1.(2019年全國Ⅰ卷)記Sn為等差數(shù)列{an}的前n項(xiàng)和,若a1≠0,a2=3a1,則________.
2.(2019年西安市期中卷)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且a1=-1,an+1=SnSn+1,則Sn=________.
3.將全體正整數(shù)排成如下4列數(shù)陣:
其中cm表示數(shù)陣中第m行第3列的數(shù),則cm=________.
4.已知數(shù)列{an}對(duì)任意的p,q∈N*,滿足ap+q=apaq,且a1=2,則an=________.
5.設(shè)集合A={x|x=2n,n∈N*},B={x|x=2n-1,n∈N*},數(shù)列{an}即為A∪B中元素從小到大排成的數(shù)列,如a1是A∪B中的最小數(shù),則an=________.
6.已知數(shù)列{an}的首項(xiàng)為a1=2,且,記Sn為數(shù)列{an}的前n項(xiàng)和,則Sn=________.
8.設(shè)數(shù)列{an}為等差數(shù)列,{bn}為等比數(shù)列,數(shù)列{cn}的前n項(xiàng)和為Sn,且cn=an+bn,若2Sn+2cn=n2+3n+2,則an=________,bn=________.
9.已知正項(xiàng)數(shù)列{an}的首項(xiàng)為1,且對(duì)于一切正整數(shù)n都有an+1,則數(shù)列的通項(xiàng)公式是an=________.
10.(2019年讓西師大附中月考卷)定義:稱為n個(gè)正數(shù)P1,P2,…,Pn的“均倒數(shù)”.若數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為,則數(shù)列{an}的通項(xiàng)公式為________.
11.已知有窮數(shù)列{an}共有2k項(xiàng),其中整數(shù)k≥2,前n項(xiàng)和為Sn,且a1=2,Sn=,其中常數(shù)a>1.
(1)求數(shù)列{Sn}的通項(xiàng)公式;
12.(2019年天津市模擬卷)已知首項(xiàng)為2的數(shù)列{an}的前n項(xiàng)和為Sn,若點(diǎn)(an+1,Sn)在函數(shù)的圖象上,設(shè)bn=log2an.
(1)判斷數(shù)列{bn}是否為等差數(shù)列,并說明理由;
13.設(shè)數(shù)列{an},{bn}滿足a1=4,a2=.
(1)證明:an>2,0<bn<2(n∈N*);
14.已知數(shù)列{an}的首項(xiàng).
(2)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請(qǐng)給出證明;如果不存在,請(qǐng)說明理由.