曲斌斌 劉鳳娟 陳霞 許亞慧 孫榮麗 徐德祥
[摘要]目的 探討呼氣阻力訓練和經(jīng)面罩持續(xù)氣道正壓通氣(CPAP)兩種呼吸模式對健康志愿者血流動力學參數(shù)的影響及其差別,以指導慢性阻塞性肺疾?。–OPD)病人選擇合適的呼吸訓練方法,減少肺康復訓練對血流動力學參數(shù)的不良影響。方法 選擇30名健康志愿者,每名志愿者先后接受相同數(shù)值(0、0.98、1.47 kPa)的定量阻力呼氣和CPAP干預,使用無創(chuàng)血流動力學監(jiān)測系統(tǒng)(NICaS CS)同步測量不同呼吸模式下的血流動力學指標。血流動力學監(jiān)測的指標包括心率、每搏輸出量(SV)、每搏輸出量指數(shù)(SI)、心排血量(CO)、心臟指數(shù)(CI)、心臟動力指數(shù)(CPI)、全身外周阻抗(TPR)、全身外周阻抗指數(shù)(TPRI)。分別觀察相同呼吸模式下不同設置值以及相同設置值下兩種呼吸模式對血流動力學參數(shù)的影響。結果 應用呼氣阻力訓練,當設置值由0逐漸增加到1.47 kPa時,心率增快,但差異無統(tǒng)計學意義(P>0.05);SV、SI、CO、CI和CPI下降,TPR及TPRI升高,差異均有統(tǒng)計學意義(t=-2.61~6.51,P<0.05)。應用CPAP,當設置值由0逐漸增加到1.47 kPa時,心率減慢,差異有統(tǒng)計學意義(t=6.07,P<0.05);CO、CI、CPI下降,TPR及TPRI升高,差異均有統(tǒng)計學意義(t=-3.79~3.35,P<0.05);而SV和SI的變化無統(tǒng)計學意義(P>0.05)。設置值同為1.47 kPa時,呼氣阻力訓練心率增快,CPAP心率減慢,兩者差異有統(tǒng)計學意義(t=8.11,P<0.05);CPAP的SV和SI高于呼氣阻力訓練,差異有統(tǒng)計學意義(t=-4.36、-4.08,P<0.05);兩種呼吸模式的CO、CI、CPI、TPR及TPRI比較差異均無統(tǒng)計學意義(P>0.05)。結論 氣道壓力變化影響健康志愿者的血流動力學參數(shù)。1.47 kPa的CPAP與阻力呼氣模式相比,CPAP減慢心率,增加SV;阻力呼氣模式加快心率,降低SV。COPD病人在進行肺康復治療時,選擇CPAP模式代替呼氣阻力訓練,有可能減少氣道正壓對血流動力學參數(shù)的不良影響;連續(xù)血流動力學監(jiān)測有助于優(yōu)化通氣模式與參數(shù)。
[關鍵詞] 肺疾病,慢性阻塞性;呼吸療法;呼氣;連續(xù)氣道正壓通氣;血流動力學
[中圖分類號] R563.9;R332.3[文獻標志碼] A[文章編號] 2096-5532(2020)04-0422-05
doi:10.11712/jms.2096-5532.2020.56.062
[網(wǎng)絡出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200407.0933.006.html;2020-04-07 14:59
EFFECT OF EXHALATION RESISTANCE TRAINING VERSUS CONTINUOUS POSITIVE AIRWAY PRESSURE VENTILATION ON THE HEMODYNAMIC PARAMETERS OF HEALTHY VOLUNTEERS
QU Binbin, LIU Fengjuan, CHEN Xia, XU Yahui, SUN Rongli, XU Dexiang
(Department of Respiratory Medicine, Affiliated Central Hospital of Qingdao University, Qingdao 266042, China)
[ABSTRACT]Objective To investigate the effect of exhalation resistance training versus continuous positive airway pressure (CPAP) ventilation on the hemodynamic parameters of healthy volunteers, and to guide the selection of appropriate breathing training method for patients with chronic obstructive pulmonary disease (COPD) and reduce the adverse effect of pulmonary rehabilitation training on hemodynamic parameters.Methods A total of 30 healthy