王康,陳新春,馬天寶
類金剛石薄膜固體超滑的研究現(xiàn)狀和挑戰(zhàn)
王康,陳新春,馬天寶
(清華大學 摩擦學國家重點實驗室,北京 100084)
類金剛石(Diamond-like carbon,DLC)薄膜,具有高硬度、高化學惰性及低摩擦磨損等特性,特別是在一定條件下的超滑特性(摩擦系數(shù)低于0.01),為真正的近零摩擦和磨損的實現(xiàn)提供了可能性,因此在固體潤滑領域展現(xiàn)出巨大的應用前景。從元素摻雜種類和鍵合結構特點,概述了DLC薄膜的種類多樣性,歸納了不同DLC薄膜的力學及摩擦學特性。通過對比分析不同DLC薄膜在不同環(huán)境條件下的摩擦學行為,闡述了DLC薄膜超滑實現(xiàn)的環(huán)境敏感性,其中薄膜和環(huán)境中氫原子的作用十分關鍵,同時提出Si等元素摻雜改善超滑環(huán)境敏感性的可行方案。重點介紹了3種DLC超滑機理——界面鈍化理論、界面石墨化理論以及轉移膜形成理論,這三者均具有一定的局限性,如何更深入且全面認識DLC超滑仍是一個科學難題。最后強調了先進界面檢測和表征技術對探秘DLC超滑態(tài)界面組成的重要性,并對今后亟需開展的深入研究方向進行了展望。
類金剛石薄膜;超滑;種類多樣性;環(huán)境敏感性;超滑機理;界面表征技術
類金剛石(Diamond-like carbon,簡稱DLC,也可稱為非晶碳)薄膜自1971年由Aissenberg等人通過離子束沉積(Ion beam deposition)方法制備出后[1],以其優(yōu)異的力學和摩擦學性能引起廣泛研究熱潮[2-8]。DLC主要由金剛石結構的sp3雜化碳原子和石墨結構的sp2雜化碳原子相互混雜形成三維網(wǎng)狀結構[6,9],通常摻雜不同元素(H、Si、W等)以實現(xiàn)綜合力學及摩擦學等性能[10-12],在具備較高硬度的同時,又兼顧優(yōu)異的減摩抗磨特性。超潤滑(摩擦系數(shù)低于0.01,簡稱超滑)作為DLC最為顯著的摩擦學特性[13-14],雖然自2000年就已被實驗證實[15-16],但研究者對其超滑機制的認識至今仍不完善。造成這種情況的主要因素有:1)DLC碳膜的種類眾多,不同sp2、sp3比例及摻雜元素的不同都會導致碳膜力學及摩擦性能產(chǎn)生較大差異;2)DLC的摩擦性能不僅受到載荷等實驗參數(shù)的影響,同時對環(huán)境氛圍十分敏感;3)DLC超滑缺乏普適、系統(tǒng)的理論體系,不同理論之間的聯(lián)系尚不清晰;4)DLC超滑態(tài)界面厚度通常在納米尺度,其化學和微觀結構特征表征難度大。因此近年來,DLC的超滑機制研究備受世界各國研究者的重視且亟需系統(tǒng)性的理解和完善。對DLC超滑的深入認識有助于人們理解其摩擦過程中能量耗散機制,繼而為碳膜制備技術及進一步應用提供堅實的理論依據(jù)。本文以上述四個超滑影響因素為導向,詳細介紹并闡述了DLC超滑機制的研究進展及現(xiàn)存挑戰(zhàn),最后展望進一步的研究方向。
DLC薄膜是由同時含有sp3雜化鍵和sp2雜化鍵的碳原子構成的一種亞穩(wěn)態(tài)非晶物質[5,9,14]。由于金剛石結構中碳原子以sp3雜化鍵合,而石墨結構中碳原子以sp2雜化鍵合,因此一般而言,類金剛石薄膜(DLC)的性質介于金剛石和石墨之間,即有較高硬度的同時又兼顧較低的摩擦系數(shù)。研究發(fā)現(xiàn),通過摻雜H原子改變sp3和sp2雜化鍵的比例,可以顯著影響DLC薄膜的力學和摩擦性質,因此可將DLC薄膜分為含氫DLC(a-C:H)和不含氫DLC(ta-C和a-C)兩類,其中含氫DLC薄膜又可根據(jù)含氫量細分為四類[17-18]:類聚合物a-C:H(PLCH)、類金剛石a-C:H(DLCH)、四面體a-C:H(ta-C:H)和類石墨a-C:H(GLCH)。除此之外,還可通過摻雜各類金屬或非金屬元素(如Al、W、Si、O等)來進一步改善DLC在各種實際工況下的性能[11,12,19-21]。由此可見,DLC薄膜其實是一個集合術語,包含了各種性能各異的非晶復合碳膜[6,18],如表1所示。據(jù)報道,DLC的超滑特性被廣泛發(fā)現(xiàn)于各類含氫DLC薄膜中,包括:a-C:H、GLCH、TLCH、a-C:H:F、a-C:H:Si、(Si/Al)a-C:H等[14-16,19,20,22-24]。
表1 DLC薄膜的種類及特征
Tab.1 Varieties and characteristics of DLC films
