周飛,王謙之,付永強,張懋達
納米復合薄膜水潤滑摩擦學性能的研究進展
周飛,王謙之,付永強,張懋達
(南京航空航天大學 直升機傳動技術國家級重點實驗室,南京 210016)
評述了類金剛石基(DLC、a-C)、非晶氮化碳基(a-CN)、過渡金屬氮化物基(TiN、CrN)及其改性納米復合薄膜的水潤滑摩擦學性能,分析了微觀結構、梯度結構、元素摻雜、對磨材料及摩擦參數(shù)對其水潤滑摩擦磨損性能的影響,并揭示了水潤滑中納米復合薄膜存在的摩擦磨損機制,指出了三種納米復合薄膜體系在水潤滑中均可表現(xiàn)出優(yōu)異的減摩抗磨特性,但與薄膜成分、層狀結構、力學性能及對磨材料物理化學性能密切相關。一般而言,相比于過渡金屬氮化物基薄膜,類金剛石基及非晶氮化碳基薄膜由于在水潤滑中形成轉(zhuǎn)移層和水合潤滑層而呈現(xiàn)出更低的摩擦系數(shù)和磨損率。當選用的對磨材料易于發(fā)生摩擦水合反應時,形成的水合層起到的保護作用使得納米復合薄膜均表現(xiàn)出了更低的磨損率。在保證薄膜未發(fā)生剝落而失效時,適當?shù)丶虞d載荷和滑移速度也是獲得最優(yōu)水潤滑摩擦學性能的關鍵因素。為薄膜應用在水潤滑器械作業(yè)提供了一定的參考,并展望了納米復合薄膜水潤滑摩擦學未來的研究方向。
碳基薄膜;氮化物基薄膜;水潤滑;水合反應;摩擦;磨損
現(xiàn)代機械工業(yè)中的驅(qū)動系統(tǒng)多以油基潤滑為主,然而潤滑油的來源——石油,是非再生資源,且潤滑油在使用過程中的泄漏和燃燒不僅僅污染自然環(huán)境,而且損害人類的身體健康。因此,為了減少污染,保護人類生存環(huán)境,并緩解我國面臨的能(資)源短缺等問題,研究和發(fā)展綠色摩擦學已成為我國摩擦學發(fā)展的當務之急[1]。水潤滑技術正是順應這一發(fā)展要求而引起學者們的廣泛關注。然而,水的低黏度使其成膜能力差,潤滑效果不佳,且強氧化性易造成傳統(tǒng)金屬摩擦副的氧化腐蝕和粘著磨損[2-3]。因此,研制與水潤滑相匹配的摩擦副材料具有非常重要的科學意義和經(jīng)濟價值。
目前,常用的水潤滑摩擦副材料主要有三大類:有機高分子材料、陶瓷材料及納米復合薄膜[2]。雖然有機高分子材料在水潤滑中表現(xiàn)出低摩擦系數(shù)和良好的減振性能,但較差的熱穩(wěn)定性和易老化等缺點限制了其使用壽命。而陶瓷材料,雖然克服了熱穩(wěn)定性和易老化的缺點,且具有低密度、高硬度及良好的耐磨性等優(yōu)點,但低斷裂韌性增加了其成形加工的難度,從而大大提高加工成本。然而,若在傳統(tǒng)金屬零部件表面沉積一層具有良好水潤滑摩擦學性能的納米復合薄膜,既能利用金屬基材優(yōu)異的力學和成形性能,又能利用納米復合薄膜優(yōu)異的減摩抗磨性能,從而滿足水潤滑驅(qū)動系統(tǒng)的使用要求。
近十年,類金剛石基(DLC、a-C)、非晶氮化碳基(a-CN)、過渡金屬氮化物基(TiN、CrN)及其改性納米復合薄膜作為減摩耐磨涂層已經(jīng)引起學者們的廣泛關注,大量的基礎性試驗數(shù)據(jù)已經(jīng)被報道?,F(xiàn)如今,一些具有良好摩擦磨損性能的納米復合薄膜在機械工業(yè)中已經(jīng)得到廣泛應用。如前所述,應環(huán)境保護和節(jié)約資源的需要,越來越多的學者們開始從事納米復合薄膜水潤滑摩擦學性能的研究,且中國儼然已經(jīng)視納米復合薄膜水潤滑摩擦學為重中之重(圖1)[4]。為此,本文主要論述納米復合薄膜的水潤滑摩擦學特性及相對應的摩擦磨損機理,并綜合闡述了納米復合薄膜水潤滑摩擦學未來的研究方向。本綜述中若無特殊說明,本文涉及的水潤滑均指在室溫下靜止的蒸餾水或人工海水環(huán)境中的潤滑試驗。
圖1 近二十年SCI文章數(shù)隨年份、國家的變化
