耿國(guó)濤,陸志峰,盧 涌,明 日,肖國(guó)濱,范連益,任 濤,魯劍巍?
紅壤地區(qū)直播油菜施硼對(duì)籽粒產(chǎn)量和品質(zhì)的影響*
耿國(guó)濤1,陸志峰1,盧 涌1,明 日2,肖國(guó)濱3,范連益4,任 濤1,魯劍巍1?
(1. 華中農(nóng)業(yè)大學(xué)微量元素研究中心/農(nóng)業(yè)農(nóng)村部長(zhǎng)江中下游耕地保育重點(diǎn)實(shí)驗(yàn)室,武漢 430070;2. 桂林市農(nóng)業(yè)科學(xué)院/廣西農(nóng)業(yè)科學(xué)院桂北分院,廣西桂林 541006;3. 江西省紅壤研究所,江西進(jìn)賢 331717;4. 湖南省作物研究所,長(zhǎng)沙 410125)
紅壤地區(qū)是我國(guó)重要的油菜種植區(qū),研究直播冬油菜硼肥施用效果,為直播油菜科學(xué)施硼提供理論依據(jù),對(duì)促進(jìn)區(qū)域油菜產(chǎn)業(yè)發(fā)展有重要意義。2017—2018年在江西、湖南、湖北南部和廣西北部油菜主產(chǎn)區(qū)布置7個(gè)硼肥大田試驗(yàn),設(shè)置不施硼、施硼肥(含硼量100 g·kg–1)4.5 kg·hm–2、9.0 kg·hm–2、13.5 kg·hm–2四個(gè)處理。結(jié)果表明,紅壤地區(qū)土壤有效硼普遍含量低,直播油菜施硼增產(chǎn)效果顯著,油菜籽平均產(chǎn)量和施硼經(jīng)濟(jì)效益在硼肥用量9.0 kg·hm–2時(shí)最高,與不施硼相比增產(chǎn)1 021 kg·hm–2,增產(chǎn)率達(dá)110.6%,分別較施用硼肥4.5 kg·hm–2和13.5 kg·hm–2增產(chǎn)16.6%和3.1%。施硼顯著增加直播油菜收獲密度、單株角果數(shù)和每角粒數(shù),進(jìn)而增加了油菜產(chǎn)量;同時(shí)硼肥的施用可顯著提高油菜籽的含油率、油酸和亞油酸含量,與不施硼相比,施用硼肥9.0 kg·hm–2處理各品質(zhì)指標(biāo)分別增加26.9%、45.9%和72.6%,相應(yīng)增加產(chǎn)油量136.1%。在硼肥用量13.5 kg·hm–2范圍內(nèi),油菜地上部硼含量和硼累積量隨著施硼量的增加而增加,但硼肥利用率呈現(xiàn)降低的趨勢(shì),硼肥用量為9.0 kg·hm–2處理的硼肥當(dāng)季利用率也僅為9.4%。綜合結(jié)果顯示,紅壤地區(qū)直播油菜施硼增產(chǎn)增收效果顯著,直播油菜生產(chǎn)中應(yīng)重視硼肥的合理施用,區(qū)域硼肥的推薦用量為9.0 kg·hm–2左右。
直播油菜;產(chǎn)量;硼肥適宜用量;品質(zhì);硼肥利用率
油菜是一種需硼量較大且對(duì)硼十分敏感的作物[1],合理提供硼素營(yíng)養(yǎng)有利于促進(jìn)油菜生長(zhǎng)發(fā)育,提高油菜籽產(chǎn)量和品質(zhì)[2-3]。經(jīng)過(guò)多年的科學(xué)研究和生產(chǎn)實(shí)踐,施硼已成為油菜生產(chǎn)的常規(guī)技術(shù)[4],然而在實(shí)際生產(chǎn)中缺硼現(xiàn)象時(shí)有發(fā)生,主要原因是土壤有效硼含量低和未合理施用硼肥[5]。油菜是我國(guó)最主要的油料作物,種植面積大,分布區(qū)域廣,但相對(duì)集中[6],其中紅壤地區(qū)的江西、湖南、湖北南部和廣西北部油菜種植面積占全國(guó)的40%[7],該區(qū)域土壤多呈酸性且質(zhì)地較輕,硼在酸性土壤中主要以硼酸的形態(tài)存在,加之雨量豐富和水旱輪作交替頻繁,導(dǎo)致農(nóng)田土壤中的硼易被淋洗而損失[8-9],因此土壤有效硼含量普遍偏低,缺硼成為限制油菜增產(chǎn)的重要因子[10]。
我國(guó)油菜施硼研究及制定的施硼技術(shù)大多針對(duì)移栽油菜[11]。近年來(lái),隨著農(nóng)村勞動(dòng)力結(jié)構(gòu)變化和轉(zhuǎn)移,油菜直播輕簡(jiǎn)栽培模式不斷擴(kuò)大[12]。與育苗移栽油菜相比,直播油菜減少了苗床養(yǎng)分強(qiáng)化環(huán)節(jié),已有研究表明直播油菜對(duì)農(nóng)田氮養(yǎng)分缺乏更加敏感[13]。盡管目前直播油菜對(duì)硼肥施用的響應(yīng)尚不清楚,但直播油菜缺硼現(xiàn)象呈現(xiàn)加劇趨勢(shì)[14]。為了明確紅壤地區(qū)直播油菜對(duì)缺硼的敏感程度及確定適宜硼肥用量,本研究于2017—2018年在江西、湖南、湖北南部和廣西北部布置大田試驗(yàn),研究硼肥用量對(duì)直播油菜產(chǎn)量及其構(gòu)成、品質(zhì)和經(jīng)濟(jì)效益的影響,以期為我國(guó)紅壤地區(qū)直播油菜科學(xué)施硼提供依據(jù)。
