1.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若,且A,B,C三點(diǎn)共線(該直線不過(guò)原點(diǎn)0),則S200=________.
2.已知數(shù)列{an}的通項(xiàng)公式為an=
3.在等比數(shù)列{an}中,a1=1,a9=4,函數(shù)f(x)=x(x-a1)(x-a2)·…·(x-a9)+2,則曲線y=f(x)在點(diǎn)(0,f(0))處的切線的斜率是________.
4.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項(xiàng)的和,則的最小值為_(kāi)_______.
5.在數(shù)列{an}中,a1=1,an+2+(-1)n·an=2,前n項(xiàng)和為Sn,則S100=________.
6.(2019年北京理科卷)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=-3,S5=-10,則a5=________,Sn的最小值為_(kāi)_______.
8.已知數(shù)列{an}的前n項(xiàng)的和Sn=(-1)n·n,若對(duì)任意正整數(shù)n,(an+1-p)·(an-p)<0恒成立,則實(shí)數(shù)p的取值范圍是________.
9.已知數(shù)列{an}滿足a1=1,anan+1=2n,n∈N*.則數(shù)列{an}的通項(xiàng)公式為_(kāi)_______.
10.已知數(shù)列{an}滿足:a1=1,a2=x(x∈N*),an+2=|an+1-an|(n∈N*),若前2010 項(xiàng)中恰好有666 項(xiàng)為0,則x=________.
11.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)為x(x∈R),滿足.
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)求證:若數(shù)列{an}中存在三項(xiàng)構(gòu)成等比數(shù)列,則x為有理數(shù).
12.(2020年常州市模擬卷)已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*.
(1)若2a2,a3,a2+2成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
13.設(shè)數(shù)列{an},{bn}(n=1,2,3,…)由下列條件確定:①a1<0,b1>0;②當(dāng)k≥2,k∈N*時(shí),ak,bk滿足如下條件:當(dāng)≥0 時(shí),;當(dāng)時(shí),.
(1)如果a1=-5,b1=9,試求a2,b2,a3,b3的值;
(2)證明:數(shù)列{bn-an}為等比數(shù)列;
(3)設(shè)n(n≥2)是滿足b1>b2>b3>…>bn的最大整數(shù),證明:.
14.(2019年上海春季卷)已知等差數(shù)列{an}的公差d∈(0,π],數(shù)列{bn}滿足bn=sin(an),集合S={x|x=bn,n∈N*}.
(3)若集合S恰好有三個(gè)元素:bn+T=bn,T是不超過(guò)7的正整數(shù),求T的所有可能的值.