鄭凱 陳超 袁仕國(guó)
【摘要】 目的:總結(jié)近年來(lái)交感神經(jīng)及其遞質(zhì)影響、調(diào)控造血干細(xì)胞的相關(guān)研究,為造血干細(xì)胞的進(jìn)一步研究、應(yīng)用等提供參考。方法:廣泛查閱交感神經(jīng)系統(tǒng)與造血干細(xì)胞關(guān)系的研究文獻(xiàn),總結(jié)交感神經(jīng)系統(tǒng)調(diào)控造血干細(xì)胞的方式、機(jī)制等。結(jié)果:交感神經(jīng)及其神經(jīng)遞質(zhì)對(duì)造血干細(xì)胞存在的微環(huán)境/壁龕、動(dòng)員、增殖、衰老、損傷保護(hù)、晝夜節(jié)律等存在多位點(diǎn)的影響和調(diào)控。結(jié)論:交感神經(jīng)及其遞質(zhì)對(duì)造血干細(xì)胞的調(diào)控相關(guān)研究主要集中在壁龕和動(dòng)員的影響,需要進(jìn)一步明確其機(jī)制、方式、階段,為貧血、血液腫瘤等相關(guān)疾病治療、造血干細(xì)胞臨床應(yīng)用等提供可靠的支持。
【關(guān)鍵詞】 自主神經(jīng)系統(tǒng) 造血干細(xì)胞 壁龕 去甲腎上腺素
doi:10.14033/j.cnki.cfmr.2020.17.077 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 1674-6805(2020)17-0-03
Progress of Research on the Relationship between Sympathetic Nervous System and Hematopoietic Stem Cells/ZHENG Kai, CHEN Chao, YUAN Shiguo. //Chinese and Foreign Medical Research, 2020, 18(17): -188
[Abstract] Objective: To summarize the related researches of hematopoietic stem cells (HSCs) regulated by sympathetic nervous system (SNS) or its transmitters, and to provide view for further research and application about stem cells. Method: The literatures on the relationship between SNS or its transmitters and HSCs were extensively reviewed, and the mechanisms of regulation were summarized. Result: The SNS or its transmitters multiple regulates the niche, mobilization, proliferation, senescence, injury protection, circadian rhythm, etc. of HSCs. Conclusion: The researches about regulation of SNS and its transmitters on HSCs mainly focuse on the influence of niche and mobilization. It is necessary to further clarify the mechanism, mode and stage for the treatment of anemia, hematological and other related diseases, and the clinical application of HSCs.
[Key words] Autonomic nervous system Hematopoietic stem cells Niche Norepinephrine
First-authors address: Shanghai Jinshi Pharmaceutical Technology Co., Ltd. Guangzhou Branch, Guangzhou 510030, China
