蘇子業(yè)
摘要:利用水聲信道稀疏特性,提出了一種基于壓縮感知的信道估計方法。首先對基于零前綴正交頻分復(fù)用(zeros-Padded orthogonal frequency division multiplexing,ZP-OFDM)的水聲通信系統(tǒng)接收端信號進(jìn)行兩次多普勒頻移補(bǔ)償并建立了離散信號模型,接著在傳統(tǒng)正交匹配追蹤(orthogonal matching pursuit,OMP)算法的框架下提出了一種改進(jìn)的算法,該算法依據(jù)上次迭代中殘差值和觀測值的比例,加入相對應(yīng)的加權(quán)矩陣以減小異常樣本對本次迭代結(jié)果的影響,然后在所提算法的基礎(chǔ)上,結(jié)合頻域過采樣的方法估計出水聲信道參數(shù)。仿真結(jié)果表明,改進(jìn)的算法性能優(yōu)于傳統(tǒng)OMP算法,且更加有效的提高系統(tǒng)可靠性和有效性。
Abstract: Exploiting the sparse channel in underwater acoustic (UWA) communication, an improved channel estimation method based on compressed sensing was proposed. Frist of all, a received discrete signal model was established in zeros Padded-orthogonal frequency division multiplexing (ZP-OFDM) UWA communication system after compensating for the Doppler shift two times. Secondly an improved algorithm was proposed based on the structure of orthogonal matching pursuit (OMP), where an corresponding weighted matrix was added to decrease the impact of the outliers in this iteration by the ratio of the residuals and measurements in the last iteration. Then the improved algorithm and frequency domain oversampling method was jointly to have channel parameters estimated. The simulation results verify that the improved algorithm outperforms the traditional OMP algorithm, and the improved algorithm can enhance the system's reliability better.
關(guān)鍵詞:零前綴正交頻分復(fù)用;頻域過采樣;改進(jìn)正交匹配追蹤算法
Key words: zeros Padded-orthogonal frequency division multiplexing (ZP-OFDM);frequency domain oversampling;improved orthogonal matching pursuit (OMP) algorithm
中圖分類號:G353.1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼:A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文章編號:1006-4311(2020)24-0210-03
0 ?引言
水聲信道是雙選擇性信道,但信道的大多數(shù)能量僅僅存在于少數(shù)的時延點(diǎn)和多普勒頻移因子上,即水聲信道是典型的稀疏信道[1]。近年來,為了充分利用水聲信道的稀疏特性,提高通信的效率和可靠性,壓縮感知理論被應(yīng)用到水聲信道估計中,例如使用典型的OMP[1-4]、BP[5]以及MP[6]等重構(gòu)算法用來估計信道參數(shù)(信道增益、時延和多普勒因子)。在文獻(xiàn)[5]中,則通過特殊的發(fā)送信號結(jié)構(gòu)和接收端頻域過采樣來提高系統(tǒng)性能,但這種信號結(jié)構(gòu)使得頻譜利用率低。在文獻(xiàn)[1]中,基于普通的信號結(jié)構(gòu)采用了OMP算法和BP算法,OMP算法雖然簡便,但循環(huán)中的異常樣本降低了估計結(jié)果的精度,性能比BP算法差,而BP算法復(fù)雜度高、收斂慢,成本比較大。針對上述問題,本章提出了一種改進(jìn)的OMP算法結(jié)合頻域過采樣方法對信道參數(shù)進(jìn)行估計,在迭代運(yùn)算中,加入相應(yīng)的權(quán)值矩陣減小異常樣本的影響,該算法既簡便,又能提高系統(tǒng)有效性。
1 ?水聲通信系統(tǒng)信號模型
1.1 水生通信系統(tǒng)基本模型
3 ?仿真分析
在本節(jié)實(shí)驗(yàn)仿真中,OFDM信號的子載波數(shù)為1024,導(dǎo)頻信號數(shù)256個,空子載波數(shù)為96個,采用QPSK調(diào)制方式。中心頻率fc為13kHz,帶寬B為10kHz,OFDM信號持續(xù)時間長是102.4ms,Tg為25.6ms。水聲信道多徑個數(shù)為10條,相鄰路徑之間的時延差服從均值為0.5ms的指數(shù)分布;每條路徑的多普勒因子服從均值為0,標(biāo)準(zhǔn)差為aa的高斯分布,路徑相對應(yīng)的增益服從瑞利分布,并且會隨著該條路徑時延的增大呈指數(shù)遞減。本次實(shí)驗(yàn)仿真結(jié)果是基于MATLAB對6000次的蒙特卡羅的平均實(shí)驗(yàn)。
