曹子鋮程淑蘭方華軍?徐 夢耿 靜盧明珠楊 艷李玉娜
溫帶針闊葉林土壤有機(jī)碳動態(tài)和微生物群落結(jié)構(gòu)對有機(jī)氮添加的響應(yīng)特征*
曹子鋮1,2,程淑蘭1,方華軍1,2?,徐 夢2,耿 靜2,盧明珠2,楊 艷2,李玉娜1
(1. 中國科學(xué)院大學(xué)資源與環(huán)境學(xué)院,北京 100049;2. 中國科學(xué)院地理科學(xué)與資源研究所,生態(tài)系統(tǒng)觀測與模擬重點實驗室,北京 100101)
大氣氮沉降;SOC物理分組;微生物群落組成;非線性響應(yīng);溫帶針闊混交林
陸地生態(tài)系統(tǒng)碳、氮循環(huán)過程緊密耦合在一起,分別反映了能量和養(yǎng)分的流動[1]。由于陸地生態(tài)系統(tǒng)生產(chǎn)力主要受氮素的限制,大氣氮沉降輸入會增加生態(tài)系統(tǒng)氮的可利用性,進(jìn)而改變生態(tài)系統(tǒng)碳氮的轉(zhuǎn)化速率[2]。在過去145年里(1860—2005),人類活動導(dǎo)致大氣氮沉降增加了11.5倍[3]。中國是全球活性氮最大的產(chǎn)生國和排放國,1980—2010年中國的大氣氮沉降量增加了60%,平均為21.1 kg· hm–2·a–1(以N計,下同)[4]。大氣氮沉降升高會增加、降低或者不改變植物和土壤碳儲量[5-7]。
森林是陸地生態(tài)系統(tǒng)的主要類型,有機(jī)碳儲量占陸地生態(tài)系統(tǒng)碳儲量的2/3,其中81%的有機(jī)碳儲存在土壤中[8]。施氮對森林土壤有機(jī)碳(soil organic carbon,SOC)儲量的影響有正有負(fù),長期緩慢的大氣氮沉降輸入通過改變SOC的輸入和輸出以及土壤有機(jī)質(zhì)(soil organic matter,SOM)穩(wěn)定性,進(jìn)而影響土壤碳的截存(C sequestration)。氮素富集條件下,受氮限制的森林SOC儲量很大程度上取決于地上、地下植物殘體碳的輸入與含碳?xì)怏w排放、液態(tài)淋溶之間的平衡。土壤氮素有效性的增加會導(dǎo)致土壤微生物活性和SOM可分解性的變化。一般而言,低劑量施氮傾向于促進(jìn)貧氮森林植物生長和凋落物歸還[9-10],增加根系自養(yǎng)呼吸[11]和土壤微生物活性[12];但是,長期高劑量施氮會顯著抑制富氮森林土壤微生物活性和異養(yǎng)呼吸[13-14]。此外,氮添加傾向于提高C/N的SOM分解,相反會抑制低C/N的SOM分解[15]。因此,氮輸入對土壤碳動態(tài)的差異性影響可能歸因于森林對不同沉降氮形態(tài)響應(yīng)的差異,也可能反映了特定森林土壤碳儲量對土壤氮基質(zhì)響應(yīng)的多階段性。氮素富集條件下土壤碳儲量增加可能存在一個閾值,超過該閾值土壤碳儲量不變甚至?xí)档汀?/p>
作為SOM的重要保護(hù)機(jī)制,土壤團(tuán)聚體通過形成復(fù)雜的土壤結(jié)構(gòu)和限制微生物的接觸來促進(jìn)SOM的積累和穩(wěn)定[16]。土壤團(tuán)聚體(> 53 μm)通常較黏粉粒(< 53 μm)儲存更多易分解的有機(jī)碳,而且微生物一般難以利用土壤團(tuán)聚體內(nèi)包裹的有機(jī)碳[17]。對不同森林生態(tài)系統(tǒng)而言,氮沉降增加會促進(jìn)[18]、抑制[19]或不改變[20]SOC含量以及SOM的化學(xué)穩(wěn)定性。此外,不同的微生物種群選擇性地利用不同來源的有機(jī)碳[19]。因此,土壤易分解碳含量的增加有利于土壤團(tuán)聚體形成,相應(yīng)地會增加SOC的積累和穩(wěn)定[21]。雖然科學(xué)家們已經(jīng)認(rèn)識到土壤碳庫的數(shù)量、質(zhì)量與微生物活性之間關(guān)系密切,但是鮮有研究揭示氮素富集條件下微生物豐度、群落組成與SOC動態(tài)之間的耦聯(lián)關(guān)系。
研究區(qū)位于中國科學(xué)院長白山森林生態(tài)系統(tǒng)研究站(圖1),森林類型為林齡約200年的闊葉紅松林。研究站位于長白山北坡國家自然保護(hù)區(qū)內(nèi),隸屬于吉林省安圖縣二道白河鎮(zhèn)(128°28′E,42°24′N)。研究區(qū)屬于典型的溫帶大陸性氣候,年均溫3.6℃,多年平均降水量為745 mm[24],海拔736 m。土壤為發(fā)育于火山灰母質(zhì)上的暗棕壤,0~20 cm表層土壤屬性如下:土壤容重為0.53 g·cm–3,全碳為156.6 g·kg–1,全氮為7.17 g·kg–1,全磷為0.97 g·kg–1,pH為5.85,C/N為21.84[23]。