2017—2018年在江西、湖南、湖北南部和廣西北部布置7個(gè)直播冬油菜硼肥用量試驗(yàn)。具體地點(diǎn)及基礎(chǔ)土壤理化性質(zhì)見(jiàn)表1,所有試驗(yàn)點(diǎn)土壤有效硼均處于缺乏或嚴(yán)重缺乏狀態(tài)。各試驗(yàn)的前茬作物均為水稻。油菜品種為當(dāng)?shù)卮竺娣e推廣運(yùn)用的品種,包括希望122(江西)、湘雜753(湖南)、大地199(湖北)和陽(yáng)光2009(廣西),播種量為6 kg·hm–2。
田間試驗(yàn)設(shè)置4個(gè)施硼水平,分別為:(1)不施用硼肥;(2)施用硼肥4.5 kg·hm–2;(3)施用硼肥9.0 kg·hm–2;(4)施用硼肥13.5 kg·hm–2。供試硼肥由華中農(nóng)業(yè)大學(xué)養(yǎng)分管理研究團(tuán)隊(duì)提出設(shè)計(jì)方案(能與油菜種子混合同播的油菜專用硼肥),聯(lián)合武漢高飛農(nóng)業(yè)有限公司對(duì)進(jìn)口優(yōu)質(zhì)硼砂進(jìn)行改造(硼肥顆粒大小與油菜種子相近、硼砂顆粒表面添加養(yǎng)分釋放阻控劑),含硼(B)量為100 g·kg–1[15]。各處理其他肥料用量均一致,分別為N 180 kg·hm–2、P2O590 kg·hm–2和K2O 120 kg·hm–2,氮肥分3次施用,基肥占60%,越冬肥和薹肥各占20%,磷鉀全部作基肥,肥料施用方法按當(dāng)?shù)剞r(nóng)技推廣部門的推薦方法。硼肥與油菜籽混勻后同時(shí)播種。試驗(yàn)各處理均設(shè)3次重復(fù),小區(qū)面積20 m2,隨機(jī)區(qū)組排列。
表1 供試土壤基礎(chǔ)理化性質(zhì)
土壤樣品的采集與測(cè)定:基礎(chǔ)土壤樣品在前茬水稻收獲后、油菜播種前采集0~20 cm耕作層土壤。供試土壤基礎(chǔ)理化性質(zhì)按土壤理化分析常規(guī)方法[16]測(cè)定,其中,土壤有效硼采用沸水浸提—姜黃素比色法測(cè)定。
植物樣品的采集與測(cè)定:油菜收獲前1~2 d在各小區(qū)劃定有代表性的樣方0.36 m2(0.6 m×0.6 m),并采集樣方中所有油菜地上部植株樣品,樣品放置于網(wǎng)袋中風(fēng)干,脫粒后分別測(cè)定油菜莖稈、角殼和籽粒的生物量。選取進(jìn)賢、醴陵和武穴3個(gè)試驗(yàn)點(diǎn)的樣方進(jìn)行產(chǎn)量構(gòu)成因子調(diào)查,調(diào)查項(xiàng)目有油菜收獲時(shí)的密度、單株角果數(shù)、每角粒數(shù)和千粒重。各小區(qū)籽粒產(chǎn)量單打單收,以風(fēng)干重計(jì)產(chǎn),籽粒生物量按含水率8%計(jì)算得出。莖稈和角殼生物量用籽粒生物量及樣方內(nèi)莖稈、角殼和籽粒三部分的比例進(jìn)行換算得出。各部位樣品經(jīng)60℃烘干磨細(xì)過(guò)篩后,采用1 mol·L–1鹽酸浸提—姜黃素比色法測(cè)定全硼含量[16]。
采用中國(guó)農(nóng)業(yè)科學(xué)院油料作物研究所研制的NYDL-3000智能型多參數(shù)糧油品質(zhì)速測(cè)儀測(cè)定油菜籽中的油分、粗蛋白、油酸和亞油酸等品質(zhì)指標(biāo)[17]。
收獲指數(shù)/%=籽粒生物量÷地上部總生物量×100[18]
施肥增益=施肥區(qū)產(chǎn)值–不施肥區(qū)產(chǎn)值–肥料成本(2017—2018年度油菜種植季硼肥價(jià)格為9.0 yuan·kg–1,油菜籽價(jià)格為5.0 yuan·kg–1)
硼累積量/(g·hm–2)=地上部各部位硼含量×地上部各部位生物量/1 000[19]
硼肥的表觀利用率/%=(施硼區(qū)硼累積量–不施硼區(qū)硼累積量)÷硼用量×100[18-20]
產(chǎn)油量/(kg·hm–2)=籽粒含油率×籽粒產(chǎn)量[21]
餅粕蛋白質(zhì)產(chǎn)量/(kg·hm–2)=籽粒蛋白質(zhì)含量×籽粒產(chǎn)量[21]
硼肥貢獻(xiàn)率/%=(施肥區(qū)的產(chǎn)量–不施肥區(qū)產(chǎn)量)÷施肥區(qū)產(chǎn)量×100[18-20]
采用Microsoft Excel 2017軟件處理和計(jì)算試驗(yàn)數(shù)據(jù),SPSS 20軟件統(tǒng)計(jì)分析,Origin 2017軟件制圖,最小顯著差異(LSD)法檢驗(yàn)≤0.05水平的差異顯著性。