DLC薄膜因其獨特的sp2和sp3雜化軌道混合結構,表現(xiàn)出優(yōu)良的力學性能、穩(wěn)定的化學惰性,且DLC薄膜的水潤滑摩擦學特性已經(jīng)成為了學者們的研究熱點。然而,現(xiàn)今的文獻報道表明:DLC薄膜的水潤滑特性與其微觀結構、梯度結構、水質(zhì)潤滑液及摩擦副物化性質(zhì)有著緊密的聯(lián)系。
1.1.1 微觀結構的影響
根據(jù)不同的碳源(石墨或碳氫氣體),DLC薄膜分為無氫DLC(a-C)和氫化DLC:H(a-C:H)兩類。Ronkainen等[5-6]利用射頻等離子體輔助化學氣相沉積(rf-PACVD)和真空弧放電沉積,在AISI 440B不銹鋼上制備了a-C:H(H原子數(shù)分數(shù)為30%)和a-C薄膜,發(fā)現(xiàn)在水潤滑條件下,a-C:H薄膜發(fā)生了嚴重的磨損失效,而a-C/α-Al2O3摩擦副的摩擦系數(shù)僅為0.03且薄膜幾乎無磨損(圖2),類似的結論同樣被文獻[7]報道。然而,并不是所有的DLC:H(a-C:H)薄膜在水潤滑中均會出現(xiàn)嚴重磨損失效。利用電解淀積和非平衡磁控濺射制備的DLC:H薄膜,不僅在水潤滑中保持完好[8-9],而且通過降低電解溶液中乙腈的含量(10%~90%),反而提高了DLC:H薄膜的減摩抗磨能力[8]。Suzuki等[10]指出熱電子激發(fā)等離子體化學氣相沉積制備的DLC:H薄膜與AISI440C球在水中的摩擦系數(shù)(0.07)和磨損率(10-8~10-9mm3/(N×m))與薄膜中的含氫量無關(圖3)。此外,脈沖直流放電制備的DLC:H薄膜與316L在水潤滑中的摩擦系數(shù)比油潤滑的低了0.01[11]。而根據(jù)T. F. Zhang等[12]的研究結果表明,擁有飽和sp3-CH鍵的DLC:H薄膜在水潤滑環(huán)境下具有較低的摩擦系數(shù),若DLC:H薄膜中有較多的不飽和sp2&sp1-CH鍵,會導致結構不穩(wěn)定,從而在水潤滑環(huán)境下表現(xiàn)出較高的磨損率。由此可見,DLC薄膜含氫與否對其水潤滑摩擦學性能確實存在影響,且DLC(a-C)在水潤滑中的摩擦系數(shù)和磨損率一般均低于DLC:H(a-C:H)[5,13-14],但是仍然取決于不同的制備方法。
圖2 a-C、a-C:H及a-C:H(Ti)的摩擦系數(shù)和磨損率
圖3 DLC:H的磨損率(A: 25at.%H, B: 29at.%H, C: 37at.%H, D: 44at.%H)
如前所述,DLC薄膜是sp2和sp3雜化軌道的混合體,而sp3鍵使DLC薄膜保留較高的殘余應力,導致DLC薄膜易發(fā)生剝落失效。研究人員發(fā)現(xiàn):通過非金屬或過渡金屬摻雜可以緩解DLC薄膜的內(nèi)應力,從而提高其與金屬基材的粘附性,這必將影響DLC:H(a-C:H)和DLC(a-C)薄膜的水潤滑摩擦學特性。據(jù)文獻[15]報道,Ar-DLC:H薄膜在水潤滑條件下獲得較低的摩擦系數(shù)(0.1)和磨損率(<2× 10-8mm3/(N×m))。Tanaka等[16-17]報道F-DLC:H或Si-DLC:H薄膜的磨損率在10-8mm3/(N×m)數(shù)量級變動,且指出當Si原子數(shù)分數(shù)為6.6%時,Si-DLC:H/ AISI440C摩擦副在水中獲得最低的摩擦系數(shù)(0.07)。類似的,Si-DLC:H/Si-DLC:H摩擦副在水中獲得穩(wěn)定的摩擦系數(shù)(0.02)[18]。這主要是因為Si元素以Si、SiC或SiO2的形式存在于DLC:H薄膜中,在水中易發(fā)生摩擦化學反應形成硅膠,并促使薄膜表現(xiàn)出極低的摩擦系數(shù)(0.005)[19](圖4)。對于a-C薄膜,周飛等[20-22]指出通過過渡金屬元素Ti或Cr的摻雜,可以降低a-C薄膜的內(nèi)應力。