2013年采用完全隨機(jī)的方式構(gòu)建了多水平的尿素添加控制試驗,以評估生態(tài)系統(tǒng)碳、氮過程和碳平衡對有機(jī)氮沉降增加的非線性響應(yīng)。參照長白山實際大氣氮沉降速率(10.8 kg·hm–2·a–1)[25]和全國最高氮沉降水平(99 kg·hm–2·a–1)[26],設(shè)置了對照(CK,0 kg·hm–2·a–1)、低氮(LN,40 kg·hm–2·a–1)、中氮(MN,80 kg·hm–2·a–1)、高氮(HN,120 kg·hm–2·a–1)等4個施氮水平,每個處理4次重復(fù),樣方規(guī)格為10 m×10 m,相鄰樣方間隔至少1 m(圖1)。在每個月的第一天,將固體尿素(分析純,氮濃度為46%)稱重并溶解在40 L水中,然后均勻地噴灑到對應(yīng)的樣方中,對照樣方噴灑等體積的水,模擬未來大氣有機(jī)氮沉降增加對溫帶針闊混交林生態(tài)系統(tǒng)碳、氮循環(huán)關(guān)鍵過程的影響。
注:CK、LN、MN、HN分別代表對照、低氮、中氮、高氮處理。Note:CK,LN,MN,and HN are control,low,medium,and high rates of N addition treatments,respectively.
對于每個試驗樣方,移除地表凋落物層,采集0~10 cm的礦質(zhì)土壤,同層土壤5鉆混合。土壤樣品分別進(jìn)行溶解性有機(jī)碳(DOC)、SOC粒徑分組和水穩(wěn)性團(tuán)聚體分離。DOC測定步驟簡述如下:過2 mm篩的新鮮土壤加入去離子水(土/水為1︰10 w/v),室溫下振蕩2 h后利用0.45 μm玻璃纖維濾膜過濾,浸提液利用TOC分析儀(Liqui TOCII,Elementar,Germany)測定DOC的濃度。
使用Cambardella和Elliott[27]介紹的方法進(jìn)行SOC粒徑分級。簡言之,將50 g風(fēng)干土和100 mL 1%六偏磷酸鈉溶液混合于200 mL塑料瓶中,在回旋式振蕩器上以200 r·min–1的速率振蕩15 h,利用套篩回收粗顆粒態(tài)有機(jī)碳(CoarsePOC,>250 μm)和細(xì)顆粒態(tài)有機(jī)碳(FinePOC,53~250 μm),POC等于CoarsePOC和FinePOC之和。通過過濾、蒸發(fā)回收礦質(zhì)結(jié)合態(tài)有機(jī)碳(MAOC,<53 μm)組分。將分離各組分在60℃下低溫烘干、稱重。
相同土樣利用團(tuán)聚體分析儀(Model SAA 8052,Shanghai,China)濕篩法分離水穩(wěn)性團(tuán)聚體[28]。將30 g土樣置于250 μm和53 μm的套篩上,先在去離子水中浸泡5 min,然后以每分鐘30次的頻率上下振蕩,振幅為3 cm,持續(xù)30 min。依次收集大團(tuán)聚體(>250 μm)、微團(tuán)聚體(53~250 μm)和粉黏粒(<53 μm),各組分在60℃下烘干稱重。所有分離的顆粒組分研磨過100目篩,利用元素分析儀(vario EL III,Elementa,Germany)測定各組分碳濃度,再根據(jù)各組分的質(zhì)量百分比計算出各組分的碳含量(g·kg–1)。
土壤微生物相對豐度與群落結(jié)構(gòu)采用磷脂脂肪酸(PLFAs)的方法測定,主要包括浸提、分餾和定量等過程。首先,稱取相當(dāng)于8 g干土的新鮮土樣,利用提取液(CH3OH︰CHCl3︰磷酸緩沖液= 2︰1︰0.8)反復(fù)浸提,隨后將浸提液、12 mL三氯甲烷和12 mL磷酸緩沖液均倒入分液漏斗中,避光靜置過夜。第二天萃取分離分液漏斗下層目標(biāo)液體,將獲取的磷脂脂肪酸進(jìn)行甲基化處理,氮氣吹干并排空氧氣后封存于–80℃冰箱待測。利用氣相色譜結(jié)合MIDI系統(tǒng)(Microbial ID. Inc.,Newark,DE)測定各個脂肪酸的相對含量,所用的參比是C20標(biāo)準(zhǔn)樣品。
