王明明,王 莎,邢 卉,孫曉云,路 霖
(石家莊鐵道大學(xué)電氣與電子工程學(xué)院,河北 石家莊 050043)
錨桿錨固質(zhì)量檢測(cè)一直是錨桿支護(hù)施工環(huán)節(jié)的重要組成部分。錨桿錨固質(zhì)量無損檢測(cè)技術(shù)克服了傳統(tǒng)檢測(cè)方法耗時(shí)多且具有破壞性的不足,可以實(shí)現(xiàn)快速大批次的質(zhì)量檢測(cè),受到學(xué)者們的廣泛關(guān)注[1-3],從20世紀(jì)80年代的超聲波無損檢測(cè)技術(shù)發(fā)展到了現(xiàn)在的基于電磁超聲和人工智能等技術(shù)的新型無損檢測(cè)技術(shù)[4-7]。
在基于人工智能等算法的無損檢測(cè)中,錨桿錨固缺陷的識(shí)別率易受提取特征的影響。目前,常用的特征提取方法包括EMD、小波分解、能量特征和時(shí)頻域特征等。這些特征提取方法往往依賴于人工經(jīng)驗(yàn),制約了識(shí)別率的提高。2006年,Hintion利用貪心算法對(duì)自編碼器網(wǎng)絡(luò)(auto-encoder,AE)的隱含層進(jìn)行優(yōu)化,提出了堆疊自編碼器網(wǎng)絡(luò)(stacking auto-encoder,SAE)[8]。近年來,SAE網(wǎng)絡(luò)在高維數(shù)據(jù)特征提取及分類識(shí)別中取得了較多成果[9-11]。本文利用SAE網(wǎng)絡(luò)對(duì)錨桿錨固系統(tǒng)的缺陷特征進(jìn)行提取,采用自適應(yīng)時(shí)刻估計(jì)方法(Adam優(yōu)化算法)對(duì)重構(gòu)誤差進(jìn)行優(yōu)化,提出一種自動(dòng)確定SAE網(wǎng)絡(luò)深度和參數(shù)的自動(dòng)選層堆疊自編碼器特征提取算法。通過數(shù)值模擬和物理模擬兩種方法對(duì)錨桿錨固缺陷特征進(jìn)行提取,并使用Softmax多分類器對(duì)錨固缺陷進(jìn)行識(shí)別。本文所提算法能有效降低人工選取參數(shù)對(duì)缺陷識(shí)別精度的影響,提高了Softmax多分類器的缺陷識(shí)別率。
圖1 AE網(wǎng)絡(luò)模型Fig.1 AE network model
圖1中的w1、b1為編碼器參數(shù),w1為n×m矩陣,b1為1×m矩陣,n為輸入數(shù)據(jù)維度,m為輸出特征維度;w2、b2為解碼器參數(shù),w2為m×n矩陣,b2為1×n矩陣。激活函數(shù)f、g為sigmoid函數(shù)。該網(wǎng)絡(luò)的重構(gòu)誤差見式(1)。
(1)
基于自動(dòng)選層SAE的錨桿錨固缺陷識(shí)別算法步驟如下所述。
1) 輸入數(shù)據(jù)處理:將錨桿自由端的激勵(lì)響應(yīng)進(jìn)行歸一化,作為自動(dòng)選層SAE網(wǎng)絡(luò)的輸入。
2) AE參數(shù)初始化:SAE網(wǎng)絡(luò)的訓(xùn)練過程是一個(gè)迭代過程,權(quán)值和閾值的初始化對(duì)最終絡(luò)結(jié)果前很大影響,過大或過小的參數(shù)初始值對(duì)網(wǎng)絡(luò)都有不好的收斂結(jié)果;所以AE網(wǎng)絡(luò)的權(quán)值通常先隨機(jī)給一個(gè)很小的值,一段取均值為0,方差為1的隨機(jī)正太分布,閾值的初始值為0。
3) 參數(shù)優(yōu)化:訓(xùn)練AE網(wǎng)絡(luò),使式(1)最小化,進(jìn)而使AE的網(wǎng)絡(luò)參數(shù)達(dá)到最優(yōu)。