造血干細(xì)胞(haematopoietic stem cells,HSCs)從胚胎造血內(nèi)皮細(xì)胞發(fā)育而來(lái),并在胎兒肝臟中增殖,然后定居于骨髓中,具有自我復(fù)制、多向分化和重建長(zhǎng)期造血的能力[1-2]。HSCs是目前研究最久遠(yuǎn)、最深入的干細(xì)胞[3-4]。HSCs可以在整個(gè)生命周期中自我更新,同時(shí)補(bǔ)充所有血系細(xì)胞,使HSCs移植成為治療多種血液疾病、挽救生命的手段[5]。但是,臨床上由于缺乏HLA匹配的骨髓供體和臍帶血中HSCs的低產(chǎn)量限制了可治療患者的人數(shù)[6]。更好地了解HSCs的調(diào)節(jié)機(jī)制以便培養(yǎng)擴(kuò)增HSCs和產(chǎn)生多潛能干細(xì)胞[1,4,7]。目前研究發(fā)現(xiàn),交感神經(jīng)系統(tǒng)(sympathetic nervous system,SNS)及其神經(jīng)遞質(zhì)對(duì)HSCs的壁龕、增殖、動(dòng)員入血、自我更新等存在多靶點(diǎn)、多階段的調(diào)控作用。本文擬綜述SNS及其神經(jīng)遞質(zhì)對(duì)HSC的調(diào)控作用及機(jī)制,為進(jìn)一步研究、臨床使用HSC提供參考。
1 SNS調(diào)節(jié)HSCs的壁龕
1.1 SNS組成并調(diào)節(jié)HSCs的壁龕
壁龕的概念是1978年由Schofield[8]率先提出的,指的是維持并監(jiān)控HSCs自我更新和分化的調(diào)節(jié)單位。在此概念的基礎(chǔ)上,新的功能基因工具、先進(jìn)的成像方法、HSCs和壁龕細(xì)胞新標(biāo)記的發(fā)現(xiàn),使得可以更好地了解HSCs壁龕[1]。成體HSCs存在于骨髓中,HSCs如何發(fā)揮自我更新和分化的過(guò)程受到壁龕的嚴(yán)格控制,這種壁龕包括骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMMSCs)、骨系細(xì)胞、內(nèi)皮細(xì)胞、SNS、非髓鞘Schwann細(xì)胞和巨核細(xì)胞等的復(fù)雜網(wǎng)絡(luò)[9-10]。HSCs主要位于骨髓血管竇狀隙附近,其中內(nèi)皮細(xì)胞和BMMSCs通過(guò)產(chǎn)生多種因子維持HSCs功能[11-12]。腎上腺素受體信號(hào)—兒茶酚胺也可能由骨髓細(xì)胞自身產(chǎn)生和釋放。SNS活動(dòng)遵循由下丘腦的視交叉上核驅(qū)動(dòng)的晝夜節(jié)律性,但也可以由多種環(huán)境刺激激活。HSCs表達(dá)腎上腺素受體,SNS纖維及神經(jīng)遞質(zhì)如去甲腎上腺素是HSCs的非常重要的壁龕組成部分,SNS調(diào)節(jié)骨髓造血功能,并維持造血功能的穩(wěn)定[13-15]。骨髓中的HSCs、BMMSCs和成骨細(xì)胞上表達(dá)β-腎上腺素受體,而骨髓中未成熟細(xì)胞遷移的晝夜調(diào)節(jié)受β-腎上腺素受體調(diào)節(jié)[16]。
對(duì)大鼠實(shí)施滲透微型泵使用胍乙啶遞送的大鼠股骨骨髓局部化學(xué)SNS切除術(shù),發(fā)現(xiàn)局部胍乙啶處理引起股骨骨髓中Nestin+/SDF1+BMMSCs和c-Kit+/CD90+HSCs顯著減少[17]。在發(fā)育的骨髓中,BMMSCs是形成HSCs壁龕的組分之一,BMMSCs、SNS外周神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞共同起源,并且個(gè)體不同的BMMSCs在內(nèi)軟骨形成和HSCs壁龕形成中具有不同的功能[18]。糖尿病人骨髓中SNS末梢的數(shù)量明顯減少[16],導(dǎo)致壁龕功能改變而損害HSCs的動(dòng)員,HSCs和造血祖細(xì)胞異常定位于糖尿病小鼠的骨髓壁龕中,并且SNS末端的數(shù)量和功能的異常與這種錯(cuò)誤定位相關(guān),BMMSCs對(duì)HSCs和造血祖細(xì)胞動(dòng)員至關(guān)重要[19]。
1.2 SNS病變影響HSCs壁龕并惡化血液腫瘤
SNS纖維通過(guò)調(diào)控骨髓nestin+MSCs對(duì)正常的HSCs有維持作用,給予神經(jīng)保護(hù)藥物或擬SNS藥物可防止HSCs突變體增殖,用恢復(fù)nestin+MSCs的β3-腎上腺素受體激動(dòng)劑治療通過(guò)間接減少白血病干細(xì)胞的數(shù)量來(lái)阻止骨髓增生性腫瘤進(jìn)展,HSC突變體驅(qū)動(dòng)的壁龕損傷極大地促成了骨髓增生性腫瘤[20]。血管周圍的間充質(zhì)干細(xì)胞和祖細(xì)胞(mesenchymal stem and progenitor cells,MSPC)對(duì)于形成健康的造血干細(xì)胞(HSC)生態(tài)位至關(guān)重要。骨髓中nestin陽(yáng)性的BMMSCs在SNS纖維及Schwann細(xì)胞的調(diào)控支配下,能夠維持HSCs的存活和擴(kuò)增[21]。AML患者的骨髓SNS病變導(dǎo)致神經(jīng)遞質(zhì)濃度降低,導(dǎo)致Th細(xì)胞免疫功能失衡,其BM-MSCs向神經(jīng)細(xì)胞分化的能力降低[21]。AML的發(fā)展破壞了SNS神經(jīng)和Nestin(+)壁龕細(xì)胞的靜止?fàn)顟B(tài)。腎上腺素能促進(jìn)白血病發(fā)生的信號(hào)傳導(dǎo)是通過(guò)在白血病骨髓基質(zhì)細(xì)胞上表達(dá)的β2腎上腺素受體而不是β3腎上腺素能受體進(jìn)行的。SNS病可能代表了惡性腫瘤的機(jī)制之一。急性髓性白血病會(huì)誘導(dǎo)SNS病變,而SNS病變?cè)谠煅杉?xì)胞壁龕改變中促進(jìn)白血病骨髓浸潤(rùn)[22]。