脂肪酸常用的命名格式為:︰(/),其中,為總碳數(shù),后面跟一個冒號;表示雙鍵數(shù);表示甲基末端;是距離甲基端的距離;表示順式,表示反式;和分別表示支鏈的反異構(gòu)和異構(gòu);10Me表示一個甲基團(tuán)在距分子末端第10個碳原子上;環(huán)丙烷脂肪酸用cy表示。用于指示細(xì)菌(B)群落相對量的磷脂脂肪酸有:i15︰0,a15︰0,15︰0,i16︰0,16︰1 ω5,16︰1 ω9,i17︰0,17︰0,18︰1 ω7,a17︰0,cy17︰0,cy19︰0[29-30]。用于指示真菌(F)群落相對量的磷脂脂肪酸有:18:2ω6c,18:3ω6c,18:3ω3c[29]。指示革蘭氏陽性細(xì)菌(G+)的磷脂脂肪酸:i15︰0,a15︰0,i16︰0,a17︰0,i17︰0,而指示革蘭氏陰性細(xì)菌(G-)的磷脂脂肪酸:16︰1 ω7c,cy17︰0和cy19︰0。好氧細(xì)菌(A)PLFAs采用16︰1ω7和18︰1ω7表示,而厭氧細(xì)菌(AN)PLFAs采用cy17︰0和cy19︰0表示。放線菌PLFA主要包括含側(cè)鏈甲基的脂肪酸,如10Me18︰0,10Me16︰0,10Me17︰0,16Me18︰0;原生動物PLFA主要包括20︰3ω6,20︰4ω6[29-30]。此外,G+/G–、F/B以及A/AN用于反映微生物群落結(jié)構(gòu)的變化。
利用單因素方差分析評估施氮劑量對土壤基本理化性質(zhì)、土壤團(tuán)聚體百分比、不同粒徑SOC含量和微生物PLFA的影響,利用Tukey真正顯著差法(honestly significant difference,HSD)檢驗不同處理均值之間的差異。利用線性回歸分析方法評估SOC含量的凈變化(ΔSOC)與SOC各組分凈變化(ΔSOCi)之間的關(guān)系[31]。此外,利用Spearman等級相關(guān)分析方法研究SOC、SOC組分和微生物PLFA豐度之間的相關(guān)關(guān)系。所有統(tǒng)計分析基于SPSS軟件包(16.0版)進(jìn)行,顯著性水平設(shè)置為=0.05。
對照處理下,0~10 cm層礦質(zhì)土壤SOC和DOC的含量分別為78.8 g·kg–1和672.1 mg·kg–1;施氮三年傾向于增加表層土壤SOC和DOC的含量,但是不同施氮處理與對照之間的差異均不顯著(圖3a~圖3b)。對照處理下,粗顆粒態(tài)有機(jī)碳(CoarsePOC)、細(xì)顆粒態(tài)有機(jī)碳(FinePOC)、礦質(zhì)結(jié)合態(tài)有機(jī)碳(MAOC)含量依次為20.18 g·kg–1、8.94 g·kg–1和56.27 g·kg–1,分別占總SOC含量的23.63%、10.47%和65.90%,SOC以MAOC為主(圖3c~圖3e)。土壤粗、細(xì)顆粒態(tài)有機(jī)碳含量隨著施氮劑量的增加先增加后降低,中氮處理顯著導(dǎo)致土壤粗、細(xì)顆粒態(tài)有機(jī)碳含量增加了96.26%和84.69%,氮沉降臨界負(fù)荷為80 kg·hm–2·a–1(圖3c~圖3d)。不同試驗處理下表層土壤MAOC含量差異不顯著(圖3e)。
對照處理樣方大團(tuán)聚體、微團(tuán)聚體和粉黏粒比例相當(dāng),三個組分的百分比依次為33.41%,30.66%和35.93%(圖4a~圖4c)。與對照相比,施氮三年傾向于增加表層土壤大團(tuán)聚體(>250 μm)和微團(tuán)聚體(53~250 μm)比例,但是只有中氮、高氮處理樣方土壤微團(tuán)聚體比例增加顯著,增幅分別為8.45%和9.13%(圖4b)。相反,施氮傾向于降低粉黏粒的比例,中氮、高氮處理導(dǎo)致土壤粉黏粒的比例減少了19.57%和21.34%(圖4c)。施氮三年傾向于增加大團(tuán)聚體和微團(tuán)聚體結(jié)合態(tài)有機(jī)碳(Macroaggregate-C和Microaggregate-C)含量,Macroaggregate-C增幅為37.25%~42.76%,Microaggregate-C增幅介于27.45%~43.99%之間;但對粉黏粒結(jié)合態(tài)有機(jī)碳(Silt+clay-C)含量無影響(圖4d~圖4f)。此外,氮素富集條件下,土壤Macroaggregate-C和Microaggregate-C含量增幅隨著施氮劑量的增加先增加后降低,臨界氮沉降負(fù)荷也為80 kg·hm–2·a–1(圖4d~圖4f)。
注:不同小寫字母表示處理間差異顯著.下同。Note:Different lowercase letters mean significant differences between treatments. The same below.
圖3 不同施氮水平下0~10 cm礦質(zhì)層SOC和不同組分含量的差異
