王珊 馮文靜 毛擁軍
[摘要] 目的 探討褐藻膠寡糖(AOS)對D-半乳糖(D-gal)誘導(dǎo)的衰老小鼠骨質(zhì)疏松的作用及其可能的機制。
方法 將45只8周齡雄性C57BL/6J小鼠隨機分為對照組(Control組)、模型組(D-gal組)、D-gal+AOS低劑量組(D-gal+AOS-L組)、D-gal+AOS中劑量組(D-gal+AOS-M組)和D-gal+AOS高劑量組(D-gal+AOS-H組)。除Control組外,其余組小鼠頸背部注射D-gal 8周建立小鼠骨質(zhì)疏松模型。D-gal+AOS-L、D-gal+AOS-M和D-gal+AOS-H組從第5周開始分別給予50、100、150 mg/(kg·d)的AOS灌胃4周,Control組和D-gal組給予蒸餾水灌胃。藥物干預(yù)完成后,應(yīng)用骨密度儀測量各組小鼠股骨骨密度,采用Western Blot檢測小鼠股骨組織中衰老相關(guān)蛋白P16及氧化應(yīng)激相關(guān)蛋白P67 phox的表達(dá),RT-PCR檢測氧化應(yīng)激相關(guān)基因p47 phox和gp91 phox mRNA的表達(dá)及破骨細(xì)胞活化相關(guān)基因核因子κB受體活化因子配體(RANKL)mRNA的表達(dá)。
結(jié)果 D-gal組小鼠骨密度較Control組降低,AOS干預(yù)各組小鼠骨密度較D-gal組均增加,差異有統(tǒng)計學(xué)意義(F=46.853,P<0.05)。D-gal組小鼠股骨組織中P16和P67 phox蛋白表達(dá)較Control組增加,AOS干預(yù)各組P16和P67 phox蛋白表達(dá)較D-gal組降低,差異均有統(tǒng)計學(xué)意義(F=50.862、156.943,P<0.05)。D-gal組小鼠股骨組織中p47 phox、gp91 phox和RANKL mRNA相對表達(dá)量較Control組增加,AOS干預(yù)各組小鼠p47 phox、gp91 phox和RANKL mRNA相對表達(dá)量較D-gal組均降低,差異有統(tǒng)計學(xué)意義(F=17.373~112.311,P<0.05)。
結(jié)論 AOS對 D-gal誘導(dǎo)的小鼠骨質(zhì)疏松具有保護作用,其機制可能與氧化應(yīng)激和破骨細(xì)胞活化的抑制有關(guān)。
[關(guān)鍵詞] 海藻酸;寡糖類;半乳糖;骨質(zhì)疏松;衰老;氧化性應(yīng)激;RANK配體
[中圖分類號] R681
[文獻(xiàn)標(biāo)志碼] A
[文章編號] 2096-5532(2020)03-0261-04
doi:10.11712/jms.2096-5532.2020.56.113
[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20200610.1359.004.html;2020-06-11 11:06
EFFECT OF ALGINATE OLIGOSACCHARIDE ON D-GALACTOSE-INDUCED OSTEOPOROSIS IN MICE
WANG Shan, FENG Wenjing, MAO Yongjun
(Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266100, China)
[ABSTRACT]\ Objective\ To investigate the effect of alginate oligosaccharide (AOS) on D-galactose (D-gal)-induced osteoporosis in senescent mice and its possible mechanism.
Methods\ A total of 45 male C57BL/6J mice, aged 8 weeks, were randomly divided into Control group, model group (D-gal group), D-gal+low-dose AOS group (D-gal+AOS-L group), D-gal+middle-dose AOS group (D-gal+AOS-M group), and D-gal+high-dose AOS group (D-gal+AOS-H group). All mice except those Control group were given subcutaneous injection of D-gal at the back of the neck for 8 weeks to establish a mouse model of osteoporosis. D-gal+AOS-L group, D-gal+AOS-M group, and D-gal+AOS-H group were given AOS by gavage at a dose of 50, 100, and 150 mg/(kg·d) for 4 weeks since week 5, and Control group and D-gal group were given distilled water by gavage. After drug intervention, dual-energy X-ray absorptiometry was used to measure bone mineral density (BMD) of the femur, Western Blot was used to measure the protein expression of the aging-related protein P16 and the oxidative stress-related protein P67 phox, and RT-PCR was used to measure the mRNA expression of the oxidative stress-related genes p47 phox and gp91 phox and the osteoclast activation-related gene receptor activator of nuclear factor-kappa B ligand (RANKL).