2 SNS調(diào)節(jié)HSCs的動(dòng)員和增殖
2.1 生理情況下
Katayama等[15]最先研究認(rèn)為SNS調(diào)節(jié)造血干細(xì)胞遷移出骨髓,調(diào)節(jié)壁龕對(duì)造血干細(xì)胞的吸引力。HSCs動(dòng)員由SNS通過(guò)β3-腎上腺素受體正調(diào)節(jié)[23]。包括急性冠狀動(dòng)脈綜合征的心臟事件本身會(huì)激活SNS,直接動(dòng)員HSCs[24]。SNS末梢可釋放NE,而成熟骨髓細(xì)胞也可釋放NE和/或腎上腺素。兩者均可結(jié)合于壁龕中nestin+ MSC表達(dá)的β-腎上腺素受體上,并通過(guò)調(diào)節(jié)CXCL12的表達(dá)來(lái)調(diào)節(jié)HSCs的生理運(yùn)輸[12]。半乳糖基轉(zhuǎn)移酶和半乳糖腦苷脂酶影響SNS的功能和/或生物活性鞘脂的平衡,從而影響SDF-1/CXC趨化因子受體4(CXC chemokine receptor 4, CXCR4)軸和HSCs的增殖[25]。下丘腦中的毒蕈堿受體1型信號(hào)通過(guò)下丘腦-垂體-腎上腺軸的激素引發(fā)促進(jìn)粒細(xì)胞集落刺激因子誘發(fā)的HSCs動(dòng)員[26]。大腦到外周免疫系統(tǒng)可經(jīng)由SNS信號(hào)連通,使HSCs偏向分化成糖皮質(zhì)激素抗性類細(xì)胞或骨髓譜系免疫細(xì)胞[27]。Spiegel及其同事等[13,28]研究發(fā)現(xiàn)人CD34+的造血干祖細(xì)胞表達(dá)多巴胺受體和β2腎上腺素能受體,神經(jīng)遞質(zhì)通過(guò)經(jīng)典的Wnt信號(hào)通路促進(jìn)CD34+細(xì)胞的增殖和NOD-SCID小鼠骨髓造血重建能力。
2.2 嚴(yán)重創(chuàng)傷情況下
嚴(yán)重?fù)p傷導(dǎo)致從骨髓到損傷部位的造血祖細(xì)胞動(dòng)員增加,這可能導(dǎo)致創(chuàng)傷后持續(xù)的骨髓功能障礙。NE是HSCs動(dòng)員的已知誘導(dǎo)劑,并且已經(jīng)顯示用普萘洛爾的非選擇性β-腎上腺素受體阻斷減少創(chuàng)傷和出血性休克后的動(dòng)員,在創(chuàng)傷和出血性休克后給予β2-腎上腺素受體和β3-腎上腺素受體阻斷可以防止過(guò)量的HSCs動(dòng)員和骨髓功能障礙,并且這些作用似乎是全身介導(dǎo)的,對(duì)后續(xù)愈合沒(méi)有不利影響,減輕嚴(yán)重?fù)p傷后過(guò)度的SNS刺激對(duì)減輕骨髓功能障礙是有益的[29]。在伴有慢性應(yīng)激的肺挫傷/失血性休克后,每日給予可樂(lè)定可恢復(fù)骨髓功能并改善貧血,減輕慢性壓力和減少NE是改善嚴(yán)重?fù)p傷后骨髓功能的關(guān)鍵治療靶點(diǎn)[30]。
3 SNS調(diào)控HSCs的晝夜節(jié)律
循環(huán)HSCs及其祖細(xì)胞表現(xiàn)出強(qiáng)烈的晝夜波動(dòng),在光照開(kāi)始后5 h達(dá)到峰值并在黑暗后5 h達(dá)到最低點(diǎn)[14]。當(dāng)小鼠經(jīng)受連續(xù)光照或“時(shí)差”(定義為12 h的錯(cuò)位)時(shí),晝夜振蕩顯著改變。循環(huán)HSCs及其祖細(xì)胞在反相中隨著CXCL12在骨髓壁龕中的表達(dá)而波動(dòng)。HSCs的周期性釋放和CXCL12的表達(dá)受分子鐘的核心基因調(diào)節(jié),這種調(diào)節(jié)通過(guò)SNS分泌NE晝夜節(jié)律變化而實(shí)現(xiàn)[14]。自主神經(jīng)膽堿能神經(jīng)系統(tǒng)(包括PNS和SNS)雙重調(diào)節(jié)HSCs和白細(xì)胞的每日遷移:在晚上,中樞PNS膽堿能信號(hào)抑制SNS-NE而減少HSCs和白細(xì)胞從骨髓遷出;而在白天,受抑制的SNS-NE能通過(guò)β3-腎上腺素受體激活,主導(dǎo)HSCs和白細(xì)胞遷出骨髓。這種遷入和遷出受光觸發(fā)/光激活SNS膽堿能活性的支配[31]。