圖4 不同施氮水平下0~10 cm礦質(zhì)層土壤團(tuán)聚體百分比及其結(jié)合態(tài)有機(jī)碳含量的差異
除了好氧細(xì)菌PLFA豐度外,施氮三年未顯著改變土壤微生物總PLFA和單個種群PLFA的相對豐度(圖5a~圖5i),高氮處理導(dǎo)致好氧細(xì)菌PLFA豐度顯著降低17.55%(圖5h)。此外,施氮顯著改變土壤微生物群落結(jié)構(gòu)。隨著施氮劑量的增加,真菌與細(xì)菌PLFA比例(F/B)和G+與G–細(xì)菌PLFA(G+/G–)比例傾向于增加,而好氧與厭氧細(xì)菌PLFA的比例(A/AN)傾向于下降(圖5j~圖5l)。
氮素富集條件下,SOC含量的凈變化(ΔSOC)與大團(tuán)聚體及微團(tuán)聚體結(jié)合態(tài)有機(jī)碳含量的凈變化(ΔMacroaggregate-C和ΔMicroaggregate-C)之間呈現(xiàn)顯著的正相關(guān)關(guān)系,兩者分別解釋其變異的88%和78%(圖6a~圖6b)。相似地,氮素富集條件下,ΔSOC與粗顆粒態(tài)有機(jī)碳、細(xì)顆粒態(tài)有機(jī)碳含量的凈變化(ΔCoarsePOC和ΔFinePOC)之間呈顯著的正相關(guān)關(guān)系,兩者分別解釋其變異的49%和55%(圖6a~圖6b)。然而,ΔSOC與粉黏粒結(jié)合態(tài)有機(jī)碳、礦質(zhì)結(jié)合態(tài)有機(jī)碳含量的凈變化(ΔSilt+clay-C和ΔMAOC)之間相關(guān)性不顯著。研究結(jié)果表明,氮素富集條件下短期內(nèi)SOC含量的變化主要體現(xiàn)在活性組分而非惰性SOC組分。
大團(tuán)聚體比例與細(xì)菌、G+細(xì)菌、厭氧細(xì)菌、真菌豐度以及真菌/細(xì)菌比例(F/B)顯著正相關(guān),與好氧/厭氧菌豐度比例(A/AN)顯著負(fù)相關(guān),而粉黏粒比例恰好相反;微團(tuán)聚體比例只與G+/G–比例負(fù)相關(guān)(表1)。粗、細(xì)顆粒態(tài)有機(jī)碳含量只與厭氧微生物豐度正相關(guān),細(xì)顆粒態(tài)有機(jī)碳與A/AN比例負(fù)相關(guān),礦質(zhì)結(jié)合態(tài)有機(jī)碳與微生物種群豐度、群落結(jié)構(gòu)相關(guān)性不顯著(表1)。
圖5 不同施氮水平下0~10 cm礦質(zhì)層土壤微生物PLFA豐度和群落結(jié)構(gòu)的變化
圖6 SOC含量凈變化與SOC不同組分含量凈變化之間的關(guān)系
表1 團(tuán)聚體比例、顆粒態(tài)有機(jī)碳含量與微生物種群豐度及群落結(jié)構(gòu)之間的相關(guān)關(guān)系
①Proportion of macroaggregate;②Proportion of microaggregate;③Proportion of silt and clay;④Concentration of coarse POC;⑤Concentration of finePOC;⑥Concentration of MAOC
本研究中,由于沒有測定每個樣方的土壤容重,因此評估的是土壤碳含量而不是土壤碳儲量。連續(xù)三年施氮未顯著增加0~10 cm礦質(zhì)層土壤總SOC、DOC和MAOC的含量,但是顯著促進(jìn)了同層土壤粗、細(xì)顆粒態(tài)碳的累積。研究結(jié)果表明,施氮促進(jìn)了來源于植物碎屑的易分解碳組分的累積,這與氮輸入促進(jìn)植物生長以及凋落物歸還的結(jié)論相一致[35]。CoarsePOC和FinePOC對氮添加水平的響應(yīng)呈現(xiàn)先增加后降低的格局,證實了筆者的假設(shè),即來自植物殘體碎屑的活性SOC組分對外源性氮添加水平的響應(yīng)呈現(xiàn)非線性。由于不同試驗處理樣方土壤顆粒態(tài)有機(jī)質(zhì)所占比例平均低于25%,因此大氣氮沉降輸入對東北地區(qū)溫帶針闊混交林土壤碳截存的影響可能較小?;谌蛟龅刂茖嶒灁?shù)據(jù)的集成(Meta)分析,無論是否將農(nóng)田生態(tài)系統(tǒng)考慮在內(nèi),氮沉降/施氮不會顯著增加礦質(zhì)土壤SOC的儲量[37-38]。氮素富集條件下,地上植物碳庫增加會引起土壤碳庫產(chǎn)生正的激發(fā)效應(yīng)[12],以及地下植物碳分配的大幅減少[7],可能導(dǎo)致礦質(zhì)層SOC庫沒有發(fā)生明顯累積。在長白山溫帶針闊混交林區(qū),Wang等[36]報道施氮(50 kg·hm–2·a–1)顯著降低了0~20 cm層細(xì)根生物量,并且增加了細(xì)根生產(chǎn)量和周轉(zhuǎn)速率,表明高氮輸入加速了地下的碳循環(huán)過程。