volunteers were selected, and each volunteer received quantitative exhalation resistance training and CPAP ventilation at different pressures (0, 0.98, and 1.47 kPa). The non-invasive cardiac system-cardiac surveyor (NICaS CS) was used for simultaneous measurement of hemodynamic parameters in diffe-rent ventilation modes. Hemodynamic monitoring included the parameters of heart rate, stroke volume (SV), stroke index (SI), cardiac output (CO), cardiac index (CI), cardiac power index (CPI), total peripheral resistance (TPR), and total peripheral resistance index (TPRI), which were used to observe the effect of different settings of the same ventilation mode and the two ventilation modes with the same setting on hemodynamic parameters. Results When quantitative exhalation resistance training was applied, heart rate increased rapidly when the setting value gradually increased from 0 to 1.47 kPa (P>0.05), while there were significant reductions in SV, SI, CO, CI, and CPI and significant increases in TPR and TPRI (t=-2.61 to 6.51,P<0.05). When CPAP was applied, heart rate significantly decreased when the setting value gradually increased from 0 to 1.47 kPa (t=-6.07,P<0.05), and there were significant reductions in CO, CI, and CPI and significant increases in TPR and TPRI (t=-3.79 to 3.35,P<0.05), while there were no significant changes in SV and SI (P>0.05). When the setting value was 1.47 kPa, there was a significant increase heart rate in quantitative exhalation resistance training and a significant reduction in heart rate in CPAP ventilation, with a significant difference between them (t=8.11,P<0.05); SV and SI during CPAP ventilation were significantly higher than those during exhalation resistance training (t=-4.36,-4.08;P<0.05); there were no significant differences in CO, CI, CPI, TPR, and TPRI between the two ventilation modes (P>0.05).Conclusion The change in airway pressure affects the hemodynamic parameters of healthy volunteers. At the setting value of 1.47 kPa, CPAP can reduce heart rate and increase SV compared with exhalation resistance training, while exhalation resistance