自Enke等[25]首次報道了DLC薄膜具有超低摩擦系數(shù)之后,DLC的摩擦學性能便受到了各國研究者們的廣泛關注。如前所述,DLC薄膜實際上是一個集成術語,包含的碳膜種類眾多且性能各異,不同的碳膜在不同的實驗條件下展現(xiàn)出截然不同的摩擦學性能。研究發(fā)現(xiàn),DLC超滑對試驗環(huán)境條件(真空、惰性氣體、活性氣體、濕度、溫度等)十分敏感,對于同種碳膜,通過變換實驗條件,其前后的摩擦系數(shù)變化可相差兩個數(shù)量級[13,26-32]。
研究表明,多種a-C:H碳膜可在超高真空環(huán)境(Ultra-high vacuum,簡稱UHV)以及惰性氣體環(huán) 境中實現(xiàn)超滑[15,20,22,23,30]。最早由Donnet和Fontaine等[2,15,30,33]采用PECVD制備出了不同含氫量的a-C:H薄膜,并在UHV環(huán)境下對其摩擦性能進行了測試(對偶面為鋼銷,平均接觸應力0.5 GPa,真空度小于10?7Pa),結果如圖1所示。較低含氫量的a-C:H薄膜(34% H,對應圖1中的AC8試樣)在UHV環(huán)境中,先經(jīng)歷一個較短時間的跑合,摩擦系數(shù)低至0.01以下,隨后突然劇烈上升,摩擦系數(shù)達到1左右,即超滑失效;而含氫量較高的a-C:H薄膜(40% H,對應圖1中的AC5試樣)在達到超滑狀態(tài)后具有較長的壽命。對實驗后樣品表面磨痕的觀測發(fā)現(xiàn),低含氫量碳膜(AC8試樣)出現(xiàn)明顯劃痕,且有黑色磨屑,說明摩擦過程中產(chǎn)生了強烈的界面粘附,而高含氫量碳膜(AC5試樣)的超滑態(tài)磨痕非常淺且光亮。據(jù)此研究者們提出,當a-C:H表面接觸滑移時,裸露出的碳懸鍵會被氫原子飽和,薄膜表面存在一層超薄類聚合物的碳氫化合物,因為碳氫鏈間的范德華力作用結合能只有~0.08 eV[6],所以形成易剪切的界面層,表現(xiàn)出超低的摩擦系數(shù),而含氫量不足會導致一部分表面碳懸鍵無法被充分鈍化,從而摩擦過程中產(chǎn)生劇烈的摩擦化學反應,使摩擦力顯著上升[2]。為了進一步驗證H的作用,Donnet等[15]在不同氫氣壓強環(huán)境中對兩種樣品進行了摩擦測試,結果表明樣品中的H原子以及環(huán)境中的H原子/分子都可以有效延長超滑態(tài)的壽命。Fontaine等通過實驗確定了在UHV環(huán)境中a-C:H超滑的臨界含氫H量,其依賴于不同的碳膜沉積技術[30,34,35]。
Erdemir等[16,36]在干燥氮氣環(huán)境中對不同碳源(C/H比不同)制備的a-C:H薄膜進行了測試,結果與其在UHV中類似,即含氫比例越高的a-C:H薄膜,摩擦系數(shù)越小,磨損率越低,且壽命越長。同時也發(fā)現(xiàn),當對偶面為更光滑的藍寶石球時,摩擦系數(shù)可進一步降低至0.001。惰性氣體環(huán)境下a-C:H的超滑與其在UHV中非常相似,兩種環(huán)境都能提供一個惰性環(huán)境來實現(xiàn)a-C:H薄膜的超滑特性,同時它們又存在著不同,主要體現(xiàn)在UHV環(huán)境中a-C:H的超滑壽命明顯比氮氣環(huán)境中的短。首先,兩種環(huán)境都不能代表絕對惰性,兩種條件雖然會顯著降低活性分子的分壓,但仍然會保留環(huán)境中的少量活性分子,如氧氣和水蒸氣等,會導致a-C:H表面產(chǎn)生不同強度的氣體吸附作用,繼而影響摩擦行為[26]。其次,兩種環(huán)境下氣體的擴散能力(分子平均自由程)有明顯差異,且 真空下的對流傳熱非常微弱,摩擦界面溫度相對較高,這些原因的綜合影響導致a-C:H薄膜在UHV環(huán)境中的超滑壽命相對于氮氣中較短。此外Ji和Wang等[37-38]發(fā)現(xiàn),同為惰性環(huán)境,a-C:H在氮氣中的摩擦系數(shù)要明顯低于氬氣中的,這種摩擦性質的差異可用氣體-表面相互作用機理來解釋。
圖1 a-C:H薄膜(AC8: 34% H,AC5: 40% H)在超高真空UHV環(huán)境下的摩擦曲線和磨痕光鏡圖[33]
對于大部分實際工況,其應用環(huán)境往往是大氣,且包含了各種活性氣體(如氧氣、水蒸氣等),而大量研究表明,活性氣體環(huán)境(主要指不同濕度下的 惰性氣體、氧氣和空氣)不利于a-C:H薄膜實現(xiàn)超 滑[6,21,26,27,39-42]。Kim等[27]將水蒸氣、氧氣和氮氣分別通入摩擦試驗的真空腔內,研究了不同氣壓下三種氣體對a-C:H(40% H)摩擦行為的影響,如圖2a所示。結果發(fā)現(xiàn):H2O和O2的通入會增加碳膜表面粘附性,導致摩擦系數(shù)迅速增大,加快a-C:H薄膜的失效,其中H2O分子的影響最顯著,僅達到~1.3×103Pa壓強便會使a-C:H的摩擦系數(shù)從真空下的~0.004迅速增大至~0.07,而通入N2的影響最小。從轉移膜形成的角度出發(fā),對偶副材料(如金屬、陶瓷等)表面在活性氣體環(huán)境下都會參加界面摩擦化學反應,形成高度氧化的轉移膜,其不僅含有過氧基團,還包括許多金屬氧化物和碳化物等,導致較大的界面粘附;同時,DLC表面在活性氣體中摩擦導致原位氧化,繼而抑制了易剪切層的形成[21]。