粉黏粒組分比例減少與大團(tuán)聚體、微團(tuán)聚體組分比例增加是相對應(yīng)的(圖4a~圖4c),相應(yīng)地本研究發(fā)現(xiàn)土壤大團(tuán)聚體和微團(tuán)聚體結(jié)合態(tài)碳含量顯著增加(圖4d~圖4e)。上述研究結(jié)果表明,活性SOC組分積累會促進(jìn)土壤從粉黏粒向土壤團(tuán)聚體的轉(zhuǎn)變,這與許多施氮試驗結(jié)果一致[37-38]。在氮素富集條件下,團(tuán)聚體結(jié)合態(tài)有機(jī)碳含量的變化可以解釋SOC含量變化的80%(圖6a~圖6b),表明新形成、半分解的SOC主要累積在大團(tuán)聚體和微團(tuán)聚體中,而長白山溫帶針闊混交老齡林土壤與粉黏粒相結(jié)合的SOC可能達(dá)到其飽和能力,惰性碳增加潛力有限[39-40]。相似地,一些研究表明,施加無機(jī)氮肥增加大、微團(tuán)聚體結(jié)合態(tài)有機(jī)碳含量,尤其是大團(tuán)聚體中碳積累顯著[41-42];大部分來源于植物殘體的有機(jī)碳更傾向于固定在微團(tuán)聚體中[43]。氮素富集條件下,土壤碳截存的潛在機(jī)制如下:易分解有機(jī)碳含量增加可能會減少土壤孔隙的連通性,增加土壤的持水能力,進(jìn)而減少了土壤中氧氣的有效擴(kuò)散系數(shù),反過來會降低土壤空氣中的氧氣濃度,促進(jìn)厭氧微生境的形成[39]。
施氮對溫帶針闊混交林土壤微生物生物量的影響不盡相同,有促進(jìn)[44]、抑制[45]和無顯著影響[46]。除了研究區(qū)的環(huán)境條件和土壤特性外,SOM似乎控制著土壤微生物生物量的變化。在本研究中,土壤活性有機(jī)碳含量(POC和aggregate-C)以及總PLFA對施氮劑量的響應(yīng)一致(圖3~圖5),研究結(jié)果一定程度上證實了筆者的假設(shè),表明土壤微生物豐度主要取決于活性有機(jī)碳而非總SOC的數(shù)量。然而,在氮素富集條件下活性有機(jī)碳含量所占比例較小,其數(shù)量的小幅度增加可能難以支持微生物的大量生長[47]。同樣,高劑量的氮輸入短期內(nèi)就可以改變長白山溫帶針闊混交林土壤部分微生物種群的相對豐度和群落結(jié)構(gòu)。
真菌PLFA的相對豐度、F/B比對施氮劑量的響應(yīng)與SOC、團(tuán)聚體結(jié)合態(tài)有機(jī)碳含量一致(圖4~圖5),反映了真菌在穩(wěn)定土壤團(tuán)聚體方面起著至關(guān)重要的作用。真菌菌絲將土壤顆粒膠結(jié)在一起,形成穩(wěn)定的團(tuán)聚體,有助于增加水分滲透和土壤的持水能力[48]。鑒于G+細(xì)菌生長依賴于相對活性的有機(jī)碳[49],然而由于活性有機(jī)碳數(shù)量比例較低,導(dǎo)致氮素富集條件下G+細(xì)菌PLFA的豐度增加并不顯著,但是G+/G–增幅明顯。此外,大團(tuán)聚體比例和活性有機(jī)碳組分(CoarsePOC和FinePOC)與厭氧菌PLFAs呈顯著的正相關(guān)關(guān)系,而與好氧/厭氧菌PLFA豐度比(A/AN)呈負(fù)相關(guān)關(guān)系,表明大團(tuán)聚體的形成有利于厭氧微生境的形成[49]。由于好氧細(xì)菌較厭氧細(xì)菌更加有效地分解有機(jī)碳[50],微生物群落組成的優(yōu)勢種群從好氧細(xì)菌向兼性或?qū)P詤捬跫?xì)菌的演變可能會改變長白山溫帶森林SOC的積累過程[51]。然而,由于PLFA方法的局限性,本研究測定的微生物群落結(jié)構(gòu)精度較粗,未來的研究應(yīng)該基于DNA/RNA的聚合酶鏈擴(kuò)增(PCR)和高通量測序,深入分析氮素富集情景下土壤微生物群落組成及其轉(zhuǎn)變。
[1] Thornton P E,Doney S C,Lindsay K,et al. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks:Results from an atmosphere-ocean general circulation model[J]. Biogeosciences,2009,6(10):2099—2120.