圖1顯示各地區(qū)施硼均可顯著增加直播油菜產(chǎn)量,不施硼條件下,直播油菜產(chǎn)量在139~1 550 kg·hm–2之間,平均為923 kg·hm–2,顯著低于施硼處理。施用硼肥9.0 kg·hm–2時(shí),油菜的增產(chǎn)效果最佳,與不施硼相比增產(chǎn)1 021 kg·hm–2,增產(chǎn)率達(dá)110.6%,繼續(xù)增加硼肥用量,產(chǎn)量無(wú)顯著性差異。整體而言,土壤硼含量越低的試驗(yàn)點(diǎn)施硼效果越好,其中崇仁和進(jìn)賢兩個(gè)點(diǎn)增產(chǎn)效果最明顯,增產(chǎn)率達(dá)800%以上。通過(guò)對(duì)各試驗(yàn)點(diǎn)進(jìn)行一元二次方程擬合,看出各試驗(yàn)點(diǎn)表現(xiàn)出相似的變化趨勢(shì),最佳硼肥用量在9.0 kg·hm–2左右。成熟期地上部生物量對(duì)施硼的響應(yīng)趨勢(shì)與產(chǎn)量基本一致,各處理非籽粒部分生物量隨施硼量的增加呈現(xiàn)增加的趨勢(shì),但增加幅度小于籽粒產(chǎn)量,原因是施硼顯著增加油菜的收獲指數(shù),收獲指數(shù)在施硼肥9.0 kg·hm–2時(shí)最高,達(dá)29.9%,顯著高于不施硼的17.5%,說(shuō)明施硼對(duì)油菜的營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng)均起到促進(jìn)作用,且對(duì)生殖生長(zhǎng)的促進(jìn)作用更加顯著,因此,施硼有利于獲得較高的地上部干重和收獲指數(shù),從而獲得較高的產(chǎn)量。施硼肥9.0 kg·hm–2時(shí),油菜籽的產(chǎn)值最高,平均為9 575 yuan·hm–2,與不施硼相比每公頃增收4 938 yuan。由此可見(jiàn),直播油菜對(duì)缺硼十分敏感,施硼增產(chǎn)增收效果顯著。
直播油菜產(chǎn)量構(gòu)成因子結(jié)果(表2)表明,各試驗(yàn)點(diǎn)施硼均顯著增加直播油菜的收獲密度、單株角果數(shù)和每角粒數(shù),但對(duì)千粒重的影響不顯著(部分試驗(yàn)表現(xiàn)出下降的趨勢(shì))。硼缺乏極大地降低了直播油菜的收獲密度,不施硼處理的密度僅有硼肥用量9.0 kg·hm–2處理的54.9%~65.7%;同時(shí)硼肥用量為13.5 kg·hm–2時(shí)與9.0 kg·hm–2相比收獲密度也呈現(xiàn)下降趨勢(shì)。施硼后單株角果數(shù)增加效果最顯著,與不施硼相比,硼肥用量9.0 kg·hm–2增加72.3%~457.8%,當(dāng)硼肥用量超過(guò)9.0 kg·hm–2后增加效果不顯著。缺硼導(dǎo)致每角粒數(shù)顯著減少,但硼肥用量超過(guò)4.5 kg·hm–2后增加不顯著。
圖1 不同硼肥用量下直播油菜產(chǎn)量和生物量
表2 不同硼肥用量下直播油菜產(chǎn)量構(gòu)成因子
注:不同小寫字母表示不同硼用量間差異在0.05水平上顯著。下同。Note:Different lowercase letters indicate significant differences between B treatments(≤0.05). The same below.
施硼顯著增加油菜成熟期各部位的硼含量和硼累積量(圖2),各部位硼含量由高到低依次為角殼、莖稈、籽粒,累積量由高到低依次為莖稈、角殼、籽粒,在硼肥用量13.5 kg·hm–2范圍內(nèi),各部位的硼含量和硼累積量均隨施硼量的增加而增加。角殼硼含量和硼累積量在硼肥用量為9.0 kg·hm–2時(shí)達(dá)到最佳水平,繼續(xù)增加施硼量,硼含量和硼累積量增加效果不顯著;莖稈和籽粒中的硼含量和累積量在施硼肥4.5 kg·hm–2時(shí)達(dá)到平臺(tái),繼續(xù)增加施硼量,植株硼含量和硼累積量不再顯著增加。施硼后,莖稈和角殼中的硼含量與不施硼相比最高可增加110.5%和224.6%,籽粒中的硼含量與不施硼相比最高增加45.3%,施硼對(duì)角殼和莖稈中硼含量的增加幅度遠(yuǎn)大于籽粒。
不同地點(diǎn)硼肥利用率表現(xiàn)出很大的差異,整體而言硼肥表觀利用率會(huì)隨著施硼量的增加而降低,硼肥用量4.5 kg·hm–2時(shí),硼肥表觀利用率平均為12.2%,用量13.5 kg·hm–2時(shí)硼肥表觀利用率為7.4%。硼肥用量9.0 kg·hm–2時(shí)油菜產(chǎn)量達(dá)到最佳水平(圖1),此時(shí)硼肥表觀利用率為9.4%。
施硼顯著提高油菜籽的含油率、油酸和亞油酸含量,對(duì)蛋白質(zhì)含量無(wú)顯著影響(表3)。含油率在施硼肥9.0 kg·hm–2時(shí)最高,與不施硼相比增加26.9%,油酸和亞油酸含量在施硼肥4.5 kg·hm–2時(shí)達(dá)最佳水平,分別為62.3%和17.9%,顯著高于不施硼的53.4%和12.7%,繼續(xù)增施硼肥對(duì)其增加效果不顯著。施硼后產(chǎn)油量和餅粕蛋白質(zhì)量均顯著增加,與不施硼相比,施用硼肥4.5 kg·hm–2、9.0 kg·hm–2和13.5 kg·hm–2,產(chǎn)油量分別增加92.5%、136.1%和125.9%,餅粕蛋白質(zhì)量分別增加88.1%、94.2%和85.5%。可見(jiàn)施硼在改善直播油菜籽品質(zhì)方面起著非常重要的作用。