4) 自動(dòng)選層網(wǎng)絡(luò):在滿足分類準(zhǔn)確率的前提下設(shè)定重構(gòu)誤差目標(biāo)值,判斷AE最優(yōu)參數(shù)下的重構(gòu)誤差是否小于設(shè)定目標(biāo)值;若不小于,則保存訓(xùn)練好的網(wǎng)絡(luò)參數(shù),繼續(xù)增加一層AE網(wǎng)絡(luò),返回步驟2,直到達(dá)到誤差目標(biāo)設(shè)定值,跳出自動(dòng)選層網(wǎng)絡(luò)以確定SAE網(wǎng)絡(luò)深度及參數(shù)。
5) 網(wǎng)絡(luò)級(jí)聯(lián)及分類:將訓(xùn)練好的AE編碼器部分級(jí)聯(lián)形成SAE網(wǎng)絡(luò),并將每層AE訓(xùn)練好的編碼器參數(shù)作為SAE神經(jīng)網(wǎng)絡(luò)初值進(jìn)行對(duì)輸入數(shù)據(jù)的特征提取;利用Softmax多分類器對(duì)訓(xùn)練好的SAE網(wǎng)絡(luò)輸出特征進(jìn)行分類訓(xùn)練,并對(duì)SAE網(wǎng)絡(luò)參數(shù)進(jìn)行有監(jiān)督的微調(diào),以實(shí)現(xiàn)錨桿錨固系統(tǒng)缺陷的識(shí)別。
利用ANSYS有限元仿真軟件建立了3種不同錨桿錨固缺陷的數(shù)值模型,模型結(jié)構(gòu)如圖2所示。
圖2 ANSYS錨桿錨固系統(tǒng)模型Fig.2 ANSYS anchor system model
3種模型錨桿錨固模型結(jié)構(gòu)為錨固前端缺陷、錨固中端缺陷以及錨固后端缺陷。通過改變每類錨桿錨固模型的結(jié)構(gòu)得到90組不同錨固缺陷模型,錨桿錨固模型的幾何參數(shù)見表1。鋼筋、灌漿、圍巖等三種材料的力學(xué)參數(shù)見表2。
在錨桿頂端截面施加5周期正弦調(diào)制波,施加力的頻率為f=20~30 kHz,△f=1 kHz,采集900組每組120個(gè)樣本點(diǎn)作為網(wǎng)絡(luò)輸入。
AE隱含層節(jié)點(diǎn)個(gè)數(shù)是輸入節(jié)點(diǎn)個(gè)數(shù)的一半(向上取整),重構(gòu)誤差的設(shè)定值為0.001(保證缺陷識(shí)別率在95%以上)。重構(gòu)誤差輸出如圖3所示。
表1 3種錨桿錨固的幾何參數(shù)Table 1 Three types of anchoring geometric parameters
注:La為自由端錨桿長度(錨桿前端面到錨固前端面);Lb為錨固部分的長度;Lc為錨固前端面到缺陷前端面的長度;Ld為缺陷的長度;h為錨固厚度
表2 三種材料的力學(xué)參數(shù)Table 2 Mechanical parameters of three materials
圖3 仿真數(shù)據(jù)重構(gòu)誤差Fig.3 Simulation data reconstruction error
由圖3可以看出,第一層AE和第二層AE的輸出重構(gòu)誤差都呈下降趨勢(shì)并達(dá)到收斂,第一層AE的重構(gòu)誤差收斂在0.004附近,未達(dá)到設(shè)定值的要求;第二層AE的重構(gòu)誤差達(dá)到設(shè)定值跳出自動(dòng)選層網(wǎng)絡(luò),最后將訓(xùn)練好的兩個(gè)AE的編碼部分級(jí)聯(lián)形成SAE網(wǎng)絡(luò),并將當(dāng)前參數(shù)作為SAE每層初始參數(shù)。3種模型即錨固前端缺陷、錨固中端缺陷、錨固后端缺陷分別編碼為001、010、100。歸一化后數(shù)據(jù)經(jīng)過SAE網(wǎng)絡(luò)提取特征后,每類隨機(jī)抽取60組共180組作為測(cè)試集,將剩下的720組作為訓(xùn)練集訓(xùn)練Softmax網(wǎng)絡(luò)。最終缺陷識(shí)別結(jié)果如圖4所示。