\ Results\ Compared with Control group, D-gal group had a significant reduction in BMD, and compared with D-gal group, the AOS intervention groups had a significant increase in BMD (F=46.853,P<0.05). Compared with Control group, D-gal group had significant increases in the protein expression of P16 and P67 phox in femoral tissue, and compared with D-gal group, the AOS intervention groups had significant reductions in the protein expression of P16 and P67 phox (F=50.862,156.943;P<0.05). Compared with Control group, D-gal group had significant increases in the relative mRNA expression of p47 phox, gp91 phox, and RANKL in femoral tissue, and compared with D-gal group, the AOS intervention groups had significant reductions in the relative mRNA expression of p47 phox, gp91 phox, and RANKL (F=17.373-112.311,P<0.05).
\ Conclusion
AOS exerts a protective effect against D-gal-induced osteoporosis in
mice, possibly by inhibiting oxidative stress and osteoclast activation.
骨質(zhì)疏松具有骨微觀結(jié)構(gòu)退行性改變、骨量減少和骨密度降低的特點,導(dǎo)致骨強度降低[1]、骨脆性增加[2]及骨折風(fēng)險增加[3],引起了老齡化社會的廣泛關(guān)注。氧化應(yīng)激學(xué)說是衰老的重要機制之一[4],該學(xué)說認(rèn)為活性氧(ROS)的積聚超過機體的清除能力造成DNA損傷、激活氧化應(yīng)激,從而導(dǎo)致衰老及衰老相關(guān)疾病的發(fā)生。ROS在體內(nèi)積聚可激活核因子κB受體活化因子配體(RANKL)信號通路,導(dǎo)致骨吸收增加。RANKL信號通路被認(rèn)為是促進破骨細(xì)胞活化的主要靶點,可激活多種下游信號通路[5],從而促進骨吸收和破骨細(xì)胞分化過程。長期注射D-半乳糖(D-gal)可導(dǎo)致實驗動物產(chǎn)生一系列類似于自然老化的病理變化,如認(rèn)知障礙、氧化應(yīng)激和骨量減少等[6]。用D-gal誘導(dǎo)建立亞急性衰老模型具有周期短、價格低廉、操作簡便、結(jié)果穩(wěn)定可靠等優(yōu)點,已廣泛應(yīng)用于衰老機制研究和抗衰老藥物篩選。褐藻膠寡糖(AOS)具有較高的生物活性,如抗炎、抗氧化、抗凋亡、抗腫瘤等[7]。骨質(zhì)疏松性骨折是導(dǎo)致老年人死亡的主要原因之一[8],因此骨質(zhì)疏松癥的早期預(yù)防、診斷和治療十分重要,開發(fā)更有效的延緩骨質(zhì)疏松癥的藥物具有重要意義。目前大多數(shù)骨質(zhì)疏松研究側(cè)重于絕經(jīng)后婦女,而缺乏對老年男性骨質(zhì)疏松的研究。故本實驗采用D-gal誘導(dǎo)建立小鼠骨質(zhì)疏松模型,探討AOS對衰老雄性小鼠骨質(zhì)疏松的作用及其可能的機制。
1 材料和方法
1.1 實驗材料