本研究通過(guò)區(qū)域多點(diǎn)大田試驗(yàn)結(jié)果表明,施硼可以顯著增加直播油菜的產(chǎn)量(圖1)。育苗移栽油菜硼養(yǎng)分缺乏導(dǎo)致減產(chǎn)585 kg·hm–2,減幅為21.9%[18],本研究直播油菜缺硼導(dǎo)致減產(chǎn)1 021 kg·hm–2,減幅為52.5%(圖1),直播油菜施硼增產(chǎn)效果更好。直播油菜的硼肥貢獻(xiàn)率平均為45.5%,遠(yuǎn)大于移栽油菜的22%[11]。土壤硼含量越低,對(duì)外來(lái)硼源的依賴性越強(qiáng),施硼增產(chǎn)率和硼肥貢獻(xiàn)率越高,施硼效果越好。有研究表明,直播油菜苗期群體生長(zhǎng)迅速,生物量較大[13,22],因此直播油菜前期需硼較多,硼養(yǎng)分供應(yīng)不足導(dǎo)致細(xì)胞內(nèi)活性氧清除受阻,破壞直播油菜細(xì)胞膜系統(tǒng)[23],同時(shí)缺硼造成部分植物激素功能紊亂[24],從而抑制苗期生長(zhǎng),并最終影響籽粒產(chǎn)量[25]。直播油菜密度大,個(gè)體弱,種內(nèi)競(jìng)爭(zhēng)激烈[22],花期和角果期是油菜生長(zhǎng)最快,需硼量最大的時(shí)期[1,26],硼素供應(yīng)不足時(shí),高密狀態(tài)下較弱個(gè)體將被淘汰,降低群體收獲密度。這可能是直播油菜對(duì)缺硼更加敏感,施硼效果好于移栽油菜的重要原因。
注:圖中數(shù)據(jù)為全部試驗(yàn)點(diǎn)的平均值及標(biāo)準(zhǔn)差(n=7)。B0、B4.5、B9.0、B13.5分別代表不施硼、施硼肥4.5 kg·hm–2、9.0 kg·hm–2、13.5 kg·hm–2四個(gè)處理。不同小寫字母表示不同硼用量間差異在0.05水平上顯著(硼累積量表示總量的差異)。下同。Note:Data are of means ± SD of all the test sites. B0,B4.5,B9.0,and B13.5 represents no B applied,boron fertilizer applied at 4.5 kg·hm–2,boron fertilizer applied at 9.0 kg·hm–2,and boron fertilizer applied at 13.5 kg·hm–2. Different lowercase letters indicate significant differences between treatments(P≤0.05). The same below.
表3 不同硼肥用量下直播油菜的品質(zhì)
注:油菜品質(zhì)指標(biāo)由糧油品質(zhì)速測(cè)儀(NYDL-3000)測(cè)定,表中數(shù)據(jù)為全部試驗(yàn)點(diǎn)的平均值和標(biāo)準(zhǔn)差(=7)。Note:Seed quality was determined with NYDL-3000. Data are of means ± SD of all the test sites(=7).
直播和移栽冬油菜的產(chǎn)量構(gòu)成因素不同,施硼增產(chǎn)途徑也有顯著差異。陳鋼等[27]研究表明,施硼后單株角果數(shù)和每角粒數(shù)增加是油菜施硼增產(chǎn)的主要原因,本研究表明單株角果數(shù)和每角粒數(shù)增加也是直播油菜施硼增產(chǎn)的重要因素之一,但增加幅度遠(yuǎn)大于移栽油菜,同時(shí)施硼顯著增加了直播油菜的收獲密度(表2)。因此,直播油菜施硼增產(chǎn)是通過(guò)增加單株生產(chǎn)力和收獲密度兩個(gè)方面來(lái)實(shí)現(xiàn)的。土壤有效硼含量不同,施硼對(duì)產(chǎn)量構(gòu)成因素的影響不同。單株角果數(shù)和每角粒數(shù)的增加與土壤有效硼含量有關(guān),隨土壤有效硼含量增加,施硼對(duì)單株角果數(shù)和每角粒數(shù)的增加幅度減小,而收獲密度受土壤有效硼含量的影響較小。當(dāng)土壤有效硼含量小于0.2 mg·kg–1,施硼對(duì)每角粒數(shù)的增加幅度大于收獲密度,但當(dāng)土壤有效硼含量大于0.3 mg·kg–1時(shí),施硼對(duì)收獲密度的增加幅度大于每角粒數(shù)(表2)。移栽油菜施硼增產(chǎn)僅能通過(guò)增加單株角果數(shù)和每角粒數(shù)來(lái)實(shí)現(xiàn),而土壤硼含量較高時(shí),施硼對(duì)每角粒數(shù)的增加是有限的,這可能是直播油菜施硼增產(chǎn)效果好于移栽油菜的重要原因之一。由此,本研究初步得出土壤嚴(yán)重缺硼時(shí)(有效硼含量小于0.2 mg·kg–1),施硼后各構(gòu)成因素對(duì)直播油菜產(chǎn)量的貢獻(xiàn)由高到低依次為單株角果數(shù)、每角粒數(shù)、收獲密度,土壤缺硼時(shí)(有效硼含量處于0.3~0.4 mg·kg–1),施硼后各構(gòu)成因素對(duì)直播油菜產(chǎn)量的貢獻(xiàn)由高到低依次為單株角果數(shù)、收獲密度、每角粒數(shù)。本研究各試驗(yàn)點(diǎn)土壤硼含量較低,土壤硼含量涵蓋的范圍較窄,硼對(duì)產(chǎn)量構(gòu)成因子的影響均是在土壤硼含量處于嚴(yán)重缺乏和缺乏狀態(tài)下的影響,當(dāng)土壤硼含量較高時(shí),硼對(duì)產(chǎn)量構(gòu)成因子的作用尚不明確,需進(jìn)一步的試驗(yàn)進(jìn)行驗(yàn)證。