training can increase heart rate and reduce SV. During the pulmonary rehabilitation training for COPD patients, CPAP, instead of quantitative exhalation resistance training, may reduce the adverse effect of positive airway pressure on hemodynamic parameters. Continuous hemodynamic monitoring may help to optimize ventilation modes and parameters.
[KEY WORDS] pulmonary disease, chronic obstructive; respiratory therapy; exhalation; continuous positive airway pressure; hemodynamics
慢性阻塞性肺疾?。–OPD)是一種以持續(xù)氣流受限,尤其是小氣道阻力增加為特征的疾病,病情呈緩慢進行性發(fā)展,嚴重影響病人的勞動能力和生活質量[1-2]。COPD病人由于肺氣腫、肺容量增加等因素導致膈肌下移、收縮效率減弱,往往要動員輔助呼吸肌參與呼吸過程,增加了耗氧量,容易誘發(fā)呼吸肌疲勞甚至呼吸衰竭[3-4]。因此,減輕氣道阻塞和呼吸肌疲勞是COPD病人肺康復治療中的重要環(huán)節(jié)。肺康復治療主要目標為增強呼吸肌的力量和耐力,改善肺功能障礙。而定量阻力呼氣和持續(xù)氣道正壓通氣(CPAP)均能增加病人呼吸運動時的呼氣阻力,增強呼吸肌的力量,可用于COPD病人肺康復的治療[5],幫助病人緩解癥狀,提高運動耐力[6]。然而,定量阻力呼氣和CPAP產(chǎn)生呼氣阻力的方式卻存在明顯差異,這種差異極有可能影響到COPD病人的心排血量(CO)與組織灌注,進而影響病人的器官功能與康復效果,因此有必要深入探討不同呼吸模式對血流動力學參數(shù)的影響。因COPD病人影響血流動力學參數(shù)的因素太多,很難在COPD病人中研究不同呼吸模式對血流動力學參數(shù)影響的機制,因此可首先在健康志愿者中探索不同呼吸模式對血流動力學參數(shù)的影響。本研究對健康志愿者先后予以定量阻力呼氣和CPAP的方式產(chǎn)生呼氣阻力,兩種通氣模式的干預順序隨機產(chǎn)生,設置的數(shù)值與暴露時間相同,應用全身電阻抗的方法監(jiān)測病人血流動力學參數(shù)的變化,并探討可能的機制,進而為COPD病人制訂個體化的肺康復方案提供依據(jù)。
1 對象與方法
1.1 研究對象
招募30名健康志愿者作為研究對象,男女各15名,年齡(26.27±4.48)歲,體質量指數(shù)(BMI)為(22.76±3.28)kg/m2,血壓(15.27±1.64)/(9.41±1.25)kPa。納入標準:年齡在20~39歲之間,試驗前1周有穩(wěn)定的睡眠及穩(wěn)定規(guī)律的日常工作與活動,近3個月內無輪班工作。排除標準:BMI超過30 kg/m2,急性或(和)慢性心肺疾病,每天吸煙超過10支,慢性乙醇中毒,孕婦或哺乳期女性,有任何形式的睡眠呼吸障礙。試驗程序按照《赫爾辛基宣言》(2000年)執(zhí)行。本研究獲得了當?shù)厝祟愌芯總惱砦瘑T會的批準,所有參與研究者均知情同意。
1.2 試驗方法
每名志愿者均先后接受定量阻力呼氣和CPAP干預,前者采用智能呼吸耐力訓練儀(XEEK賽客醫(yī)療器械有限公司),后者采用Flexo系列雙水平呼吸治療儀(Bi-Level CPAP)。定量阻力呼氣的阻力和CPAP的壓力均為0、0.98、1.47 kPa,每個壓力參數(shù)的持續(xù)時間為5 min。使用無創(chuàng)血流動力學監(jiān)測系統(tǒng)(NICaS CS,以色列NIMedical),采用電阻抗法同步測量不同呼吸模式下的血流動力學指標。血流動力學監(jiān)測的指標包括心率、每搏輸出量(SV)、每搏輸出量指數(shù)(SI)、CO、心臟指數(shù)(CI)、心臟動力指數(shù)(CPI)、全身外周阻抗(TPR)以及全身外周阻抗指數(shù)(TPRI)等。分別觀察相同呼吸模式下不同設置值對血流動力學參數(shù)的影響,以及相同設置值下兩種呼吸模式對血流動力學參數(shù)的影響。
1.3 統(tǒng)計學分析
采用SPSS 24軟件進行數(shù)據(jù)的統(tǒng)計分析。所得數(shù)據(jù)以[AKx-D]±s表示,組間比較采用配對t檢驗。
2 結果
2.1 呼氣阻力訓練對血流動力學參數(shù)的影響