健康雄性C57BL/6J小鼠45只,SPF級,8周齡,購自濟南朋悅實驗動物繁育有限公司,飼養(yǎng)于青島大學(xué)醫(yī)學(xué)部SPF級實驗動物中心。飼養(yǎng)條件:12 h晝夜循環(huán),室溫(20±2)℃,相對濕度40%~60%,自由攝食物和水。動物實驗操作均經(jīng)青島大學(xué)動物福利和倫理管理委員會批準(zhǔn),并且遵守中國動物保護委員會制訂的《動物保護與使用指南》。P16小鼠單克隆抗體購自美國 Cell Signaling Technology公司,RIPA裂解液和BCA蛋白濃度測定試劑盒購自上海碧云天公司,逆轉(zhuǎn)錄試劑盒及Mix購自Roche公司。
1.2 實驗方法
1.2.1 動物分組及處理 45只小鼠適應(yīng)性喂養(yǎng)1周后,隨機分為對照組(Control組,A組)、模型組(D-gal組,B組)、D-gal+AOS低劑量組(D-gal+AOS-L組,C組)、D-gal+AOS中劑量組(D-gal+AOS-M組,D組)以及D-gal+AOS高劑量組(D-gal+AOS-H組,E組),每組9只。Control組小鼠頸背部皮下注射滅菌注射用水5 mL/(kg·d),其余組小鼠頸背部皮下注射D-gal 200 mg/(kg·d),連續(xù)8周。從D-gal注射第5周開始,AOS干預(yù)低、中、高劑量組分別給予AOS 50、100、150 mg/(kg·d)灌胃處理4周,Control組和D-gal組小鼠給予蒸餾水10 mL/(kg·d)灌胃處理4周。
1.2.2 骨密度測量 藥物干預(yù)完成后,取每組各3只小鼠的同側(cè)股骨,采用雙能X線骨密度儀(Dexa;Osteosys Primus,Korea)對整個股骨進行骨密度測量(掃描間距1.5 mm,掃描速度60 mm/s)。
1.2.3 Western Blot檢測P16和P67 phox蛋白表達(dá) 藥物干預(yù)完成后,取每組各3只小鼠的股骨組織進行液氮研磨,將RIPA裂解液加入研磨好的股骨組織中提取蛋白,用BCA試劑盒檢測蛋白濃度。提取的蛋白進行SDS-PAGE電泳,待溴酚藍(lán)至分離膠底部時轉(zhuǎn)移到PVDF膜上,凝膠成像系統(tǒng)成像后用Quantity One軟件分析灰度值。
1.2.4 RT-PCR檢測股骨組織p47 phox、gp91 phox和RANKL mRNA的表達(dá) 藥物干預(yù)完成后,取每組各3只小鼠的股骨組織進行液氮研磨,加Trizol 50~100 g/L,顛倒混勻室溫放置30 min。4 ℃下以12 000 r/min離心5 min,棄沉淀,加1/5體積氯仿,充分震蕩混勻后置于冰上靜置5 min。4 ℃下以12 000 r/min離心15 min,將上清轉(zhuǎn)移至新的1.5 mL EP管中。加入與上清等體積的異丙醇,充分震蕩混勻,置于冰上靜置10 min。4 ℃下以12 000 r/min離心10min,棄上清,加體積分?jǐn)?shù)0.75的乙醇溶液懸浮沉淀。4 ℃下以12 000 r/min離心5 min,吸除上清,自然晾干后加入10 μL DEPC水溶解RNA。用Nanodrop分光光度計測定RNA濃度,用逆轉(zhuǎn)錄試劑盒將mRNA逆轉(zhuǎn)錄為cDNA。應(yīng)用RT-PCR法進行擴增,擴增條件:95 ℃、600 s,95 ℃、10 s,60 ℃、10 s,72 ℃、15 s,共計40個循環(huán);95 ℃、10 s,65 ℃、60 s,97 ℃、1 s。PCR引物及其序列見表1。
1.3 統(tǒng)計學(xué)方法
應(yīng)用SPSS 21.0軟件對數(shù)據(jù)進行統(tǒng)計學(xué)分析,
計量數(shù)據(jù)以±s表示,多組比較采用單因素方差分析,組間兩兩比較采用LSD法,以P<0.05為差異有顯著性。
2 結(jié)果
2.1 各組小鼠股骨骨密度比較
與Control組相比較,D-gal組小鼠股骨骨密度明顯下降;與D-gal組相比較,AOS干預(yù)各組小鼠股骨骨密度明顯增加,差異均有統(tǒng)計學(xué)意義(F=46.853,P<0.05)。見表2。
2.2 各組小鼠股骨組織中P16和P67 phox蛋白表達(dá)比較
與Control組相比較,D-gal組小鼠股骨組織中P16和P67 phox蛋白表達(dá)增加;與D-gal組比較,AOS干預(yù)各組小鼠股骨組織中P16和P67 phox蛋白表達(dá)降低,差異均有統(tǒng)計學(xué)意義(F=50.862、156.943,P<0.05)。見圖1、表2。
2.3 各組小鼠股骨組織中p47 phox、gp91 phox 和RANKL mRNA表達(dá)比較