Erdemir等[5]在同一腔體內不斷改變環(huán)境條件(潮濕空氣、干燥N2和潮濕N2)來考察含氫DLC薄膜的摩擦性質受環(huán)境的影響,如圖2b所示。結果發(fā)現(xiàn)不斷地改變環(huán)境,a-C:H薄膜的摩擦行為是可逆的,即摩擦副可迅速排出之前高濕度環(huán)境下生成的磨屑,并再次在摩擦界面形成致密的轉移膜。
與此同時,環(huán)境濕度對無氫DLC(a-C和ta-C)的影響與對a-C:H截然相反,前者由于沒有摻雜H原子,真空條件下界面剪切暴露出的大量懸鍵(σ鍵)使得界面間產(chǎn)生極強的粘附作用,因此摩擦系數(shù)較大[43];而少許H2O的存在可以水解生成—H和—OH基團,并鈍化界面作用較強的C—C鍵,從而降低界面間的粘附,并實現(xiàn)超低摩擦和磨損[44]。
研究者通常利用金屬/非金屬元素摻雜來改善a-C:H在潮濕大氣環(huán)境下的摩擦適應性[10,12,19,45]。Chen等[45]合成了不同氫含量的a-C:H:Si薄膜(Si原子數(shù)分數(shù)為8.9%~9.9%),并在潮濕空氣環(huán)境(22% RH)下進行了摩擦實驗(載荷2 N,速度15 cm/s),結果如圖3所示。研究表明,摻雜Si元素后,a-C:H在潮濕空氣環(huán)境中的摩擦性能明顯得到改善,未摻雜的a-C:H薄膜在潮濕空氣中的摩擦系數(shù)一般大于0.1,而摻雜Si后(原子數(shù)分數(shù)~9%),其在潮濕空氣中經(jīng)歷短時間的跑合后可實現(xiàn)超低的摩擦系數(shù)(小于0.03),而當a-C:H:Si薄膜中的氫的原子數(shù)分數(shù)控制在20%~35%時,其在潮濕空氣中甚至可以實現(xiàn)超滑,如圖3b所示。研究發(fā)現(xiàn),Si摻雜能夠改善a-C:H在濕度環(huán)境中的摩擦性能,主要是其滑移界面在相互摩擦剪切過程中,能發(fā)生摩擦化學反應,生成親水的硅氧基團(Si—OH),并吸附著邊界水膜,即形成極易剪切的有序化納米結構滑移界面[20,45]。Koshigan 等[12]采用PECVD方法制備了a-C:H:Si:O薄膜,發(fā)現(xiàn)Si和O的摻雜可以明顯改善a-C:H薄膜在氫氣及氧氣環(huán)境下的摩擦性能,但改善效果與環(huán)境條件密切 相關(H2或O2的壓強大于103Pa時,摩擦系數(shù)明顯下降)。
圖3 a-C:H:Si薄膜(Si原子數(shù)分數(shù)為8.9%~9.9%,H原子數(shù)分數(shù)為17%~36%)與SUJ2鋼球對磨副在大氣環(huán)境下的摩擦行為(濕度(22±2)% RH)[45]
基于實驗和分子動力學模擬(MD-simulation)的綜合結果,研究者們提出了DLC超滑的微觀及原子尺度機理,主要有:界面原子鈍化理論、界面相變石墨化理論和轉移膜形成理論。
對于a-C:H在真空和惰性氣體環(huán)境中的超滑,Erdemir等[22]提出氫鈍化模型來解釋,如圖4所示。1)a-C:H薄膜本身通過碳原子與氫原子的雜化存在大量的化學惰性C—H sp3結構(比C—C更強的C—H鍵能),在摩擦過程中,表面的C—H鍵可以有效鈍化摩擦表面,避免對偶之間的粘附作用并減小摩擦(抑制碳碳之間形成共價鍵和π—π*鍵作用); 2)a-C:H薄膜內部同樣存在一些未成鍵的氫原子/氫分子,當不可避免的界面粘附或磨損發(fā)生時,游離氫能夠迅速填補裸露的碳懸鍵,在表面重新富集化學惰性的C—H鍵,從而持續(xù)有效鈍化滑移界面并維持低摩擦力;3)氫鈍化界面形成后,C—H鍵中H原子的電子密度轉移到原子核的另一端,這樣使得對偶面的氫質子互相接近時,形成C—H/H—C排斥作用,因此進一步減小表面間的相互吸引,使得摩擦系數(shù)更低。
Hayashi和Li等[46-47]分別采用緊束縛量子化學動力學(TB-QCMD)和反應力場分子動力學(RMD)研究了氫原子對自配副a-C界面的鈍化行為,無氫DLC的滑移界面始終保持著較為劇烈的鍵合過程,因此摩擦力較大,而氫修飾的a-C:H表面可以有效增大接觸距離,避免界面粘附作用。通過模擬細節(jié)發(fā)現(xiàn),某些局部應力較大的地方,C—H可能會裂解(C—H鍵被拉伸且處于不穩(wěn)定狀態(tài)),但裂解的氫原子會彼此結合并生成氫氣分子,其在滑移界面游蕩直至某處的C—H再次裂解后,氫分子可以二次裂解并通過原子轉移再次鈍化碳懸鍵。