收獲時(shí)油菜體內(nèi)的硼含量由高到低依次為角殼、莖稈、籽粒(圖2),可見(jiàn)角果期生殖器官的建成和發(fā)育需要吸收大量的硼,油菜吸收的硼優(yōu)先向生殖器官轉(zhuǎn)移,這與前人的研究結(jié)果基本一致[3,28]。油菜角果期以后角果皮成為最重要的物質(zhì)合成器官[29],施硼后角殼中的硼含量變化幅度最大,籽粒最小,可能是油菜吸收的硼先滿足部分籽粒正常發(fā)育的需求,然后將吸收的硼儲(chǔ)存至角殼中,在硼向籽粒轉(zhuǎn)移過(guò)程中起緩沖作用,保證籽粒正常發(fā)育。
硼肥表觀利用率隨土壤有效硼含量的增加有降低的趨勢(shì),但硼肥表觀利用率整體較低,本研究計(jì)算的硼肥利用率為收獲時(shí)地上部分油菜帶走量,生育期內(nèi)脫落的葉片、花和地下部均未計(jì)算在內(nèi),實(shí)際的硼肥利用率可能略高于此值。紅壤地區(qū)土壤酸化明顯[30],這提高了硼的有效性,同時(shí)造成土壤中更多的硼通過(guò)徑流和淋洗流失[31-33],因此油菜收獲后土壤有效硼含量較低,但為了保證最佳的產(chǎn)量和經(jīng)濟(jì)效益,必須要施入充足的硼肥,連年過(guò)量硼肥的施用可能會(huì)增加作物硼中毒風(fēng)險(xiǎn)和環(huán)境風(fēng)險(xiǎn)[34]。進(jìn)一步調(diào)控硼肥的緩釋性能,更加符合直播油菜生育期需硼規(guī)律,對(duì)提高硼肥利用率及降低潛在的作物硼中毒風(fēng)險(xiǎn)和硼素環(huán)境風(fēng)險(xiǎn)具有重要意義。紅壤地區(qū)多為稻油輪作種植模式,水稻對(duì)硼的敏感性較油菜低,但施硼對(duì)水稻有顯著增產(chǎn)作用[35],油菜季殘留的硼可作為水稻季的外來(lái)硼源,通過(guò)周年的硼素運(yùn)籌來(lái)滿足水旱輪作系統(tǒng)的硼需求,實(shí)現(xiàn)硼肥利用率的最大化對(duì)提高輪作系統(tǒng)周年籽粒產(chǎn)量和品質(zhì)有重要意義。
紅壤地區(qū)土壤有效硼含量較低,施硼增產(chǎn)增收效果顯著。施硼通過(guò)提高直播油菜的單株生產(chǎn)力和收獲密度提高直播油菜產(chǎn)量,直播油菜較移栽油菜對(duì)缺硼更加敏感,施硼效果更好。施硼可以改善油菜籽品質(zhì),提高油菜籽含油率、油酸和亞油酸含量。硼肥表觀利用率雖然較低,但施硼可促進(jìn)直播油菜對(duì)硼養(yǎng)分的吸收和積累。綜合產(chǎn)量、經(jīng)濟(jì)效益、品質(zhì)效應(yīng)及硼肥利用率,紅壤地區(qū)推薦硼肥用量為9.0 kg·hm–2左右。
[1] Wang Y H,Xu F S,Lu J W,et al. Boron in Chinese agriculture[M]. Beijing:China Agriculture Press,2015. [王運(yùn)華,徐芳森,魯劍巍,等. 中國(guó)農(nóng)業(yè)中的硼[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2015.]
[2] Nian F Z,Shi L,Xu F S,et al. The progress of effect of boron on seed yield and quality in oilseed rape[J]. Journal of Mountain Agriculture & Biology,2005(1):79—83. [年夫照,石磊,徐芳森,等. 硼對(duì)油菜產(chǎn)量和品質(zhì)效應(yīng)的研究進(jìn)展[J]. 山地農(nóng)業(yè)生物學(xué)報(bào),2005(1):79—83.]
[3] Zhu Y,Lu Z F,Xiao W H,et al. Effects of boron application levels on rapeseed yield and boron uptake[J]. Soil and Fertilizer Sciences in China,2017(4):129—133. [朱蕓,陸志峰,肖文豪,等. 硼肥用量對(duì)油菜產(chǎn)量與硼養(yǎng)分吸收的影響[J]. 中國(guó)土壤與肥料,2017(4):129—133.]
[4] Xu Y D,Wu J G,Hu Y H. Effect of excessive boron application to rapeseed on grain yield of rice in rape-rice rotation systems [J]. Soils and Fertilizers,2000(2):27—29. [徐躍定,吳金桂,胡永紅. 油稻輪作制中油菜過(guò)量施硼對(duì)水稻產(chǎn)量的影響[J]. 土壤肥料,2000(2):27—29.]