與Control組相比較,D-gal組股骨組織中p47phox、gp91 phox和RANKL mRNA表達(dá)增加;與D-gal組相比,AOS干預(yù)各組小鼠股骨組織中p47 phox、gp91 phox和RANKL mRNA表達(dá)降低,差異均有統(tǒng)計學(xué)意義(F=17.373~112.311,P<0.05)。見表3。
3 討論
到2050年,65歲以上的老年人口將超過8億。隨著世界人口平均壽命的延長,衰老相關(guān)疾病如阿爾茨海默病[9]、骨質(zhì)疏松[10]等的發(fā)病率和死亡率將明顯增加,其造成的社會醫(yī)療負(fù)擔(dān)也日益加重。骨質(zhì)疏松癥是一種與年齡相關(guān)的退行性疾病,嚴(yán)重影響人們的生活質(zhì)量,導(dǎo)致老年人的死亡率增加。衰老可以引起骨皮質(zhì)和骨小梁的礦化減少、孔隙度增加及骨密度降低等,導(dǎo)致骨質(zhì)疏松和骨折的風(fēng)險增加[11]。本文研究結(jié)果顯示,D-gal組衰老性骨質(zhì)疏松模型小鼠的股骨骨密度較Control組顯著降低,而與D-gal組相比,AOS干預(yù)各組小鼠的股骨骨密度顯著增加。說明AOS對D-gal誘導(dǎo)的骨質(zhì)疏松有保護作用。P16作為細(xì)胞周期蛋白依賴性激酶抑制因子[12],在衰老和抑制腫瘤生長過程中起重要作用。P16在大多數(shù)嚙齒動物和人體組織中的表達(dá)隨年齡增長而顯著增加[13]。本文結(jié)果顯示,P16蛋白在D-gal組股骨中的表達(dá)增加,而與D-gal組相比,AOS干預(yù)各組小鼠股骨中P16蛋白的表達(dá)降低,說明AOS延緩了D-gal誘導(dǎo)的衰老進程。
氧化應(yīng)激可誘導(dǎo)DNA損傷和細(xì)胞衰老,而抑制衰老可能是治療骨丟失的有效方法。氧化應(yīng)激與許多年齡相關(guān)疾病(骨質(zhì)疏松、心血管疾病和神經(jīng)退行性疾病等)有關(guān),它可以破壞骨骼系統(tǒng)中骨吸收和骨形成的動態(tài)平衡,使骨硬度和強度降低,在骨質(zhì)疏松的發(fā)生和發(fā)展中起重要作用[14]。ROS的一個主要來源是煙酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶,它可促進氧化應(yīng)激的發(fā)生。本研究結(jié)果顯示,D-gal組股骨中NADPH氧化酶亞基p67 phox、p47
phox和gp91 phox的mRNA表達(dá)增加,而與D-gal組相比,AOS干預(yù)各組股骨中NADPH氧化酶亞基mRNA表達(dá)減少。表明AOS對衰老性骨質(zhì)疏松的保護作用可能與氧化應(yīng)激的抑制有關(guān)。
隨著年齡的增長,破骨細(xì)胞介導(dǎo)的骨吸收和成骨細(xì)胞介導(dǎo)的骨生成之間失去平衡[15],當(dāng)骨吸收超過骨形成時出現(xiàn)骨代謝失衡,引起骨量降低從而導(dǎo)致骨質(zhì)疏松的發(fā)生。RANKL在破骨細(xì)胞生成中發(fā)揮著重要的作用[16],可以與核因子κB受體活化因子(RANK)結(jié)合激活信號通路,促進破骨細(xì)胞活化、分化和成熟等過程[17]。RANKL相關(guān)信號通路被認(rèn)為是促進骨丟失和破骨細(xì)胞活化的主要靶點[18]。本研究結(jié)果顯示,在衰老性骨質(zhì)疏松D-gal組股骨中RANKL mRNA表達(dá)增加,而與D-gal組相比,AOS干預(yù)各組小鼠股骨中RANKL mRNA表達(dá)降低,說明AOS對衰老性骨質(zhì)疏松的保護作用可能與RANKL通路抑制有關(guān)。
綜上所述,AOS對D-gal誘導(dǎo)的C57BL/6J小鼠骨質(zhì)疏松有保護作用,其機制可能與氧化應(yīng)激和破骨細(xì)胞活化抑制有關(guān),具體機制還需進一步研究。
[參考文獻(xiàn)]
[1]CHEN L R, HOU P, CHEN K H. Nutritional support and physical modalities for people with osteoporosis: current opi-
nion[J]. Nutrients, 2019,11(12):2848.