應用呼氣阻力訓練,當設置值由0逐漸增加到1.47 kPa時,心率增快,但差異無統(tǒng)計學意義(P>0.05);SV、SI、CO、CI和CPI下降,TPR及TPRI升高,差異均有統(tǒng)計學意義(t=-2.61~6.51,P<0.05)。見表1。
2.2 CPAP對血流動力學參數(shù)的影響
應用CPAP,當設置值由0逐漸增到1.47 kPa時,心率減慢,差異有顯著意義(t=6.07,P<0.05);CO、CI、CPI下降,TPR及TPRI升高,差異均有顯著性(t=-3.79~3.35,P<0.05);而SV和SI的變化差異無顯著性(P>0.05)。見表2。
2.3 兩種呼吸模式對血流動力學參數(shù)影響的比較
設置值同為1.47 kPa時,呼氣阻力訓練心率增快,CPAP心率減慢,兩者差異有統(tǒng)計學意義(t=8.11,P<0.05);CPAP的SV和SI高于呼氣阻力訓練,差異具有統(tǒng)計學意義(t=-4.36、-4.08,P<0.05);兩種呼吸模式的CO、CI、CPI、TPR及TPRI比較差異均無統(tǒng)計學意義(P>0.05)。見表3。
3 討論
COPD的肺康復方案主要是以運動療法為主的綜合方案,呼吸訓練在運動療法中占有舉足輕重的地位[7-8]。
定量阻力呼氣和CPAP均在呼氣相產(chǎn)生氣道正壓,增加了呼氣時呼吸肌的阻力,從而起到鍛煉呼吸肌功能的作用[9-12]。理論上氣道正壓會傳導至胸腔影響肺循環(huán)阻力、心臟與大血管的跨壁壓以及肺泡功能殘氣量等[13-16],引起通氣血流重分布,進而對血流動力學參數(shù)與氣血交換產(chǎn)生影響,最終導致組織灌注的變化,這種變化再通過多種途徑影響病人多器官的功能以及預后[17]。然而同為氣道正壓,由定量阻力呼氣和CPAP導致的血流動力學參數(shù)變化又不盡相同,這種差異極有可能影響COPD病人的組織灌注,最終影響COPD病人的器官功能與康復效果。
本文研究結果顯示,應用呼氣阻力訓練,當設置值由0逐漸增加到1.47 kPa時,出現(xiàn)心率增快,SV、SI、CO、CI和CPI下降,TPR及TPRI升高。志愿者在定量阻力呼氣的背景下進行呼吸運動時,胸腔內壓力與氣道內壓力均出現(xiàn)連續(xù)的動態(tài)變化,設置的呼氣阻力只是氣道口鼻端的最大阻力,而真實的氣道壓受人體胸腔內壓、自主呼吸氣流與呼氣阻力設置值等多重影響。當志愿者剛開始發(fā)動呼氣時,胸腔內壓與氣道內壓力均小于呼氣阻力的設置值,氣道內無氣流出現(xiàn);隨著呼氣運動的進行,胸腔內壓不斷升高并傳導至氣道使氣道內壓升高,當氣道內壓大于阻力呼氣的設置值時產(chǎn)生氣流;隨著呼氣運動的繼續(xù)進行,胸腔內壓逐漸下降,導致氣道正壓小于阻力呼氣的設置值,氣道內的氣流停止。因此在定量阻力呼氣模式下,氣道正壓伴隨胸腔內壓的變化出現(xiàn)實時波動,且氣道正壓值小于定量阻力呼氣的設置值。阻力呼氣模式下氣道正壓的出現(xiàn)理論上可以引起肺泡內壓力升高,但該壓力只存在于呼氣時相內,此時胸腔內壓的升高抵消了肺泡內壓升高對肺泡的擴張作用,因此阻力呼氣模式對肺泡體積的影響較小。
氣道正壓對血流動力學參數(shù)影響可能的機制:①氣道正壓升高時,總肺循環(huán)阻力升高,進而導致左心房回流減少[18],SV、CO、CI下降;②氣道正壓升高時,胸腔內壓升高,心臟收縮期跨室壁壓增加[19],導致心臟后負荷下降,SV、CO、CI升高;③由阻力呼氣引起的氣道壓力動態(tài)周期變化,可以引起交感神經(jīng)興奮性增加[20],一方面增加心肌收縮力[21],引起CO升高;另一方面通過收縮微循環(huán)動脈端平滑肌,引起體循環(huán)阻力上升,導致TPR及TPRI升高。而最終的組織灌注變化取決于上述變化的綜合效果。本研究觀察到,對志愿者進行定量阻力呼氣的最終效果是心率增快、SV和CO下降,說明志愿者的心臟做功增加而組織灌注量反而下降,這種情形顯然不利于已經(jīng)存在心臟基礎病變的COPD病人。
本研究結果還顯示,應用CPAP,當壓力由0逐漸增加到1.47 kPa時,心率減慢,CO、CI、CPI下降,TPR及TPRI升高,而SV和SI無顯著變化。理論上講,CPAP時志愿者的氣道口鼻側壓強維持恒定的升高狀態(tài),志愿者在呼氣相需要更大的胸內壓對抗氣道內壓才能產(chǎn)生氣流,起到鍛煉呼吸肌的作用。單純從呼氣相氣道正壓的角度看,定量阻力呼氣應該與CPAP具有相似的生理學效果,但是在試驗中二者卻出現(xiàn)了不同的血流動力學參數(shù)變化。當設置值小于1.47 kPa時,兩種呼吸模式均未出現(xiàn)對血流動力學參數(shù)的明顯影響;當設置值為1.47 kPa時,阻力呼氣模式下心率增快并SV降低,而CPAP模式下心率下降同時CO增加。而二者真正的不同是,定量阻力呼氣模式下,病人胸腔內壓始終處于動態(tài)波動之中;而CPAP模式下,無論人體的自主呼吸氣流與胸腔內壓如何,機械通氣均能通過不斷調整送氣流量在呼氣相產(chǎn)生恒定的氣道正壓與恒定的呼氣阻力,且兩者具有相同的數(shù)值。