[5] Yu P Y,Zhang Q Y. The solution methods and cause of B-deficiency in Hunan provincial rape production[J]. Hunan Agricultural Sciences,2001(3):26,40. [余培玉,張瓊瑛. 我省油菜生產(chǎn)缺硼原因淺析及其解決措施[J]. 湖南農(nóng)業(yè)科學(xué),2001(3):26,40.]
[6] Xu H,Wang Q F,Wang X S,et al. Spatial pattern change of crops with similar growth cycle in China—A case study of wheat and rape[J]. Chinese Agricultural Science Bulletin,2016,32(21):95—99. [徐慧,汪權(quán)方,王新生,等. 中國(guó)同期作物空間格局變化分析——以小麥和油菜為例[J]. 中國(guó)農(nóng)學(xué)通報(bào),2016,32(21):95—99.]
[7] National Bureau of Statistics of China. China statistical yearbook[M]. Beijing:China Statistics Press,2009. [中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2009.]
[8] Zhang Z Q,Mao P,Yu D S,et al. Characteristics of soil pH variation in typical red soil region of South China in the past 25 years——A case study of Yujiang County,Jiangxi Province[J]. Acta Pedologica Sinica,2018,55(6):1545—1553. [張忠啟,茆彭,于東升,等. 近25年來(lái)典型紅壤區(qū)土壤pH變化特征——以江西省余江縣為例[J]. 土壤學(xué)報(bào),2018,55(6):1545—1553.]
[9] Zhang Z,Ren Y,Lu J W,et al. Spatial distribution of micronutrients in farmland soils in the mid-reaches of the Yangtze River[J]. Acta Pedologica Sinica,2016,53(6):1489—1496. [張智,任意,魯劍巍,等. 長(zhǎng)江中游農(nóng)田土壤微量養(yǎng)分空間分布特征[J]. 土壤學(xué)報(bào),2016,53(6):1489—1496.]
[10] Liu Z,Zhu Q Q,Tang L H,et al. Geographical distribution of trace elements deficiency soils in China[J]. Acta Pedologica Sinica,1982,19(3):209—223. [劉錚,朱其清,唐麗華,等. 我國(guó)缺乏微量元素的土壤及其區(qū)域分布[J]. 土壤學(xué)報(bào),1982,19(3):209—223.]
[11] Zou J,Lu J W,Liao Z W,et al. Study on response of rapeseed to boron application and critical level of soil available B in Hubei Province[J]. Scientia Agricultura Sinica,2008,41(3):752—759. [鄒娟,魯劍巍,廖志文,等. 湖北省油菜施硼效果及土壤有效硼臨界值研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2008,41(3):752—759.]
[12] Wang Y,Lu J W. The transitional cultivation patterns of winter oilseed rape in China and the corresponding nutrient management strategies[J]. Scientia Agricultura Sinica,2015,48(15):2952—2966. [王寅,魯劍巍. 中國(guó)冬油菜栽培方式變遷與相應(yīng)的養(yǎng)分管理策略[J]. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(15):2952—2966.]
[13] Wang Y,Lu J W,Li X K,et al. Effects of nitrogen,phosphorus,potassium,and boron fertilizers on winter oilseed rape(L.)direct-sown in the Yangtze River basin[J]. Acta Agronomica Sinica,2013,39(8):1491—1500. [王寅,魯劍巍,李小坤,等. 長(zhǎng)江流域直播冬油菜氮磷鉀硼肥施用效果[J]. 作物學(xué)報(bào),2013,39(8):1491—1500.]
[14] Liu Z X,F(xiàn)ang X B. Investigation and analysis on the current situation of boron deficiency in rapeseed production in Liangping County [J]. South China Agriculture,2016,10(22):101—102. [劉祖秀,方緒彪. 梁平縣油菜生產(chǎn)缺硼現(xiàn)狀調(diào)查分析[J]. 南方農(nóng)業(yè),2016,10(22):101—102.]
[15] Hu M,Zhu Y,Lu J W,et al. Effects of simultaneous sowing of boron fertilizer and rapeseeds on seedling emergence,yield and boron utilization efficiency[J]. Chinese Journal of Oil Crop Sciences,2017,39(4):509—514. [胡敏,朱蕓,魯劍巍,等. 硼肥與菜籽同播對(duì)油菜出苗、產(chǎn)量及硼肥表觀利用率的影響[J]. 中國(guó)油料作物學(xué)報(bào),2017,39(4):509—514.]
[16] Bao S D. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture Press,2000. [鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000.]
[17] Zhi W L. Studies on ecotypical male sterile Line373S and determination of rapeseed quality with NYDL-3000[D]. Yangling,Shaanxi:Northwest A & F University,2012. [智文良. 油菜生態(tài)雄性不育系373S及油菜籽近紅外品質(zhì)分析的研究[D]. 陜西楊凌:西北農(nóng)林科技大學(xué),2012.]
[18] Zou J,Lu J W,Chen F,et al. Study on yield increasing and nutrient uptake effect by nitrogen application and nitrogen use efficiency for winter rapeseed[J]. Scientia Agricultura Sinica,2011,44(4):745—752. [鄒娟,魯劍巍,陳防,等. 冬油菜施氮的增產(chǎn)和養(yǎng)分吸收效應(yīng)及氮肥利用率研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,44(4):745—752.]
[19] Liu Y N,Ma C,Yu X Y,et al. Nitrogen application rate for keeping nitrogen balance in wheat-soil system in Weibei rainfed areas under different rainfall years[J]. Journal of Plant Nutrition and Fertilizers,2018,24(3):569—578. [劉艷妮,馬臣,于昕陽(yáng),等. 基于不同降水年型渭北旱塬小麥-土壤系統(tǒng)氮素表觀平衡的氮肥用量研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(3):569—578.]