[2]BOTTANI M, BANFI G, LOMBARDI G.Perspectives on miRNAs as epigenetic markers in osteoporosis and bone fracture risk: a step forward in personalized diagnosis[J].? Front Genet, 2019,10:1044.
[3]ZHANG Zhida, REN Hui, SHEN Gengyang, et al. Animal models for glucocorticoid-induced postmenopausal osteoporosis: an updated review[J].? Biomedicine & Pharmacotherapy, 2016,84:438-446.
[4]LI Y D, HONG Y F, YUSUFUAJI Y, et al. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and-133 in patients with age-associated atrial fibrillation[J].? Molecular Medicine Reports, 2015,12(3):3243-3248.
[5]LIU Y X, ZUO G L, MENG X, et al. Adrenomedullin inhi-
bits osteoclast differentiation through the suppression of receptor activator of nuclear factor-κB ligand-induced nuclear factor-κB activation in glucocorticoid-induced osteoporosis[J].? Exp Ther Med, 2017,14(5):4009-4016.
[6]GIOVOS G, YAVROPOULOU M P, YOVOS J G. The role of cellular senescence in diabetes mellitus and osteoporosis: molecular pathways and potential interventions[J].? Hormones, 2019,18(4):339-351.
[7]FALKEBORG M, CHEONG L Z, GIANFICO C, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation[J].? Food Chemistry, 2014,164:185-194.
[8]DE MARTINIS M, FRANCESCHI C, MONTI D, et al. Inflammation markers predicting frailty and mortality in the elderly[J].? Exp Mol Pathol, 2006,80(3):219-227.
[9]TOEPPER M. Dissociating normal aging from Alzheimers disease: a view from cognitive neuroscience[J]. J Alzheimers Dis: JAD, 2017,57(2):331-352.
[10]FATHI KAZEROONI A, POZO J M, MCCLOSKEY E V, et al. Diffusion MRI for assessment of bone quality: a review of findings in healthy aging and osteoporosis[J].? J Magn Reson Imaging, 2020,51(4):975-992.
[11]JIN H M, WANG Q Q, CHEN K, et al.Astilbin prevents bone loss in ovariectomized mice through the inhibition of RANKL-induced osteoclastogenesis[J].? J Cell Mol Med, 2019,23(12):8355-8368.
[12]ZHEN Y Z, LIN Y J, LI K J, et al. Effects of Rhein lysinate on D-galactose-induced aging mice[J].? Exp Ther Med, 2016,11(1):303-308.
[13]CHEN Linbo, YAO Hui, CHEN Xiongbin, et al. Ginsenoside Rg1 decreases oxidative stress and down-regulates Akt/mTOR signalling to attenuate cognitive impairment in mice and senescence of neural stem cells induced by D-galactose[J].? Neurochemical Research, 2018,43(2):430-440.
[14]ZHU S W, WEI W F, LIU Z W, et al. Tanshinone-ⅡA attenuates the deleterious effects of oxidative stress in osteoporosis through the NF-κB signaling pathway[J].? Mol Med Rep, 2018,17(5):6969-6976.
[15]KIERNAN J, DAVIES J E, STANFORD W L. Concise review: musculoskeletal stem cells to treat age-related osteoporosis[J].? STEM CELLS Transl Med, 2017,6(10):1930-1939.
[16]OMI M, KAARTINEN V, MISHINA Y. Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway[J]. ?J Biol Chem, 2019,294(47):17818-17836.
[17]KWAK S C, BAEK J M, LEE C H, et al. Umbelliferone prevents lipopolysaccharide-induced bone loss and suppresses RANKL-induced osteoclastogenesis by attenuating Akt-c-fos-NFATc1 signaling[J].? Int J Biol Sci, 2019,15(11):2427-2437.
[18]KIM J S, LEE H, NIRMALA F S, et al. Dry-fermented soybean food (Cheonggukjang) ameliorates senile osteoporosis in the senescence-accelerated mouse prone 6 model[J].? Journal of Medicinal Food, 2019,22(10):1047-1057.
(本文編輯 馬偉平)
[收稿日期]2019-11-24; [修訂日期]2020-05-07
[基金項目]國家自然科學(xué)基金資助項目(31571829,31-640050);山東省自然科學(xué)基金資助項目(ZR2016HQ23)
[第一作者]王珊(1993-),女,碩士研究生。
[通信作者]毛擁軍(1964-),男,博士,教授,博士生導(dǎo)師。
E-mail:mmc168@126.com。