圖1比較了頻域過采樣和非頻域過采樣在不同環(huán)境下的BER曲線。仿真中,使用的是OMP算法,根據(jù)圖1可知,在較高的信噪比和aa的情況下,頻域過采樣方法得到的BER均低于非頻域過采樣方法,并且隨著多普勒頻移的增大改善效果越明顯,這是因?yàn)轭l域過采樣能夠充分解調(diào)接收端的有用信息,減小了信息的流失。
在圖2中,接收端使用改進(jìn)算法結(jié)合頻域過采樣的方法估計信道與單獨(dú)使用改進(jìn)OMP算法的方案進(jìn)行比較,頻率過采樣和改進(jìn)算法的結(jié)合在多普勒頻移越顯著的情況下,其曲線下滑的更快。仿真結(jié)果表明,改進(jìn)OMP算法和頻域過采樣方法的結(jié)合相對于文中其他方法,能夠提高系統(tǒng)有效性,且隨著多普勒頻移的增大,越能顯著的提高系統(tǒng)有效性。
4 ?結(jié)論
本章根據(jù)水聲信道的稀疏特性,研究了基于壓縮感知的水聲通信信道估計問題。首先,對接收端信號進(jìn)行兩次多普勒頻移補(bǔ)償;接著針對普通的發(fā)送信號結(jié)構(gòu),在接收端則建立相對應(yīng)的離散信號模型并進(jìn)行頻域過采樣;最后,根據(jù)OMP算法中前一次循環(huán)產(chǎn)生的殘差值和觀測值的比例,加入相應(yīng)的權(quán)值矩陣以減小誤差大的樣本對本次循環(huán)參數(shù)估計結(jié)果的影響,仿真結(jié)果驗(yàn)證了所提方法的有效性。
參考文獻(xiàn):
[1]Christian R. Berger, Shengli Zhou, James C. Preisig, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708-1721.
[2]Christian R.Berger, Zhaohui Wang, Jianzhong Huang, et al. Application of compressive sensing to sparse channel estimation[J]. NEW R&D TOOLS FOR WIRELESS COMMUNICATIONS, 2010, 48(11): 164-174.
[3]孫崇強(qiáng),李磊,趙書俊,等.基于壓縮傳感的OFDM水聲信道估計方法研究[J].海洋技術(shù),2013,32(1):46-49.
[4]Berger C. R, Gomes J, Moura J M F. Study of pilot designs for cyclic-prefix OFDM on time-varying and sparse Underwater Acoustic channels[C]// IEEE-Spain Oceans. Santander: IEEE, 2011: 1-8.
[5]Berger C. R., Gomes J, Moura J M F. Sea-trial results for cyclic-prefix OFDM with long symbol duration[C]// IEEE-Spain Oceans. Santander: IEEE, 2011:1-8.
[6]Zhaohui Wang, Shengli Zhou, Georgios B. Giannakis, et al. Frequency-domain oversampling for zero-padded OFDM in underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2012, 37(1): 14-24.
[7]B. Muquet, Z. Wang, G. B. Gainnakis, et al. Cyclic prefix or zeros-padded for multicarrier transmission[J]. IEEE Transaction on Communication, 2002, 50(12): 2136-2148.
[8]B Li, S Zhou, M Stojanovic, L Freitag, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198-209.
[9]Lei Wan, Zhaohui Wang, Shengli Zhou, et al. Performance of comparison Doppler scale methods for underwater acoustic OFDM[J]. Journal of Electrical and Computer Engineering, 2012, 2012(1): 1-11.
[10]郭鐵梁,趙且峰,錢晉希.OFDM水聲通信多普勒頻移采樣率轉(zhuǎn)換算法[J].計算機(jī)工程,2014,40(3):147-151.
[11]Sean F. Mason, Christian R. Berger, Shengli Zhou, et al. Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication[J]. IEEE Journal on Selected Areas Communications, 2008, 26(3): 1638-1639.
[12]HuananYu, JunyaoGuo. Compressed sensing: underwater acoustic channel estimation with Doppler estimation[C]// IEEE 8th International Conference on WiCOM. Shanghai: IEEE, 2012: 1-4.
[13]Stojanovic M. Adaptive channel estimation for underwater acoustic MIMO-OFDM[C]// IEEE 5th Signal Processing Education Workshop. Marco Island, FL: IEEE, 2009: 132-137.