同時Li等發(fā)現(xiàn)這種界面鈍化受載荷的影響十分顯著,隨著載荷的逐漸升高,鈍化效果逐漸減弱,界面的原子重構行為更加劇烈,因此相變對摩擦的貢獻占到主導地位。Pastewka和Chen等[48-49]通過對體相a-C:H薄膜(H均勻分布在a-C中)摩擦行為的分子動力學模擬發(fā)現(xiàn),除了氫鈍化外,接觸表面的原子級粗糙度隨著滑移過程逐漸減小,滑移高度勢壘逐漸降低,摩擦力進一步減小;同時體相H含量的增多,有利于提高a-C:H的鈍化能力(可承受更高的法向載荷)。Cui等[50]通過實驗發(fā)現(xiàn),a-C:H的界面鈍化對速度和真空氣壓條件也十分敏感(改變了界面鈍化氣體分子的吸附行為)。此外,除了氫的鈍化,氟原子摻雜的氟化DLC薄膜在惰性環(huán)境中可實現(xiàn)更有效的鈍化效果[51](C—F鍵的結合能為5.6 eV,相對于C—H鍵的3.5 eV更加穩(wěn)定)。
除了基于氫鈍化的鈍化理論,界面原子重構導致的類石墨結構相變(界面相變石墨化)也是一種DLC超滑理論。研究人員在實驗中發(fā)現(xiàn)DLC薄膜超滑通常伴隨著摩擦界面的結構相變(sp3→sp2)[20,23,52,53]。Pastewka等[48]利用MD模擬了a-C:H的界面剪切行為,結果發(fā)現(xiàn)摩擦力的下降雖然伴隨著界面碳原子的sp2化,但其不足以成為摩擦力下降的主要原因。Ma等[54-55]通過研究a-C/a-C摩擦界面的結構相變過程,發(fā)現(xiàn)剪切局域化會導致劇烈的界面結構相變及原子排列有序化(界面高達90% sp2),如圖5a所示。這種石墨化過程使得摩擦力迅速減小,而接觸壓強(載荷)是影響石墨化最核心的因素,當載荷足夠大使得體系密度升高時,界面剪切局域化才會有效發(fā)生。同時Wang等人[56]在納米尺度直接觀測了a-C界面在剪切誘導下形成的相變石墨納米晶。近幾年來,研究者們發(fā)現(xiàn)DLC在邊界潤滑條件下,通過摩擦化學的誘導也可生成界面類石墨烯層。Bouchet等[57]通過實驗和光譜表征發(fā)現(xiàn),油酸潤滑下的ta-C表面通過摩擦化學反應生成氧化膜石墨烯,使得摩擦系數(shù)達到0.005,隨后Kuwahara等[58]通過量子動力學模擬(QMD)發(fā)現(xiàn)ta-C界面在少量甘油分子作用下會發(fā)生原子結構重排,生成超薄類石墨烯的界面納米結構(包含了5-,6-和7-碳元環(huán)),如圖5b所示。界面剪切使得甘油分子發(fā)生機械-化學分解,生成的氫和氧原子僅能鈍化部分碳懸鍵,從而誘導界面氧化石墨烯層的形成,繼而實現(xiàn)超滑態(tài)。
圖5 壓力[54]及摩擦化學反應[58]誘導界面原子結構相變
DLC超滑總是伴隨著對偶面上轉移膜的形成(尤其是非自配副DLC界面),當轉移膜形成后,滑移界面即從對偶面與DLC薄膜之前轉移到轉移膜層間,因此建立高質量的轉移膜是實現(xiàn)超滑的核心。Chen和Koshigan等[12,45]發(fā)現(xiàn),使用Si和O元素對a-C:H摻雜來改善其環(huán)境敏感性的關鍵在于形成類聚合物特性的易剪切轉移膜,Chen通過納米壓痕測得轉移膜的硬度及楊氏模量分別在2.0 GPa和40 GPa左右,明顯低于體相的16.2 GPa和155.7 GPa,說明了轉移膜本身低硬度和易剪切的特點[45]。Koshigan將已生成轉移膜的鋼球與硅片對磨,發(fā)現(xiàn)其摩擦系數(shù)明顯低于鋼/硅片,進一步說明了轉移膜自身的潤滑特性[12]。Liu等[59-60]研究了速度和載荷對Al2O3球/a-C:H對磨在真空中摩擦學行為的影響規(guī)律,結果發(fā)現(xiàn),速度越高,對偶面上越難形成致密的碳轉移膜,從而極大縮短了a-C:H碳膜的超滑壽命,如圖6所示。而載荷對轉移膜形成的影響和實驗環(huán)境有關,如研究發(fā)現(xiàn),大氣環(huán)境中高載荷有利于形成轉移膜,而在真空中卻是低載荷,然而過高載荷不利于提高超滑持續(xù)壽命[60]。此外,Diao等[61]通過在DLC表面覆蓋納米厚的石墨烯納米晶層,加快對偶面上石墨化轉移膜的形成,繼而縮短磨合階段,并減小界面摩擦。
DLC超滑態(tài)的界面層厚度通常在納米尺度,而對其界面化學及結構性質的直接檢測依賴于先進的表征手段。Chen等[20]通過掃描透射電子顯微鏡(STEM)結合電子能量損失譜(EELS)表征解析了鋼球表面的納米級a-C:H超滑轉移膜(厚~27 nm),如圖7所示,提出了異質界面納米化轉移膜的分層結構(納米顆粒鈍化表層+富碳低密度中間層+C-Fe-O過渡層)對超滑界面的協(xié)同潤滑效應,此外還揭示了氧氣氛下導致超滑界面失穩(wěn)的表面去氫化和高粘附性表層[21]。
圖7 鋼球表面27 nm厚碳基轉移膜的BF-STEM及EELS表征(對磨副:a-C:H)[20]