[2] LeBauer D S,Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology,2008,89(2):371—379.
[3] Galloway J N,Dentener F J,Marmer E,et al. The environmental reach of Asia[J]. Annual Review of Environment and Resources,2008,33(1):461—481.
[4] Liu X J,Zhang Y,Han W X,et al. Enhanced nitrogen deposition over China[J]. Nature,2013,494(7438):459—462.
[5] Liu L L,Greaver T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology Letters,2010,13(7):819—828.
[6] Lu M,Zhou X H,Luo Y Q,et al. Minor stimulation of soil carbon storage by nitrogen addition:A meta- analysis[J]. Agriculture,Ecosystems & Environment,2011,140(1/2):234—244.
[7] Chen H,Li D J,Gurmesa G A,et al. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China:A meta-analysis[J]. Environmental Pollution,2015,206:352—360.
[8] Lal R. Forest soils and carbon sequestration[J]. Forest Ecology and Management,2005,220(1/3):242—258.
[9] Hyv?nen R,Persson T,Andersson S,et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe[J]. Biogeochemistry,2008,89(1):121—137.
[10] Quinn Thomas R,Canham C D,Weathers K C,et al. Increased tree carbon storage in response to nitrogen deposition in the US[J]. Nature Geoscience,2010,3(1):13—17.
[11] Kou L,Guo D L,Yang H,et al. Growth,morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China[J]. Plant and Soil,2015,391(1/2):207—218.
[12] Wang Y S,Cheng S L,F(xiàn)ang H J,et al. Contrasting effects of ammonium and nitrate inputs on soil CO2emission in a subtropical coniferous plantation of Southern China[J]. Biology and Fertility of Soils,2015,51(7):815—825.
[13] Burton A J,Pregitzer K S,Crawford J N,et al. Simulated chronic NO3–deposition reduces soil respiration in northern hardwood forests[J]. Global Change Biology,2004,10(7):1080—1091.
[14] DeForest J L,Zak D R,Pregitzer K S,et al. Atmospheric nitrate deposition,microbial community composition,and enzyme activity in northern hardwood forests[J]. Soil Science Society of America Journal,2004,68(1):132—138.
