zhang J S,et al. A new experimental method for the determination of emittable initial VOC concentrations in building materials and sorption isotherms for IVOCs[J]. CLEAN-Soil,Air,Water,2009,37(6):454-458.
[10] Hansson P,Stymne H. VOC Diffusion and absorption properties of indoor materials:Consequences for indoor air quality[C]// Proceedings of Healthy Buildings 2000. Espoo,F(xiàn)inland,2000:151-156.
[11] Yang X,Chen Q,Bluyssen P M. Prediction of short-term and long-term volatile organic compound emissions from SBR bitumen-backed carpet under different temperatures[J]. ASHRAE Transactions,1998,104(2):1297-1308.
[12] Bodalal A,Zhang J S,Plett E G. A method for measuring internal diffusion and equilibrium partition coefficients of volatile organic compounds for building materials[J]. Building and Environment,2000,35(2):101-110.
[13] Wang Xinke,Zhang Yinping. A new method for determining the initial mobile formaldehyde concentrations,partition coefficients,and diffusion coefficients of dry building materials[J]. Journal of the Air & Waste Management Association,2012,59(7):819-825.
[14] Xiong Jianyin,Yan Wei,Zhang Yinping. Variable volume loading method:A convenient and rapid method for measuring the initial emittable concentration and partition coefficient of formaldehyde and other aldehydes in building materials[J]. Environmental Science & Technology,2011,45(23):10111-10116.
[15] Xiong Jianyin,Chen Wenhao,Smith J F,et al.An improved extraction method to determine the initial emittable concentration and the partition coefficient of VOCs in dry building materials[J]. Atmospheric Environ-ment,2009,43(26):4102-4107.
[16] Xiong Jianyin,Yao Yuan,Zhang Yinping. C-history method:Rapid measurement of the initial emittable concentration,diffusion and partition coefficients for formaldehyde and VOC in building materials[J]. Environmental Science & Technology,2011,45(8):3584-3590.
[17] Huang Shaodan,Xiong Jianyin,Zhang Yinping. A rapid and accurate method,ventilated chamber C-history method,of measuring the emission characteristic parameters of formaldehyde/VOCs in building materials [J]. Journal of Hazardous Materials,2013,261:542-549.
[18] Liu Zhe,Ye Wei,Little J C. Predicting emissions of volatile and semivolatile organic compounds from building materials:A review [J]. Building and Environ-ment,2013,64:7-25.
[19] Zhou Xiaojun,Liu Yanfeng,Liu Jiaping. Alternately airtight/ventilated emission method:A universal experimental method for determining the VOC emission characteristic parameters of building materials[J]. Building and Environment,2018,130:179-189.
[20] Liu Yanfeng,Zhou Xiaojun,Wang Dengjia,et al.A prediction model of VOC partition coefficient in porous building materials based on adsorption potential theory [J]. Building and Environment,2015,93:221-233.
[21] Zhou Xiaojun,Liu Yanfeng,Song Cong,et al.A study on the formaldehyde emission parameters of porous building materials based on adsorption potential theory [J]. Building and Environment,2016,106:254-264.
[22] Wolkoff Peder. Impact of air velocity,temperature,humidity,and air on long-term VOC emission from building products[J]. Atmospheric Environment,1998,32(14/15):2659-2668.
[23] Myers G E. The effects of temperature and humidity on formaldehyde emission from UF-bonded boards:A literature critique [J]. For Prod J,1985,35:20-31.
[24] Fang L,Clausen G,F(xiàn)anger P O. Impact of temperature and humidity on chemical and sensory emissions from building materials [J]. Indoor Air,1999,9:193-201.
[25] van Netten C,Shirtliffe C,Svec J. Temperature and humidity dependence of formaldehyde release from selected building materials[J]. Bull Environ Contam Toxicol,1989,42(4):558-565.
[26] Sollinger S,Levsen K,Wunsch G. Indoor pollution by organic emissions from textile floor coverings:Climate test chamber studies under static conditions [J]. Atmospheric Environment,1994,28:2369-2378.
[27] Seifert B,Ullrich D,Nagel R. Volatile organic compounds from carpeting[C]// Proceedings of the 8th World Clean Air Congress. The Hague:Elsevier,1989:253-258.
[28] van Der Wal J F,Hoogeveen A W,Wouda P. The influence of temperature on the emission of volatile organic compounds from PVC flooring,carpet,and paint [J]. Indoor Air,1997,7:215-221.
[29] Bluyssen P M,Cornelissen H J M,Hoogeveen A W,et al. The effect of temperature on the chemical and sensory emission of indoor materials[C]// 7th International Conference on Indoor Air Quality and Climate. Nagoya,Japan,1996:619-624.
[30] Guo Zhishi. Review of indoor emission source models. Part 1. Overview[J]. Environmental Pollution,2002,120(3):533-549.