Wang等[23]利用透射電子顯微鏡(TEM)結合拉曼光譜,對類石墨a-C:H薄膜(GLC)和類富勒烯a-C:H薄膜(FLC)的超滑態(tài)磨屑進行了分析表征,如圖8所示,發(fā)現(xiàn)磨痕表面存在極薄的有序石墨化相變層(3~5層),強調了剪切誘導的結構相變對超滑態(tài)的重要作用。Manimunda等利用原位拉曼摩擦試驗機,對a-C:H薄膜的摩擦系數(shù)、轉移膜厚度和轉移膜碳鍵雜化結構演變進行了原位觀測和表征,如圖9所示[62]。同時在納米尺度,原位TEM(in-situ TEM)為揭示DLC納米級接觸界面的結構演變及粘附狀態(tài)特征提供了新的研究方案[63-65]。此外,飛行時間-二次離子質譜(TOF-SIMS)和近邊X-ray吸收精細結構(NEXAFS)由于其對物質表面化學狀態(tài)的高檢測靈敏度及原子級深度分辨率,也成為DLC超滑態(tài)原子級界面化學性質分析的重要表征手段[44,66,67]。
圖9 利用原位拉曼摩擦試驗機對摩擦系數(shù)、轉移膜厚度及碳鍵雜化結構進行同步觀測[62]
從四個關鍵方面綜述了DLC薄膜固體超滑研究的主要進展,包括DLC薄膜的種類多樣性、摩擦行為的環(huán)境敏感性、超滑機理的復雜性和先進的超滑態(tài)界面檢測和表征手段。通過不同的制備技術得到不同化學性質及結構特點的DLC薄膜,在不同的實驗環(huán)境條件下展現(xiàn)出不同的摩擦學行為。通常富氫DLC薄膜在真空和惰性環(huán)境下可實現(xiàn)超滑態(tài),而無氫DLC薄膜可在活性氣體環(huán)境中(特別是濕度環(huán)境)實現(xiàn)超低摩擦,這主要歸結于滑移界面中活性鍵的鈍化,避免了界面強粘附作用,繼而實現(xiàn)超低摩擦和磨損。通過元素摻雜(如Si、N等),可有效改善DLC薄膜的環(huán)境敏感性,如在Si摻雜改性DLC薄膜中(a-C:H:Si),由于Si—C鍵能(3.21 eV)小于C—C鍵能(3.70 eV),因此摻Si后可使得之前拘束的碳網(wǎng)狀結構變得松弛,大幅降低薄膜內應力,更重要的是提高了a-C:H薄膜的環(huán)境敏感性,即在濕度環(huán)境下也可實現(xiàn)超滑態(tài),其超滑機制主要歸結于界面納米結構類硅膠易剪切轉移膜的形成。除了界面鈍化及轉移膜機理,通過剪切局域化誘導滑移界面的石墨化相變來減小摩擦磨損并實現(xiàn)超滑態(tài)也被廣泛提出和驗證,特別是在無氫DLC和類石墨a-C:H(GLCH)體系。此外,更深層次探索DLC超滑的原子尺度機制,還需依賴于先進的表征技術和手段。
為了進一步深入探索神秘的DLC超滑機制,并促進其在各種實際工況下的應用(如寬溫度、極端環(huán)境工況等),可從以下幾個方面入手,加強深入研究:
1)建立完善、體系的DLC超滑理論,系統(tǒng)研究超滑態(tài)界面化學性質變化(如鈍化)與微觀結構演變(如石墨化)過程的聯(lián)系性以及兩者對最終超滑態(tài)實現(xiàn)的協(xié)同作用機制。
2)結合計算機模擬等方法,建立超滑態(tài)轉移膜形成的動力學模型,深入研究載荷、速度和氣氛環(huán)境等因素對轉移膜形成質量的影響機制,有效并定量評估轉移膜形成質量與超滑態(tài)之間的聯(lián)系性。
3)開發(fā)多元摻雜改性DLC的制備技術,改善DLC涂層的環(huán)境敏感性,有效提高膜基結合力,促進其在一些跨環(huán)境條件實際工況中的應用。
[1] 牟魁峰. 低摩擦系數(shù)DLC膜的制備及摩擦性能的研究[D]. 哈爾濱: 哈爾濱工業(yè)大學, 2006. MOU Kui-feng. Fabrication and tribological property of low friction coefficient DLC films[D]. Harbin: Harbin In-stitute of Technology, 2006.
[2] FONTAINE J, BELIN M, MOGNE T L, et al. How to restore superlow friction of DLC: the healing effect of hydrogen gas[J]. Tribology international, 2004, 37(11-12): 869-877.
[3] HAUERT R. An overview on the tribological behavior of diamond-like carbon in technical and medical applications [J]. Tribology international, 2004, 37(11-12): 991-1003.