同時,定量阻力呼氣對各個呼吸時相的肺泡體積影響很小,對肺循環(huán)的影響僅存在于呼氣相,導致呼氣相左心房回流減少;而CPAP可以增加呼氣末的肺泡體積,增加功能殘氣量,進而影響各個呼吸時相的肺循環(huán)阻力,吸氣相肺循環(huán)阻力降低,呼氣相肺循環(huán)阻力升高,綜合效應對于左心回流量的影響較小。可見在CPAP模式下,志愿者心率下降的原因是肺牽張反射,SV升高是由肺循環(huán)阻力、左心房回流量、心肌收縮力及外周血管阻力等因素綜合決定的[22],但最終效果是CPAP模式起到了降低心臟做功與增加SV的作用,使心臟儲備功能增加。對于合并基礎心臟疾病的COPD病人來說,在進行呼氣訓練時,CPAP模式有望減少對血流動力學參數(shù)的不良影響。
在肺康復臨床實踐中,醫(yī)師更多關注的是呼氣阻力訓練對呼吸肌肌力的鍛煉,而容易忽視呼氣阻力的不同設置方法對組織灌注的影響。肌肉組織鍛煉的獲益與組織灌注量有密切關系,是運動處方參考的重要指標[23]。合理的運動處方應該使目標肌群實現(xiàn)有氧訓練,即處方運動量小于達到無氧閾值的運動量[24]。針對COPD病人,經(jīng)常遇到使用呼氣阻力訓練與CPAP的情況,從兩者對CO和心臟做功影響的角度看,0.98~1.47 kPa的高CPAP有助于降低心率、增加CO,有利于在阻抗訓練中增加呼吸肌群的灌注,提高無氧閾值,增強康復效果,而相同數(shù)值的定量阻力呼氣,增加心臟做功,減少組織灌注,有可能對器官功能產(chǎn)生不良影響。本文研究結果為COPD病人進行肺康復方案的設計提供了血流動力學依據(jù)。
[參考文獻]
[1]LOPEZ-CAMPOS J L, TAN W, SORIANO J B. Global burden of COPD[J].? Respirology, 2016,21(1):14-23.
[2]中華醫(yī)學會呼吸病學分會慢性阻塞性肺疾病學組. 慢性阻塞性肺疾病診治指南 (2013年修訂版)[J].? 中華結核和呼吸雜志, 2014,6(2):67-80.
[3]ABDULAI R M, JENSEN T J, NAIMISH R P, et al. Dete-
rioration of limb muscle function during acute exacerbation of chronic obstructive pulmonary disease[J].? American Journal of Respiratory and Critical Care Medicine, 2018,197(4):433-449.
[4]ANZUETO A, MIRAVITLLES M. Pathophysiology of dyspnea in COPD[J].? Postgrad Med, 2017,129(3):366-374.
[5]VAGAGGINI B, COSTA F, ANTONELLI S, et al. Clinical predictors of the efficacy of a pulmonary rehabilitation programme in patients with COPD[J].? Respiratory Medicine, 2009,103(8):1224-1230.
[6]PANERONI M, SIMONELLI C, VITACCA M, et al. Aerobic exercise training in very severe chronic obstructive pulmonary disease: a systematic review and Meta-analysis[J]. American Journal of Physical Medicine & Rehabilitation/Association of Academic Physiatrists, 2017,96(8):541-548.
[7]HILL K, VOGIATZIS I, BURTIN C. The importance of components of pulmonary rehabilitation, other than exercise training, in COPD[J].? Eur Respir Rev, 2013,22(129):405-413.
[8]JONES A W, TAYLOR A, GOWLER H, et al. Systematic review of interventions to improve patient uptake and comple-tion of pulmonary rehabilitation in COPD[J].? ERJ Open Res, 2017,3(1):00089-2016.