4 SNS調(diào)控HSCs的衰老和損傷保護(hù)
HSCs的衰老表現(xiàn)為再生能力和多向分化潛能的下降,骨髓壁龕會(huì)影響HSCs衰老,HSCs衰老關(guān)鍵取決于骨髓中SNS纖維支配,年輕小鼠骨髓壁龕中SNS神經(jīng)或β3-腎上腺素受體信號(hào)傳導(dǎo)的喪失導(dǎo)致HSCs過(guò)早衰老,對(duì)老年小鼠補(bǔ)充選擇性地作用于β3-腎上腺素受體的擬SNS藥則恢復(fù)了老年HSC的體內(nèi)功能,表明保存或恢復(fù)衰老期間骨髓的SNS神經(jīng)支配的可能具有HSC再生的潛力[32]?;煹扔忻黠@骨髓抑制作用,而神經(jīng)肽Y通過(guò)保護(hù)SNS而維持HSCs功能[33]。
綜上所述,SNS及其神經(jīng)遞質(zhì)構(gòu)成HSCs的壁龕,并調(diào)節(jié)壁龕的生理和病理。SNS病變將導(dǎo)致壁龕不能維持穩(wěn)定,HSCs增殖、分化、動(dòng)員等均受到嚴(yán)重影響;而SNS興奮則促進(jìn)HSCs的增殖、動(dòng)員、遷移。SNS及其神經(jīng)遞質(zhì)對(duì)HSCs起著非常重要的調(diào)節(jié)作用。SNS及其神經(jīng)遞質(zhì)是非常易于干預(yù)的因素,且SNS及其神經(jīng)遞質(zhì)相關(guān)藥物在各個(gè)系統(tǒng)疾病廣泛使用。進(jìn)一步深入研究SNS及其神經(jīng)遞質(zhì)對(duì)HSCs的作用及相關(guān)機(jī)制,探索更多的未知領(lǐng)域,將為臨床包括HSCs移植、貧血、血液腫瘤、衰老等在內(nèi)的眾多問(wèn)題提供堅(jiān)實(shí)的理論和依據(jù)。
參考文獻(xiàn)
[1] Sandra P,Paul S F.Haematopoietic stem cell activity and interactions with the niche[J].Nature reviews Molecular Cell Biology,2019,20(5):303-320.
[2] Emily G,Karen K H.Specification and function of hemogenic endothelium during embryogenesis[J].Cellular and Molecular Life Sciences:CMLS,2016,73(8):1547-1567.
[3] Carsten B,Lisa von P,Veli V U,et al.A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies[J].Nature,2018,553(7689):515-520.
[4] Michalis A,Corbin E M,Rebecca J B,et al.Ascorbate regulates haematopoietic stem cell function and leukaemogenesis[J].Nature,2017,549(7673):476-481.
[5] Vincenzo C,Andrew T N,Timothy J B,et al.MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment[J].Nature,2019,576(7786):281-286.
[6] John J M,Jennifer C M,Carole D F,et al.Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis[J].Journal of Neurology,Neurosurgery,and Psychiatry,2019,90(5):514-521.
[7] Adam C W,Reiko I,Misako M,et al.Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation[J].Nature,2019,571(7763):117-121.
[8] Schofield R.The relationship between the spleen colony-forming cell and the haemopoietic stem cell[J].Blood Cells,1978,4(1-2):7-25.
[9] Cheng H,Sun G,Cheng T.Hematopoiesis and microenvironment in hematological malignancies[J].Cell Regen (Lond),2018,7(1):22-26.