[15] Smith A P,Marín-Spiotta E,de Graaff M A,et al. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change[J]. Soil Biology and Biochemistry,2014,77:292—303.
[16] Bossuyt H,Six J,Hendrix P F. Protection of soil carbon by microaggregates within earthworm casts[J]. Soil Biology and Biochemistry,2005,37(2):251—258.
[17] Pregitzer K S,Burton A J,Zak D R,et al. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests[J]. Global Change Biology,2008,14(1):142—153.
[18] Fang H J,Cheng S L,Yu G R,et al. Nitrogen deposition impacts on the amount and stability of soil organic matter in an alpine meadow ecosystem depend on the form and rate of applied nitrogen[J]. European Journal of Soil Science,2014,65(4):510—519.
[19] Zhong X L,Li J T,Li X J,et al. Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China[J]. Geoderma,2017,285:323—332.
[20] Balesdent J,Chenu C,Balabane M. Relationship of soil organic matter dynamics to physical protection and tillage[J]. Soil and Tillage Research,2000,53(3/4):215—230.
[21] Geng J,Cheng S L,F(xiàn)ang H J,et al. Soil nitrate accumulation explains the nonlinear responses of soil CO2and CH4fluxes to nitrogen addition in a temperate needle-broadleaved mixed forest[J]. Ecological Indicators,2017,79:28—36.
[22] Wang Y Y,Hsu P K,Tsay Y F. Uptake,allocation and signaling of nitrate[J]. Trends in Plant Science,2012,17(8):458—467.
[23] Cheng S L,F(xiàn)ang H J,Yu G R,et al. Foliar and soil 15N natural abundances provide field evidence on nitrogen dynamics in temperate and boreal forest ecosystems[J]. Plant and Soil,2010,337(1/2):285—297.
[24] Zhu J X,He N P,Wang Q F,et al. The composition,spatial patterns,and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems[J]. Science of the Total Environment,2015,511:777—785.
[25] He C E,Liu X J,F(xiàn)angmeier A,et al. Quantifying the total airborne nitrogen input into agroecosystems in the North China Plain[J]. Agriculture,Ecosystems & Environment,2007,121(4):395—400.
[26] Cambardella C A,Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal,1992,56(3):777—783.
[27] Six J,Paustian K,Elliott E T,et al. Soil structure and organic matter I. distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal,2000,64(2):681—689.
[28] Bossio D A,Scow K M. Impacts of carbon and flooding on soil microbial communities:Phospholipid fatty acid profiles and substrate utilization patterns[J]. Microbial Ecology,1998,35(3):265—278.
[29] Frostegard A,Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biology and Fertility of Soils,1996,32(1/2):59—65.
[30] Frosteg?rd,B??th E,Tunlio A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[J]. Soil Biology and Biochemistry,1993,25(6):723—730.
[31] Hoerl A E,Kennard R W. Ridge regression:Biased estimation for nonorthogonal problems[J]. Technometrics,2000,42(1):80—86.
[32] Xu X K,Han L,Luo X B,et al. Effects of nitrogen addition on Dissolved N2O and CO2,Dissolved organic matter,and inorganic nitrogen in soil solution under a temperate old-growth forest[J]. Geoderma,2009,151(3/4):370—377.
[33] Kuzyakov Y,Xu X L. Competition between roots and microorganisms for nitrogen:Mechanisms and ecological relevance[J]. New Phytologist,2013,198(3):656—669.
[34] Gao W L,Kou L,Zhang J B,et al. Ammonium fertilization causes a decoupling of ammonium cycling in a boreal forest[J]. Soil Biology and Biochemistry,2016,101:114—123.
[35] Wei H X,Xu C Y,Ma L Y,et al. Short-term Nitrogen (N)-retranslocation within larix olgensis seedlings is driven to increase by N-deposition:Evidence from a simulated N-15 experiment in northeast China[J]. International Journal of Agriculture and Biology,2014,16(6):1031—1040.
[36] Wang Y Y,Hsu P K,Tsay Y F. Uptake,allocation and signaling of nitrate[J]. Trends in Plant Science,2012,17(8):458—467.
[37] Yu H Y,Ding W X,Luo J F,et al. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil[J]. Biology and Fertility of Soils,2012,48(3):325—336.
[38] Zhang W,Mo J M,Zhou G Y,et al. Methane uptake responses to nitrogen deposition in three tropical forests in Southern China[J]. Journal of Geophysical Research Atmospheres,2008,113(D11):D11116. DOI:10.1029/ 2007jd009195.