[20] Liu R,Dai X L,Zheng X F,et al. Net nutrient balance in soil under different cultivation pattern and nitrogen application rate in semiarid region[J]. Plant Nutrition and Fertilizer Science,2011,17(4):934—941. [劉瑞,戴相林,鄭險(xiǎn)峰,等. 半旱地不同栽培模式及施氮下農(nóng)田土壤養(yǎng)分表觀平衡狀況研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2011,17(4):934—941.]
[21] Wang R Q,Yang G Z,Shi Q S,et al. Effects of the mixed application of N,P,K,Mg,Zn on oil and protein yield of rapeseed(L.)[J]. Hubei Agricultural Sciences,2009,48(5):1096—1100. [汪瑞清,楊國(guó)正,史茜莎,等. 氮磷鉀鎂鋅混合施用對(duì)油菜產(chǎn)油量和蛋白質(zhì)產(chǎn)量的影響[J]. 湖北農(nóng)業(yè)科學(xué),2009,48(5):1096—1100.]
[22] Wang Y. Study on the different responses to nitrogen,phosphorus,and potassium fertilizers and the mechanism between direct sown and transplanted winter oilseed rape[D]. Wuhan:Huazhong Agricultural University,2014. [王寅. 直播和移栽冬油菜氮磷鉀肥施用效果的差異及機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2014.]
[23] Geng M J,Cao X Y,Zhu D W,et al. Effect of boron deficiency on physiological characteristics of different rape cultivars at seedling stage [J]. Plant Nutrition and Fertilizer Science,1999,5(1):81—84. [耿明建,曹享云,朱端衛(wèi),等. 硼對(duì)甘藍(lán)型油菜不同品種苗期生理特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),1999,5(1):81—84.]
[24] Eggert K,von Wirén N. Response of the plant hormone network to boron deficiency[J]. New Phytologist,2017,216(3):868—881.
[25] Guan Z B,Wang X F,Dong Y H,et al. Correlation between traits at seedling and mature stages and yield of close-planted rapeseed(L.)[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2014,23(7):62—67. [關(guān)周博,王學(xué)芳,董育紅,等. 密植油菜苗期和成熟期性狀與產(chǎn)量的相關(guān)性[J]. 西北農(nóng)業(yè)學(xué)報(bào),2014,23(7):62—67.]
[26] Liu X W. Study on nutrient absorption of oilseed rape and characteristics comparation in different nutrient efficiency types[D]. Wuhan:Huazhong Agricultural University,2011. [劉曉偉. 冬油菜養(yǎng)分吸收規(guī)律及不同養(yǎng)分效率品種特征比較研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2011.]
[27] Chen G,Nian F Z,Xu F S,et al. Effect of boron and molybdenum on yield and quality of two rapeseed cultivars[J]. Plant Nutrition and Fertilizer Science,2005,11(2):243—247. [陳鋼,年夫照,徐芳森,等. 硼、鉬營(yíng)養(yǎng)對(duì)甘藍(lán)型油菜產(chǎn)量和品質(zhì)影響的研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2005,11(2):243—247.]
[28] Xiong X Y,Lang C X,Du H,et al. Uptake and transport of boron in plants and their genetic regulations[J]. Subtropical Plant Science,2011,40(1):90—94. [熊鮮艷,郎春秀,杜海,等. 植物對(duì)硼的吸收、轉(zhuǎn)運(yùn)及其遺傳調(diào)控[J]. 亞熱帶植物科學(xué),2011,40(1):90—94.]
[29] Hua W,Li R J,Zhan G M,et al. Maternal control of seed oil content in:The role of silique wall photosynthesis[J]. The Plant Journal,2012,69(3):432—444.
[30] Yuan Y Z,Guo Y,Zhang Y C,et al. Impacts of landscape patterns on farmland soil acidification in typical subtropical small watersheds of China[J]. Soils,2019,51(1):90—99. [袁宇志,郭穎,張育燦,等. 亞熱帶典型小流域景觀格局對(duì)耕地土壤酸化的影響[J]. 土壤,2019,51(1):90—99.]
[31] Li D P,Liu D Y,Zhang B G,et al. Movement and leaching of magnesium fertilizers in three types of magnesium-deficient soils in South China relative to fertilizer type[J]. Acta Pedologica Sinica,2018,55(6):1513—1524. [李丹萍,劉敦一,張白鴿,等. 不同鎂肥在中國(guó)南方三種缺鎂土壤中的遷移和淋洗特征[J]. 土壤學(xué)報(bào),2018,55(6):1513—1524.]
[32] Cao C G,Zhang G Y,Wang Y H,et al. Water loss,soil erosion and boron loss characteristics of the brown red soil in south Hubei Province under different cover degrees[J]. Journal of Huazhong Agricultural University,1998,17(1):50—54. [曹湊貴,張光遠(yuǎn),王運(yùn)華,等. 鄂南丘陵棕紅壤水土流失及硼損失特征[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),1998,17(1):50—54.]
[33] Qiao Y N,Liu H B. Spatial prediction of soil available microelement contents and quantitative analysis of influential factors in farmland[J]. Soils,2019,51(2):399—405. [喬依娜,劉洪斌. 農(nóng)田土壤有效態(tài)微量元素空間預(yù)測(cè)方法及影響因子定量分析[J]. 土壤,2019,51(2):399—405.]
[34] Deora A,Gossen B D,Hwang S F,et al. Effect of boron on clubroot of canola in organic and mineral soils and on residual toxicity to rotational crops[J]. Canadian Journal of Plant Science,2014,94(1):109—118.