[10] Genevieve M C,Elise J,Sean J M.Adult haematopoietic stem cell niches[J].Nature Reviews Immunology,2017,17(9):573-590.
[11] Leitao L,Alves C J,Sousa D M,et al.The alliance between nerve fibers and stem cell populations in bone marrow:life partners in sickness and health[J].FASEB J,2019,33(8):8697-8710.
[12] Maestroni G.Adrenergic modulation of hematopoiesis[J].J Neuroimmune Pharmacol,2019,15:82-92.
[13] Spiegel A,Shivtiel S,Kalinkovich A,et al.Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling[J].Nat Immunol,2007,8(10):1123-1131.
[14] Mendez-Ferrer S,Lucas D,Battista M,et al.Haematopoietic stem cell release is regulated by circadian oscillations[J].Nature,2008,452(7186):442-447.
[15] Katayama Y,Battista M,Kao W M,et al.Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow[J].Cell,2006,124(2):407-421.
[16] Zhou J,Zhang Z,Qian G.Neuropathy and inflammation in diabetic bone marrow[J].Diabetes Metab Res Rev,2019,35(1):e3083.
[17] Dubovy P,Klusakova I,Kucera L,et al.Local chemical sympathectomy of rat bone marrow and its effect on marrow cell composition[J].Auton Neurosci,2017,206:19-27.
[18] Isern J,Garcia-Garcia A,Martin A M,et al.The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function[J].Elife,2014,3:e3696.
[19] Ferraro F,Lymperi S,Mendez-Ferrer S,et al.Diabetes impairs hematopoietic stem cell mobilization by altering niche function[J].Sci Transl Med,2011,3(104):101r-104r.
[20] Arranz L,Sanchez-Aguilera A, Martin-Perez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms[J].Nature,2014,512(7512):78-81.
[21]陳晨.AML患者骨髓交感神經(jīng)病變和類神經(jīng)細(xì)胞分化的研究[D].濟(jì)南:山東大學(xué),2017.
[22] Hanoun M,Zhang D,Mizoguchi T,et al.Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche[J].Cell Stem Cell,2014,15(3):365-375.
[23] Shastri A,Budhathoki A,Barta S K,et al.Stimulation of adrenergic activity by desipramine enhances hematopoietic stem and progenitor cell mobilization along with G-CSF in multiple myeloma:A pilot study[J].Am J Hematol,2017,92(10):1047-1051.
[24] Baruch A,van Bruggen N,Kim J B,et al.Anti-inflammatory strategies for plaque stabilization after acute coronary syndromes[J].Curr Atheroscler Rep,2013,15(6):327.
[25] Visigalli I,Biffi A.Maintenance of a functional hematopoietic stem cell niche through galactocerebrosidase and other enzymes[J].Curr Opin Hematol,2011,18(4):214-219.
[26] Pierce H,Zhang D,Magnon C,et al.Cholinergic Signals from the CNS Regulate G-CSF-Mediated HSC Mobilization from Bone Marrow via a Glucocorticoid Signaling Relay[J].Cell Stem Cell,2017,20(5):648-658.
[27] Weber M D,Godbout J P,Sheridan J F.Repeated social defeat,neuroinflammation, and behavior:monocytes carry the signal[J].Neuropsychopharmacology,2017,42(1):46-61.
[28]李鳳菊.去甲腎上腺素對(duì)電離輻射損傷小鼠血小板生成能力的影響及機(jī)制[D].重慶:第三軍醫(yī)大學(xué),2017.
[29] Pasupuleti L V,Cook K M,Sifri Z C,et al.Do all beta-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock?[J].J Trauma Acute Care Surg,2014,76(4):970-975.
[30] Alamo I G,Kannan K B,Ramos H,et al.Clonidine reduces norepinephrine and improves bone marrow function in a rodent model of lung contusion, hemorrhagic shock, and chronic stress[J].Surgery,2017,161(3):795-802.
[31] Garcia-Garcia A,Korn C,Garcia-Fernandez M,et al.Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes[J].Blood,2019,133(3):224-236.
[32] Maryanovich M,Zahalka A H,Pierce H,et al.Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche[J].Nat Med,2018,24(6):782-791.
[33] Park M H,Jung I K,Min W K,et al.Neuropeptide Y improves cisplatin-induced bone marrow dysfunction without blocking chemotherapeutic efficacy in a cancer mouse model[J].BMB Rep,2017,50(8):417-422.
(收稿日期:2020-02-17) (本文編輯:何玉勤)