[4] JOHNSON J A, WOODFORD J B, CHEN X, et al. Insi-ghts into “near-frictionless carbon films”[J]. Journal of app-lied physics, 2004, 95(12): 7765-7771.
[5] ERDEMIR A, DONNET C. Tribology of diamond-like car-bon films: recent progress and future prospects[J]. Journal of physics D: applied physics, 2006, 39(18): R311-R327.
[6] 薛群基, 王立平. 類金剛石碳基薄膜材料[M]. 北京: 科學出版社, 2012. XUE Qun-ji, WANG Li-ping. Diamond-like carbon-based film materials[M]. Beijing: Science Publishing Company, 2012.
[7] ERDEMIR A, RAMIREZ G, ERYILMAZ O L, et al. Carbon-based tribofilms from lubricating oils[J]. Nature, 2016, 536(7614): 67-71.
[8] BERMAN D, DESHMUKH S A, SANKARANARAYA-NAN S K, et al. Macroscale superlubricity enabled by gra-phene nanoscroll formation[J]. Science, 2015, 348(6239): 1118-1122.
[9] 崔麗, 孫麗麗, 郭鵬, 等. 自組織分層金屬摻雜類金剛石薄膜的研究進展[J]. 表面技術, 2019, 48(11): 23-35. CUI Li, SUN Li-li, GUO Peng, et al. Research progress in metal-doped diamond-like carbon films with self-organized multilayer structure[J]. Surface technology, 2019, 48(11): 23-35.
[10] CHEN X, KATO T. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity[J]. Journal of applied physics, 2014, 115(4): 044908.
[11] WANG A Y, LEE K R, AHN J P, et al. Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique[J]. Carbon, 2006, 44(9): 1826-1832.
[12] KOSHIGAN K D, MANGOLINI F, MCCLIMON J B, et al. Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide- doped hydrogenated amorphous carbon coatings[J]. Carbon, 2015, 93: 851-860.
[13] ERDEMIR A, ERYILMAZ O. Achieving superlubricity in DLC films by controlling bulk, surface, and triboche-mistry[J]. Friction, 2014, 2(2): 140-155.
[14] CHEN X, LI J. Superlubricity of carbon nanostructures[J]. Carbon, 2020, 158: 1-23.
[15] DONNET C, FONTAINE J, GRILL A, et al. The role of hydrogen on the friction mechanism of diamond-like carbon films[J]. Tribology letters, 2001, 9(3-4): 137-142.
[16] ERDEMIR A, ERYILMAZ O L, FENSKE G. Synthesis of diamondlike carbon films with superlow friction and wear properties[J]. Journal of vacuum science & technology A: vacuum, surfaces, and films, 2000, 18(4): 1987-1992.
[17] CASIRAGHI C, PIAZZA F, FERRARI A C, et al. Bonding in hydrogenated diamond-like carbon by raman spectros-copy[J]. Diamond and related materials, 2005, 14(3-7): 1098-1102.
[18] CASIRAGHI C, FERRARI A C, ROBERTSON J. Raman spectroscopy of hydrogenated amorphous carbons[J]. Phy-sical review B, 2005, 72(8): 085401.
[19] LIU X, YANG J, HAO J, et al. A near-frictionless and extremely elastic hydrogenated amorphous carbon film with self-assembled dual nanostructure[J]. Advanced materials, 2012, 24(34): 4614-4617.
[20] CHEN X, ZHANG C, KATO T, et al. Evolution of tribo- induced interfacial nanostructures governing superlubricity in a-C:H and a-C:H:Si films[J]. Nature communications, 2017, 8(1): 1675.
[21] CHEN X, YIN X, QI W, et al. Atomic-scale insights into the interfacial instability of superlubricity in hydrogenated amorphous carbon films[J]. Science advances, 2020, 6: eaay1272.
[22] ERDEMIR A. Genesis of superlow friction and wear in diamondlike carbon films[J]. Tribology International, 2004, 37(11-12): 1005-1012.
[23] WANG Y, GAO K, ZHANG B, et al. Structure effects of sp2-rich carbon films under super-low friction contact[J]. Carbon, 2018, 137: 49-56.
[24] FONTAINE J, LOUBET J, MOGNE T L, et al. Superlow friction of diamond-like carbon films: a relation to visco-plastic properties[J]. Tribology letters, 2004, 17(4): 709-714.
[25] ENKE K, DIMIGEN H, HüBSCH H. Frictional properties of diamondlike carbon layers[J]. Applied physics letters, 1980, 36(4): 291-292.
[26] HEIMBERG J A, WAHL K J, SINGER I L, et al. Su-perlow friction behavior of diamond-like carbon coatings: time and speed effects[J]. Applied physics letters, 2001, 78(17): 2449-2451.
[27] KIM H I, LINCE J R, ERYILMAZ O L, et al. Environmental effects on the friction of hydrogenated DLC films[J]. Tribology letters, 2006, 21(1): 51-56.
[28] LIU H, TANAKA A, UMEDA K. The tribological chara-cteristics of diamond-like carbon films at elevated tempe-ratures[J]. Thin solid films, 1999, 346(1-2): 162-168.
[29] LI H, XU T, WANG C, et al. Friction behaviors of hydro-genated diamond-like carbon film in different environ-ment sliding against steel ball[J]. Applied surface science, 2005, 249(1-4): 257-265.