[35] Atique-Ur-rehman,F(xiàn)arooq M,Nawaz A,et al. Influence of boron nutrition on the rice productivity,kernel quality and biofortification in different production systems[J]. Field Crops Research,2014,169:123—131.
Effect of Boron Application on Seed Yield and Quality of Direct Sown Winter Rapeseed (L.) in Red Soil Region
GENG Guotao1, LU Zhifeng1, LU Yong1, MING Ri2, XIAO Guobin3, FAN Lianyi4, REN Tao1, LU Jianwei1?
(1. Microelements Research Center of Huazhong Agricultural University/Key Laboratory of Arable Land Conservation in the Middle and Lower Reaches of Yangtse River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; 2. Guilin Academy of Agricultural Sciences/Guibei Branch of Guangxi Academy of Agricultural Sciences, Guilin, Guangxi 541006, China; 3. Jiangxi Institute of Red Soil, Jinxian, Jiangxi 331717, China;4. Hunan Crop Research Institute, Changsha 410125, China)
【】The red soil region, known as a prominent rapeseed growing area in China, normally coincides with low soil pH and light texture, and hence susceptibility of leaching loss of available boron, thus resulting in boron deficiency in the soil . Rapeseed, being a high boron demanding crop, is very sensitive to boron (B) deficiency. With rapid development of the society and changes in structure of the rural labor, direct sowing of rapeseed is developing and expanding in scale and area rapidly. However, almost nothing has been done on effects of direct sowing on sensitivity of the rapeseed to boron deficiency and their mechanisms. therefore large-scaled field experiments was laid and carried out in this region in an attempt to explore effects of boron fertilizer application on yield, seed quality and economic benefits of the crop and then to provide a reasonable guidance for B management in the production of rapeseed in the red region. 【】During the 2017—2018 growing season, seven field experiments designed to have four treatments each in B application rate: (1) B0(without boron fertilizer) ; (2) B4.5(4.5 kg boron fertilizer hm–2) ; (3) B9.0(9.0 kg boron fertilizer hm–2) ; (4) B13.5(13.5 kg boron fertilizer hm–2) , were carried out in Jiangxi, Hunan, South Hubei and North Guangxi. The boron fertilizer used is a specialized slow release boron fertilizer pelletized the size of a seed and containing 10% of B. The boron fertilizer was mixed with seeds and sown together (6 kg·hm–2) . 【】Boron application significantly increased rapeseed yield at all the experimental sites, and the increment decreased with rising soil available boron content, and peaked in Treatment B9.0, which was1 021 kg·hm–2or 110.6 % higher in yield and 4 938 yuan·hm–2higher in economic profit than Treatment B0. However, the application of boron fertilizer at a higher rate did not have much effect on yield or biomass of the crop. A similar pattern, but lower in magnitude, was observed with shoot biomass. It was also found that boron application significantly improved economic indices of the crop, such as harvest intensity, number of grains per pod, number of pods per plant, and contents of oil, oleic acid and linoleic acid of the seed, except for the indices of thousand grain weight and protein content in the seeds. So it is quite obvious that boron application increases oil yield and improves quality of the harvest of the direct seeding crop. Boron application increased boron content in all the parts of the plant at the manuring stage, especially in pod shell and stem. Boron accumulation in the stem, pod shell and seed could reach up to 79.5%, 244.2% and 125.6% in the treatments applied with boron than in the treatment applied with no boron. Treatment B9.0was the highest in seed yield, but its boron fertilizer recovery rate was only 9.4%, which suggests that utilization efficiency of the applied boron fertilizer was still very low and a large proportion of lost via leaching and surface runoff owing to low soil pH and light texture. 【】As the soil in the red soil region is very low in soil available boron content, boron application shows a significant yield increasing effect on direct sown rapeseed Boron application increases seed yield by increasing its per-plant productivity and harvest density of direct sown rapeseed, which is more sensitive to boron deficiency than transplanted rapeseed. Boron application also improves quality of the seeds and increases contents of oil, oleic acid and linoleic acid. Though the practice of boron application is still quite low in apparent utilization efficiency, it does promote boron adsorption and accumulation of the direct sown rapeseed crops. Considering seed yield and quality, economic profit and boron fertilizer utilization efficiency in all, the boron application rate of 9.0 kg·hm–2is recommended as the optimal practice of boron fertilization in the red soil region.
Direct sown rapeseed; Yield; Appropriate boron application rate; Quality; Boron use efficiency
S565.4
A
10.11766/trxb201905280207
耿國(guó)濤,陸志峰,盧涌,明日,肖國(guó)濱,范連益,任濤,魯劍巍. 紅壤地區(qū)直播油菜施硼對(duì)籽粒產(chǎn)量和品質(zhì)的影響[J]. 土壤學(xué)報(bào),2020,57(4):928–936.
GENG Guotao,LU Zhifeng,LU Yong,MING Ri,XIAO Guobin,F(xiàn)AN Lianyi,REN Tao,LU Jianwei.Effect of Boron Application on Seed Yield and Quality of Direct Sown Winter Rapeseed(L.)in Red Soil Region[J]. Acta Pedologica Sinica,2020,57(4):928–936.
* 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0200900)和國(guó)家油菜產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-12)資助Supported by the National Key Research and Development Program of China(No. 2018YFD0200900)and the Earmarked Fund for China Agriculture Research System(No. CARS-12)
,E-mail:lunm@mail.hzau.edu.cn
耿國(guó)濤(1994—),男,山東沂源人,碩士研究生,主要從事作物養(yǎng)分管理研究。E-mail: gengguotao@webmail.hzau.edu.cn
2019–05–28;
2019–07–31;
2019–09–16
(責(zé)任編輯:陳榮府)