此外,水潤滑條件下,少量的Ti(原子數(shù)分數(shù)0.98%)或Cr(原子數(shù)分數(shù)3%)摻雜均可以縮短a-C薄膜的磨合距離至50 m,且降低了對磨副材料的磨損率。特別是選用Al2O3作為對磨材料時,不僅僅可以降低對磨材料的磨損率至5.26×10-9mm3/(N×m),同時也降低了摩擦副的摩擦系數(shù)至0.068(圖5)。可見,元素摻雜可以提高DLC薄膜與基材的粘附力,減少DLC薄膜從基材剝落的概率,從而增強其水潤滑摩擦學性能。然而各個元素摻雜的含量均存在一個臨界值,當摻雜量超過該臨界值時,可能獲得相反的效果。
圖4 Si-DLC:H/Si3N4摩擦副在空氣及水中的摩擦曲線
1.1.2 梯度結構的影響
優(yōu)化DLC薄膜的梯度結構同樣可以改善其在水潤滑中的抗磨性。Ronkainen等[5]發(fā)現(xiàn)雙層結構的a-C:H/a-Si1-xC:H薄膜降低了a-C:H薄膜在水潤滑中的磨損率。類似的,當AISI440C基體上Si-DLC:H/ DLC:H雙層薄膜的厚度為0.16 μm/1.40 μm時,顯示出最低的薄膜磨損率(4.8×10-8mm3/(N×m))和對磨球磨損率(8.1×10-9mm3/(N×m))[23]。Park等[24]指出,Ti6Al4V基體上的Si/DLC:H多層薄膜縮短了與青玉球在水潤滑中的磨合期,且Si/DLC:H多層薄膜的耐磨性和Si層厚度成正比。此外,周期膜厚為7.7 nm和4.4 nm的Cr(N)/C(DLC)納米復合薄膜與Al319銷在水中的摩擦系數(shù)為0.33,且Cr(N)/C(DLC)納米復合薄膜未出現(xiàn)明顯磨損;然而,當周期膜厚降低至3.4 nm時,摩擦系數(shù)增加至0.43,且DLC薄膜表面出現(xiàn)明顯犁溝狀磨痕[25]。A. Li等[26]通過離子增強化學氣相沉積法來制備多層結構的Si-DLC薄膜,具有周期膜厚最小值(0.67 μm)的Si-DLC涂層具有最低的摩擦系數(shù),原因是在摩擦過程中,由于腐蝕作用,部分純DLC層被磨穿,從而使Si層暴露出來,從而產(chǎn)生良好的潤滑效果??傮w來說,DLC薄膜梯度結構緩解了薄膜內(nèi)應力,使薄膜具有更高的硬度和承載能力,且在摩擦過程中,不同的梯度層可以阻隔微小裂紋的擴展,從而提高其在水潤滑中的抗磨性。但是同樣地,存在一個最優(yōu)化的梯度結構,且隨梯度薄膜種類的改變而改變。
1.1.3 水質(zhì)潤滑液物化性質(zhì)的影響
作為潤滑介質(zhì),水的物理化學性質(zhì)將很大程度上影響DLC薄膜的水潤滑摩擦學特性。Wu等[27-29]通過DLC:H/AISI440C摩擦副在H2O、D2O和H218O中的對比試驗發(fā)現(xiàn),雖然水的理化性質(zhì)對DLC:H薄膜的水潤滑摩擦學特性影響不顯著(圖6,摩擦系數(shù)均由初始值經(jīng)過磨合期后達到0.06左右,且磨損率在(1.5~2.8)×10-8mm3/(N×m)之間變化),但是Si-DLC:H/ AISI440C摩擦副在D2O中的摩擦化學反應降低了摩擦系數(shù)和磨損率。相反的,Uchidate等[30-32]指出DLC:H薄膜(H原子數(shù)分數(shù)為30%)與AISI630和黃銅在硬水中的摩擦系數(shù)和摩擦副磨損率均低于軟水中的,并指出DLC:H/黃銅在純水中,黃銅表面氧化鋁的凝聚使DLC出現(xiàn)了嚴重的磨損,而自來水中的溶液離子緩解了氧化鋁凝聚,使DLC:H薄膜的摩擦系數(shù)和磨損率降低。此外,Uchidate等還發(fā)現(xiàn)高水溫阻止了完整摩擦潤滑層的形成,導致高溫下的高摩擦系數(shù)和磨損率,說明潤滑介質(zhì)溫度對DLC:H薄膜摩擦磨損也有一定的影響。