由圖4可以看出,Softmax網(wǎng)絡(luò)的分類結(jié)果有兩個(gè)樣本識(shí)別錯(cuò)誤,識(shí)別的準(zhǔn)確率為0.988。為了便于分析和比較,增加網(wǎng)絡(luò)深度至5,并計(jì)算該網(wǎng)絡(luò)深度下的重構(gòu)誤差、分類準(zhǔn)確率見表3。
圖4 仿真數(shù)據(jù)分類結(jié)果Fig.4 Simulation data classification results
表3 基于仿真數(shù)據(jù)下的不同深度的SAE網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)Table 3 SAE network training data of different depths based on simulation data
由表3可以看出,網(wǎng)絡(luò)的重構(gòu)誤差隨網(wǎng)絡(luò)深度的增加而下降,但分類的準(zhǔn)確率卻沒有隨網(wǎng)絡(luò)深度的增加而提高,網(wǎng)絡(luò)深度為2時(shí)準(zhǔn)確率最高為98.8%,網(wǎng)絡(luò)深度為5時(shí)降低至93.3%,這可能是由于網(wǎng)絡(luò)層數(shù)的增加會(huì)使Softmax反向微調(diào)誤差累加過大進(jìn)而導(dǎo)致分類準(zhǔn)確率的下降。為進(jìn)一步驗(yàn)證本文算法在錨固缺陷識(shí)別方面的有效性,將本文算法與小波分解結(jié)合隨機(jī)森林(RF)、主成分分析(PCA)結(jié)合SVM分別進(jìn)行缺陷識(shí)別,進(jìn)行10次對(duì)比的結(jié)果如圖5所示。
圖5 不同算法準(zhǔn)確率Fig.5 Accuracy of different algorithms
由圖5可以看出,本文算法的最低識(shí)別精度96.1%,最高識(shí)別精度98.8%,平均識(shí)別精度為97.7%。PCA結(jié)合SVM網(wǎng)絡(luò)的最低識(shí)別精度97.2%,最高識(shí)別精度95%,平均識(shí)別精度為95.6%。小波分解結(jié)合RF網(wǎng)絡(luò)的最低識(shí)別精度92.2%,最高識(shí)別精度95.5%,平均識(shí)別精度為93.8%。從分類結(jié)果可知,本文提出的算法識(shí)別率高于另外兩種算法。
為驗(yàn)證算法實(shí)際應(yīng)用價(jià)值,進(jìn)行了物理模擬試驗(yàn),如圖6所示。試驗(yàn)錨桿樣本總長度為2 m,錨固部分長度為1.5 m。其中由砂、42.5C復(fù)合硅酸鹽水泥、水按比例4∶2∶1混合而成形成灌漿材料;砂、50C合硅酸鹽水泥、石子(大)、石子(小)、水按比例4.2∶3.3∶3.8∶2.5∶1混合而成形成圍巖材料, 缺陷為泡沫缺陷。 錨固的外殼是由直徑0.3 m的PVC管包裹,錨桿錨固實(shí)物模型如7所示。螺紋鋼直徑為0.02 m,灌漿直徑0.05 m,圍巖層直徑為0.3 m。
利用東華測(cè)振公司的DHDAS動(dòng)態(tài)信號(hào)測(cè)試分析系統(tǒng)作為激勵(lì)和響應(yīng)信號(hào)的采集裝置。采樣頻率為10 kHz,每個(gè)物理模型采集80組數(shù)據(jù),每組數(shù)據(jù)包括120個(gè)樣本點(diǎn)。
試驗(yàn)部分使用了7類物理模型包括錨固完整、前端缺陷、中端缺陷、后端缺陷、前中缺陷、中后缺陷、前后缺陷,結(jié)構(gòu)見表4。
圖6 物理模擬試驗(yàn)Fig.6 Physical simulation test
表4 錨桿錨固模型結(jié)構(gòu)Table 4 Anchor anchor model structure