[31] Huang Shaodan,Xiong Jianyin,Zhang Yinping. Impact of temperature on the ratio of initial emittable concentration to total concentration for formaldehyde in building materials:Theoretical correlation and validation[J]. Environmental Science & Technology,2015,49(3):1537-1544.
[32] Xiong Jianyin,Zhang Yinping. Impact of temperature on the initial emittable concentration of formaldehyde in building materials:Experimental observation[J]. Indoor Air,2010,20(6):523-529.
[33] Zhou Xiaojun,Liu Yanfeng,Song Cong,et al. A novel method to determine the formaldehyde emission characteristic parameters of building materials at multiple temperatures[J]. Building and Environment,2019,149:436-445.
[34] Xu Bo,Chen Zhenqian. The combined effects of tem-perature and electric fields on formaldehyde emission from building materials:Experiment and molecular dynamics simulation[J]. International Communications in Heat and Mass Transfer,2017,87:105-111.
[35] Zhang Yinping,Luo Xiaoxi,Wang Xinke,et al.Influence of temperature on formaldehyde emission parameters of dry building materials[J]. Atmospheric Environment,2007,41(15):3203-3216.
[36] Deng Qinqin,Yang Xudong,Zhang Jianshun. Study on a new correlation between diffusion coefficient and temperature in porous building materials[J]. Atmospheric Environment,2009,43(12):2080-2083.
[37] Huang Shaodan,Xiong Jianyin,Zhang Yinping. The impact of relative humidity on the emission behaviour of formaldehyde in building materials[J]. Procedia Engineering,2015,121:59-66.
[38] Huang Shaodan,Xiong Jianyin,Cai Chaorui,et al. Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials:Experimental observation and correlation[J]. Scientific Reports,2016,6:2045-2322.
[39] Xiong Jianyin,Zhang Pianpian,Huang Shaodan,et al. Comprehensive influence of environmental factors on the emission rate of formaldehyde and VOCs in building materials:Correlation development and exposure assessmen[J]. Environmental Research,2016,151:734-741.
[40] Liang Weihui,Lü Mengqiang,Yang Xudong. The effect of humidity on formaldehyde emission parameters of a medium-density fiberboard:Experimental observations and correlations[J]. Building and Environment,2016,101:110-115.
[41] He Zhangcan,Xiong Jianyin,Kumagai Kazukiyo,et al. An improved mechanism-based model for predicting the long-term formaldehyde emissions from composite wood products with exposed edges and seams[J]. Environment International,2019,132:105086.
[42] Liang Weihui,Lü Mengqiang,Yang Xudong. The combined effects of temperature and humidity on initial emittable formaldehyde concentration of a medium-density fiberboard[J]. Building and Environment,2016,98:80-88.
Recent Progress in VOC Emission from Dry Building Materials:Testing Methods and Influencing Factors of Key Parameters
Yan Beibei1,Zhi Yatao1,Cheng Zhanjun1,Hu Yuan2,Chen Guanyi1
(1. School of Environmental Science and Engineering,Tianjin University,Tianjin 300350,China;2. Henan Province Non-Ferrous Metals Geological Mineral Resource Bureau,Zhengzhou 450016,China)
Furniture and decorative materials are the main sources of indoor volatile organic compounds (VOC), which cause poor indoor air quality and have a serious impact on human health, indoor comfort, and work efficiency. It is important to study the VOC emission characteristics of dry building materials for controlling indoor pollutant concentration and improving air quality. With regard to dry building materials, the VOC emission process involves the diffusion mass transfer process of VOC inside the materials and the convective mass transfer process on the surface of materials. Based on the mass transfer theory, the characteristics of VOC emission from dry building materials can be reproduced by three key parameters: initial emission concentrationm,0, diffusion coefficientm, and partition coefficientof VOC in dry building materials. We briefly summarize the classical testing methods for the key parameters of such VOC emission (such as fluidized bed desorption method, ambient temperature extraction method, wet cup method, and twin-chamber method), and analyzed the limitations of these methods. We also introduce and describe the ventilated chamber concentration history (ventilated chamber C-history) method in detail. Further, we introduce and evaluate the alternately airtight/ventilated emission method and continuous temperature rising-variable volume loading (CTR-VVL) method in detail. The key parameters of VOC emission from dry building materials measured by different test methods (e.g., ventilated chamber C-history, CTR-VVL, and multi-emission/flush regression method) were analyzed and summarized. The theoretical models of different key parameters affected by temperature and humidity were summarized and fitted with previous data. Finally, the shortcomings in the research of VOC emission from dry building materials and suggestions for further research are proposed.
dry building material;key parameter;volatile organic compound;testing method;influencing factor
TU531.2
A
0493-2137(2020)10-0991-10
10.11784/tdxbz201908038
2019-08-21;
2019-09-18.
顏蓓蓓(1981—??),女,博士,教授,yanbeibei@tju.edu.cn.
程占軍,zjcheng@tju.edu.cn.
國家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2016YFF0204504).
Supported by the National Key Research and Development Program of China(No. 2016YFF0204504).
(責(zé)任編輯:田?軍)