[9]JAENISCH R B, HENTSCHKE V S, QUAGLIOTTO E, et al. Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure[J].? Journal of Applied Phy-siology, 2011,111(6):1664-1670.
[10]RIES A L, BAULDOFF G S, CARLIN B W, et al. Pulmonary rehabilitation: joint ACCP/AACVP Revidence based clinical practice guidelines (2007)[J].? Chest, 2007,131(5 Suppl):4-42.
[11]COQUART J B, LE ROUZIC O, RACIL G, et al. Real-life feasibility and effectiveness of home-based pulmonary rehabilitation in chronic obstructive pulmonary disease requiring medical equipment[J].? Int J Chron Obstruct Pulmon Dis, 2017,12:3549-3556.
[12]NOGUEIRA-FERREIRA R, MOREIRA-GONALVES D, SANTOS M, et al. Mechanisms underlying the impact of exercise training in pulmonary arterial hypertension[J].? Respir Med, 2018,134:70-78.
[13]FEIHL F, BROCCARD A F. Interactions between respiration and systemic hemodynamics. Part Ⅱ: practical implications in critical care[J].? Intensive Care Med, 2009,35(2):198-205.
[14]KEYMEL S, SCHUELLER B, SANSONE R, et al. Oxygen dependence of endothelium-dependent vasodilation: importance in chronic obstructive pulmonary disease[J].? Archives of Medical Science, 2018,14(2):297-306.
[15]SPRUIT M A, SINGH S J, GARVEY C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation[J].? Am J Respir Crit Care Med, 2013,188(8):e13-e64.
[16]NICI L, ZUWALLACK R, American Thoracic Society Subcommittee on Integrated Care of the COPD Patient. An Official American Thoracic Society Workshop Report: the integrated care of the COPD patient[J].? Proc Am Thorac Soc, 2012,9:9-18.
[17]GREULICH T, KOCZULLA A R, NELL C A, et al. Effect of a three-week inpatient rehabilitation program on 544 conse-
cutive patients with very severe COPD: a retrospective analysis[J].? Respiration, 2015,90(4):287-292.
[18]CHEYNE W S, WILLIAMS A M, HARPER M I, et al. Heart-lung interaction in a model of COPD: importance of lung volume and direct ventricular interaction[J].? American Journal of Physiology. Heart and Circulatory Physiology, 2016,311(6):H1367-H1374.
[19]BISCONTI A V, DEVOTO M, VENTURELLI M, et al. Respiratory muscle training positively affects vasomotor response in young healthy women[J].? PLoS One, 2018,13(9):e0203347.
[20]ENGEL R M, WEARING J, GONSKI P, et al. The effect of combining manual therapy with exercise for mild chronic obstructive pulmonary disease: study protocol for a randomised controlled trial[J].? Trials, 2017,18(1):282.
[21]HOUCHEN-WOLLOFF? L, SANDLAND C J, HARRISON S L, et al. Ventilatory requirements of quadriceps resistance training in people with COPD and healthy controls[J].? Int J Chron Obstruct Pulmon Dis, 2014,9:589-595.
[22]ALTENBURG W A, DE GREEF M H, TEN HACKEN N H, et al. A better response in exercise capacity after pulmonary rehabilitation in more severe COPD patients[J].? Respiratory Medicine, 2012,106(5):694-700.
[23]OSHEA S D, TAYLOR N F, PARATZ J D. Progressive resistance exercise improves muscle strength and may improve elements of performance of daily activities for people with COPD: a systematic review[J].? Chest, 2009,136(5):1269-1283.
[24]CONSTANTIN D, MENON M K, HOUCHEN-WOLLOFF L, et al. Skeletal muscle molecular responses to resistance training and dietary supplementation in COPD[J].? Thorax, 2013,68(7):625-633.
(本文編輯 馬偉平)
[收稿日期]2019-08-05; [修訂日期]2020-02-29
[基金項目]山東省科技發(fā)展計劃項目(2014WS0017)
[第一作者]曲斌斌(1984-),男,碩士,主治醫(yī)師。
[通信作者]徐德祥(1977-),男,碩士,副主任醫(yī)師。E-mail:dexiangxu2008@126.com。