[39] Six J,Conant R T,Paul E A,et al. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils[J]. Plant and Soil,2002,241(2):155—176.
[40] Gulde S,Chung H,Amelung W,et al. Soil carbon saturation controls labile and stable carbon pool dynamics[J]. Soil Science Society of America Journal,2008,72(3):605—612.
[41] Tripathi S K,Kushwaha C P,Singh K P. Tropical forest and savanna ecosystems show differential impact of N and P additions on soil organic matter and aggregate structure[J]. Global Change Biology,2008,14(11):2572—2581.
[42] Kong A Y Y,Six J,Bryant D C,et al. The relationship between carbon input,aggregation,and soil organic carbon stabilization in sustainable cropping systems[J]. Soil Science Society of America Journal,2005,69(4):1078—1085.
[43] Li Y Q,Xu M,Zou X M. Effects of nutrient additions on ecosystem carbon cycle in atoRican tropical wet forest[J]. Global Change Biology,2006,12(2):284—293.
[44] DeForest J L,Zak D R,Pregitzer K S,et al. Atmospheric nitrate deposition,microbial community composition,and enzyme activity in northern hardwood forests[J]. Soil Science Society of America Journal,2004,68(1):132—138.
[45] Davidson E A,de Carvalho C J R,Vieira I G C,et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest[J]. Ecological Applications,2004,14(4):150—163.
[46] Hill P W,F(xiàn)arrar J F,Jones D L. Decoupling of microbial glucose uptake and mineralization in soil[J]. Soil Biology and Biochemistry,2008,40(3):616—624.
[47] Tisdall J M. Fungal hyphae and structural stability of soil[J]. Soil Research,1991,29(6):729—743.
[48] Peacock A D,Mullen M D,Ringelberg D B,et al. Soil microbial community responses to dairy manure or ammonium nitrate applications[J]. Soil Biology and Biochemistry,2001,33(7/8):1011—1019.
[49] Wixon D L,Balser T C. Toward conceptual clarity:PLFA in warmed soils[J]. Soil Biology and Biochemistry,2013,57:769—774.
[50] Ding H B,Sun M Y. Biochemical degradation of algal fatty acids in oxic and anoxic sediment-seawater interface systems:Effects of structural association and relative roles of aerobic and anaerobic bacteria[J]. Marine Chemistry,2005,93(1):1—19.
[51] Pregitzer K S,Burton A J,Zak D R,et al. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests[J]. Global Change Biology,2008,14(1):142—153.
Responses of Soil Organic Carbon Dynamics and Microbial Community Structure to Organic Nitrogen Fertilization in the Temperate Needle-broadleaved Mixed Forest
CAO Zicheng1, 2, CHENG Shulan1, FANG Huajun1, 2?, XU Meng2, GENG Jing2, LU Mingzhu2, YANG Yan2, LI Yuna1
( 1. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; 2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)
Atmospheric nitrogen deposition; SOC physical fractionation; Microbial community composition; Nonlinear response; Temperate needle-broadleaved mixed forest
Q154
A
10.11766/trxb201908130350
曹子鋮,程淑蘭,方華軍,徐夢,耿靜,盧明珠,楊艷,李玉娜. 溫帶針闊葉林土壤有機(jī)碳動態(tài)和微生物群落結(jié)構(gòu)對有機(jī)氮添加的響應(yīng)特征[J]. 土壤學(xué)報,2020,57(4):963–974.
CAO Zicheng,CHENG Shulan,F(xiàn)ANG Huajun,XU Meng,GENG Jing,LU Mingzhu,YANG Yan,LI Yuna. Responses of Soil Organic Carbon Dynamics and Microbial Community Structure to Organic Nitrogen Fertilization in the Temperate Needle-broadleaved Mixed Forest[J]. Acta Pedologica Sinica,2020,57(4):963–974.
* 國家自然科學(xué)基金項目(31770558,41977041,41907036)和中國科學(xué)院戰(zhàn)略先導(dǎo)專項(XDA2002040203,XDA23060401)資助Supported by the National Natural Science Foundation of China(Nos. 31770558,41977041,41907036)and CAS Strategic Priority Program(Nos. XDA2002040203,XDA23060401)
,E-mail:fanghj@igsnrr.ac.cn
曹子鋮(1995—),男,河南鄭州人,碩士研究生,主要從事土壤碳氮生物地球化學(xué)研究。E-mail:448650877@qq.com
2019–07–07;
2019–09–18;
2019–11–13
(責(zé)任編輯:檀滿枝)