[30] FONTAINE J, MOGNE T L, LOUBET J L, et al. Ach-ieving superlow friction with hydrogenated amorphous carbon: some key requirements[J]. Thin solid films, 2005, 482(1-2): 99-108.
[31] DONNET C, MOGNE T L, PONSONNET L, et al. The respective role of oxygen and water vapor on the tribo-logy of hydrogenated diamond-like carbon coatings[J]. Tribology letters, 1998, 4(3-4): 259-265.
[32] ERDEMIR A, ERYILMAZ O, KIM S. Effect of tribo-chemistry on lubricity of DLC films in hydrogen[J]. Sur-face and coatings technology, 2014, 257: 241-246.
[33] FONTAINE J, DONNET C, GRILL A, et al. Triboche-mistry between hydrogen and diamond-like carbon films[J]. Surface and coatings technology, 2001, 146: 286-291.
[34] SANCHEZ-LOPEZ J C, DONNET C, FONTAINE J, et al. Diamond-like carbon prepared by high density plasma[J]. Diamond and related materials, 2000, 9(3-6): 638-642.
[35] DONNET C, FONTAINE J, MOGNE T L, et al. Diamond- like carbon-based functionally gradient coatings for space tribology[J]. Surface and coatings technology, 1999, 120: 548-554.
[36] ERDEMIR A, ERYILMAZ O, NILUFER I, et al. Effect of source gas chemistry on tribological performance of diamond-like carbon films[J]. Diamond and related materials, 2000, 9(3-6): 632-637.
[37] JI L, LI H, ZHAO F, et al. Effects of environmental mole-cular characteristics and gas-surface interaction on friction behaviour of diamond-like carbon films[J]. Journal of physics D: applied physics, 2009, 42(13): 135301.
[38] WANG C, LI B, LING X, et al. Superlubricity of hydro-genated carbon films in a nitrogen gas environment: adso-rption and electronic interactions at the sliding interface [J]. RSC advances, 2017, 7(5): 3025-3034.
[39] ERYILMAZ O L, ERDEMIR A. Surface analytical inves-tigation of nearly-frictionless carbon films after tests in dry and humid nitrogen[J]. Surface and coatings techno-logy, 2007, 201(16-17): 7401-7407.
[40] MARINO M J, HSIAO E, CHEN Y, et al. Understanding run-in behavior of diamond-like carbon friction and pre-venting diamond-like carbon wear in humid air[J]. Lang-muir, 2011, 27(20): 12702-12708.
[41] KONCA E, CHENG Y T, WEINER A M, et al. Vacuum tribological behavior of the non-hydrogenated diamond- like carbon coatings against aluminum: effect of running- in in ambient air[J]. Wear, 2005, 259(1-6): 795-799.
[42] ZENG Q, ERDEMIR A, ERYLIMAZ O. Ultralow friction of ZrO2ball sliding against DLC films under various environments[J]. Applied sciences, 2017, 7(9): 938.
[43] ANDERSSON J, ERCK R, ERDEMIR A. Frictional beh-avior of diamondlike carbon films in vacuum and under varying water vapor pressure[J]. Surface and coatings technology, 2003, 163: 535-540.
[44] KONICEK A R, GRIERSON D S, SUMANT A V, et al. Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films[J]. Physical review B, 2012, 85(15): 155448.
[45] CHEN X, KATO T, NOSAKA M. Origin of superlubricity in a-C:H:Si films: a relation to film bonding structure and environmental molecular characteristic[J]. ACS applied materials & interfaces, 2014, 6(16): 13389-13405.
[46] HAYASHI K, TEZUKA K, OZAWA N, et al. Triboche-mical reaction dynamics simulation of hydrogen on a dia-mond-like carbon surface based on tight-binding quantum chemical molecular dynamics[J]. The journal of physical chemistry C, 2011, 115(46): 22981-22986.
[47] LI X, WANG A, LEE K R. Atomistic understanding on friction behavior of amorphous carbon films induced by surface hydrogenated modification[J]. Tribology interna-tional, 2019, 136: 446-454.
[48] PASTEWKA L, MOSER S, MOSELER M. Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings[J]. Tribology letters, 2010, 39(1): 49-61.
[49] CHEN Y, MA T, CHEN Z, et al. Combined effects of structural transformation and hydrogen passivation on the frictional behaviors of hydrogenated amorphous carbon films[J]. The journal of physical chemistry C, 2015, 119(28): 16148-16155.
[50] CUI L, LU Z, WANG L. Probing the low-friction mecha-nism of diamond-like carbon by varying of sliding velocity and vacuum pressure[J]. Carbon, 2014, 66: 259-266.
[51] BAI S, MURABAYASHI H, KOBAYASHI Y, et al. Tight- binding quantum chemical molecular dynamics simulations of the low friction mechanism of fluorine-terminated dia-mond-like carbon films[J]. RSC advances, 2014, 4(64): 33739.
[52] ZENG Q, ERYILMAZ O, ERDEMIR A. Superlubricity of the DLC films-related friction system at elevated tem-perature[J]. RSC advances, 2015, 5(113): 93147-93154.
[53] SONG H, JI L, LI H, et al. Perspectives of friction me-chanism of a-C:H film in vacuum concerning the onion- like carbon transformation at the sliding interface[J]. RSC advances, 2015, 5(12): 8904-8911.
[54] MA T, WANG L, HU Y, et al. A shear localization mecha-nism for lubricity of amorphous carbon materials[J]. Scie-ntific reports, 2014, 4: 3662.