表4中的7類錨桿錨固系統(tǒng)模型網(wǎng)絡(luò)輸出依次編碼為1000000、0100000、0010000、0001000、0000100、0000010、0000001。AE隱含層節(jié)點(diǎn)個(gè)數(shù)是輸入節(jié)點(diǎn)個(gè)數(shù)的一半(向上取整),重構(gòu)誤差的設(shè)定值為0.002(保證缺陷識(shí)別率在95%以上)。經(jīng)訓(xùn)練,自動(dòng)選層SAE網(wǎng)絡(luò)的重構(gòu)誤差在第三層AE堆疊之后達(dá)到重構(gòu)誤差的目標(biāo)設(shè)定值,從而跳出自動(dòng)選層,確定了SAE網(wǎng)絡(luò)深度。輸入數(shù)據(jù)經(jīng)過SAE網(wǎng)絡(luò)進(jìn)行特征提取后后,將每類錨桿的特征數(shù)據(jù)進(jìn)行隨機(jī)排序,每類抽取10組共70組作為測(cè)試集,將剩下的490組作為訓(xùn)練集。進(jìn)入Softmax多分類網(wǎng)絡(luò)中進(jìn)行不同缺陷類型的錨桿錨固系統(tǒng)識(shí)別,錨桿錨固缺陷識(shí)別效果如圖7所示。
圖7 自動(dòng)選層SAE結(jié)合Softmax分類效果Fig.7 Automatic layer selection SAE combined with softmax classification effect
從圖7中能夠看出,本文方法只有1組樣本識(shí)別錯(cuò)誤,識(shí)別精度為0.985。同樣對(duì)不同網(wǎng)絡(luò)深度下的重構(gòu)誤差、分類準(zhǔn)確率進(jìn)行比較,見表5。
從表5可以得出,隨著網(wǎng)絡(luò)深度的增加,在重構(gòu)誤差方面與數(shù)值模擬結(jié)論一致,在識(shí)別準(zhǔn)確率方面呈現(xiàn)先升高后下降的趨勢(shì),其中深度為3時(shí)網(wǎng)絡(luò)的識(shí)別準(zhǔn)確率達(dá)到最高,而自動(dòng)選層網(wǎng)絡(luò)也是選擇的3層AE堆疊,說明通過自動(dòng)選層網(wǎng)絡(luò)能夠得到最適宜錨桿錨固缺陷識(shí)別的網(wǎng)絡(luò)深度。將本文算法與小波分解結(jié)合RF、PCA結(jié)合SVM分別進(jìn)行10次測(cè)試的錨桿錨固質(zhì)量分類,10次測(cè)試平均準(zhǔn)確率見表6。由表6可以看出,針對(duì)實(shí)驗(yàn)采集的數(shù)據(jù)的分類結(jié)果,本文算法的10次平均測(cè)試準(zhǔn)確率仍然高于后兩種算法的平均準(zhǔn)確率,也說明了該算法在在錨桿錨固缺陷識(shí)別的適用性。
表5 基于試驗(yàn)數(shù)據(jù)下的不同深度的SAE網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)Table 5 SAE network training data of different depths based on test data
表6 三種算法10次測(cè)試的平均準(zhǔn)確率Table 6 Average accuracy of 10 tests for three algorithms
1) 利用重構(gòu)誤差實(shí)現(xiàn)對(duì)SAE網(wǎng)絡(luò)的自動(dòng)選層,能夠使網(wǎng)絡(luò)在保證缺陷識(shí)別準(zhǔn)確率的前提下,自組織的訓(xùn)練網(wǎng)絡(luò)選擇深度,解決了SAE網(wǎng)絡(luò)在分類識(shí)別中深度選擇的問題。
2) 通過數(shù)值模擬模型與物理模擬模型作為網(wǎng)絡(luò)驗(yàn)證的數(shù)據(jù)來源,通過與小波分解結(jié)合RF、PCA結(jié)合SVM分別進(jìn)行缺陷識(shí)別對(duì)比,驗(yàn)證了自動(dòng)選層SAE及Softmax的錨桿錨固質(zhì)量分類識(shí)別算法在錨桿錨固缺陷識(shí)別方面具有很好的性能。