[55] MA T, HU Y, WANG H. Molecular dynamics simulation of shear-induced graphitization of amorphous carbon films[J]. Carbon, 2009, 47(8): 1953-1957.
[56] WANG D, CHANG S, HUANG Y, et al. Nanoscopic observations of stress-induced formation of graphitic nanocrystallites at amorphous carbon surfaces[J]. Carbon, 2014, 74: 302-311.
[57] BOUCHET M I D B, MARTIN J M, AVILA J, et al. Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow fri-ction[J]. Scientific reports, 2017, 7: 46394.
[58] KUWAHARA T, ROMERO P A, MAKOWSKI S, et al. Mechano-chemical decomposition of organic friction mo-difiers with multiple reactive centres induces superlubri-city of ta-C[J]. Nature communications, 2019, 10(1): 151.
[59] LIU Y, YU B, CAO Z, et al. Probing superlubricity sta-bility of hydrogenated diamond-like carbon film by varying sliding velocity[J]. Applied surface science, 2018, 439: 976-982.
[60] LIU Y, CHEN L, ZHANG B, et al. Key role of transfer layer in load dependence of friction on hydrogenated diamond-like carbon films in humid air and vacuum[J]. Materials (basel), 2019, 12(9): 1550.
[61] CHEN C, XUE P, FAN X, et al. Friction-induced rapid restructuring of graphene nanocrystallite cap layer at sli-ding surfaces: short run-in period[J]. Carbon, 2018, 130: 215-221.
[62] MANIMUNDA P, AL-AZIZI A, KIM S H, et al. Shear-induced structural changes and origin of ultralow friction of hydrogenated diamond-like carbon (DLC) in dry environment[J]. ACS applied materials & interfaces, 2017, 9(19): 16704-16714.
[63] MERKLE A P, ERDEMIR A, ERYILMAZ O L, et al. In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films[J]. Carbon, 2010, 48(3): 587-591.
[64] M'NDANGE-PFUPFU A, ERYILMAZ O, ERDEMIR A, et al. Quantification of sliding-induced phase transforma-tion in N3FC diamond-like carbon films[J]. Diamond and related materials, 2011, 20(8): 1143-1148.
[65] BERNAL R A, CHEN P, SCHALL J D, et al. Influence of chemical bonding on the variability of diamond-like carbon nanoscale adhesion[J]. Carbon, 2018, 128: 267-276.
[66] ERYILMAZ O L, ERDEMIR A. TOF-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments[J]. Wear, 2008, 265(1-2): 244-254.
[67] ERYILMAZ O L, ERDEMIR A. Investigation of initial and steady-state sliding behavior of a nearly frictionless carbon film by imaging 2- and 3-D TOF-SIMS[J]. Tribo-logy letters, 2007, 28(3): 241-249.
Research Status and Challenges of Solid Superlubricity of Diamond-like Carbon Film
,,
(State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China)
Diamond-like carbon (DLC) films have shown significant application prospects in the field of solid lubrication due to their high hardness, good chemical inertness, low friction and wear properties and especially the superlubricty (friction coefficient lower than 0.01) performance under some certain conditions, which can provide new opportunities for the realization of near-zero friction and wear. Various DLC films (DLCs) were summarized according to the differences in doped elements and bonding structures, and the corresponding mechanical and tribological properties were also overviewed. By comparing the tribological properties of DLCs under different environmental conditions, the sensitivity of DLCs’ friction to environmental atmosphere was mainly illustrated, where the hydrogen atoms in films and atmosphere played important roles. At the same time, a feasible scheme to improve the environmental sensitivity of superlubricity by doping Si element or other elements was proposed. Three kinds of DLCs’ superlubricity mechanisms were mainly introduced: surface passivation theory, graphitization theory and transfer film formation theory. All three mechanisms mentioned above had limitations in some extent, and it was still a scientific difficulty to systematically understand and explore the superlubricity mechanisms of DLCs. Finally, the importance of advanced characterization techniques for the detection of chemistry and microstructure of superlubric interface was emphasized, and further research directions were also proposed.
diamond-like carbon film; superlubricity; structural diversity; environmental sensitivity; superlubricity mechanisms; characterization techniques
2020-04-22;
2020-05-15
WANG Kang(1995—),Male, Ph. D. candidate, Research focus: solid superlubricity of diamond-like carbon.
馬天寶(1980—),男,博士,副教授,主要研究方向為固體超滑的機理和實現(xiàn)。
Corresponding author:MA Tian-bao (1980—), Male, Doctor, Associate professor, Research focus: realization and mechanism researches of solid superlubricity.
王康, 陳新春, 馬天寶. 類金剛石薄膜固體超滑的研究現(xiàn)狀和挑戰(zhàn)[J]. 表面技術, 2020, 49(6): 10-21.
TH117;O313.5
A
1001-3660(2020)06-0010-12
10.16490/j.cnki.issn.1001-3660.2020.06.002
2020-04-22;
2020-05-15
國家自然科學基金項目(51935006,51975314);國家科技重大專項(2017-VII-0013-0110)
Fund:Supported by the National Natural Science Foundation of China (51935006, 51975314) and National Science and the Technology Major Project (2017-VII-0013-0110)
王康(1995—),男,博士研究生,主要研究方向為類金剛石薄膜固體超滑。
WANG Kang, CHEN Xin-chun, MA Tian-bao. Research status and challenges of solid superlubricity of diamond-like carbon film[J]. Surface technology, 2020, 49(6): 10-21.