E. Strm?nik等[33]對DLC/ AISI440C摩擦副在水潤滑和油潤滑條件下進行摩擦實驗發(fā)現(xiàn),在水潤滑條件下的摩擦系數(shù)略低于油潤滑,這是因為水潤滑過程中,水分子中的H鍵在摩擦界面的相互作用導致水分子具有剪切誘導效應,從而使摩擦副表現(xiàn)出低摩擦系數(shù)。P. A. Radi等[34]研究了DLC在含有不同含量(質(zhì)量分數(shù)0.1%、1.5%、3%)酒精的水環(huán)境中的磨損腐蝕試驗,研究發(fā)現(xiàn)潤滑環(huán)境中水含量越多,越會阻止摩擦截面上鈍化膜的產(chǎn)生,從而導致摩擦系數(shù)增加,但摩擦性能仍比裸漏的SS304基底摩擦性能提高了50%。因此,對于水潤滑摩擦學研究的另一個主要組成部分——潤滑水,在實際應用中需要選擇適當?shù)奈锢砘瘜W性質(zhì),達到與納米復合薄膜相輔相成的目的。
圖6 DLC:H在H2O、D2O和H218O中的摩擦行為曲線
1.1.4 摩擦副物化性質(zhì)的影響
除了潤滑介質(zhì)水之外,摩擦副表面的物化性質(zhì)(如粗糙度或基材的硬度)同樣會影響DLC薄膜水潤滑摩擦學特性。Ohana等[35-36]發(fā)現(xiàn)隨著DLC:H薄膜表面粗糙度的增大,對磨副材料的磨損率也逐漸增大(圖7),且指出DLC:H/AISI440C在水中對磨時,鋼球表面粗糙度和表面微凸體密度與摩擦系數(shù)有密切聯(lián)系。類似的,Tokoro等[37]發(fā)現(xiàn)金剛石泥漿或空氣研磨拋光后的DLC:H薄膜降低并穩(wěn)定了摩擦系數(shù)。對于不同的對磨副材料,文獻[38]報道,對a-C薄膜摩擦系數(shù)的影響不大,但是與過渡金屬氮化物對磨的a-C薄膜磨損率要高于與碳基對磨副對磨的,且a-C/a-C在水潤滑下表現(xiàn)出最低的摩擦系數(shù)(0.03)和薄膜磨損率(0.5×10-8mm3/(N×m))。另有研究者發(fā)現(xiàn)基材的硬度對DLC:H薄膜的水潤滑摩擦系數(shù)影響不大,但卻是薄膜抵抗失效能力的一關鍵因素。因為軟基材會使薄膜的變形加大,更容易產(chǎn)生裂紋[39],所以當納米復合薄膜和潤滑水被確定后,通過改善薄膜和對磨材料的表面粗糙度可以使納米復合薄膜水潤滑摩擦學性能得到進一步提高。此外,A. Li等[26]研究指出,Si-DLC薄膜與不銹鋼小球?qū)δr,不銹鋼小球在水環(huán)境下會發(fā)生磨蝕,從而在摩擦界面產(chǎn)生鐵銹,形成三體磨損,導致摩擦系數(shù)和磨損率增加。這說明了在水環(huán)境下的摩擦試驗,特別是對磨小球或者薄膜中含有金屬相時,腐蝕對摩擦產(chǎn)生的影響不可忽略,同時摩擦反過來影響腐蝕,二者相互作用[40-41]。當摩擦對偶置于水潤滑環(huán)境下進行摩擦腐蝕試驗時,對磨副接觸時會產(chǎn)生較大的接觸應力,由于應力集中導致薄膜或?qū)δバ∏虬l(fā)生剝落,而不同的金屬相在水環(huán)境中的電位不同,會形成微電池腐蝕,形成腐蝕磨損,從而加速涂層的降解[42]。所以,在摩擦過程中摩擦對偶可能產(chǎn)生的腐蝕磨損影響很大,在進行對磨材料選擇和摩擦試驗設計時需要被考慮進去。
圖7 對磨副AISI306、黃銅的磨損率隨DLC:H表面粗糙度的變化
根據(jù)第一性原理,a-CN薄膜可能具有類似β-Si3N4的微觀結構而擁有比金剛石還高的硬度[43]。因此,其被廣大的科研工作者們熱切關注并合成,結果發(fā)現(xiàn)雖然a-CN薄膜呈現(xiàn)非晶狀態(tài),但是其仍然具有較高的硬度,且與DLC薄膜相比,a-CN薄膜的水潤滑摩擦學性能更優(yōu)異。
1.2.1 對磨材料及摩擦參數(shù)的影響
據(jù)報道,a-CN/SiC摩擦副的摩擦系數(shù)(0.02~ 0.05)小于a-C/SiC摩擦副的摩擦系數(shù)(0.03~0.07),并且a-CN/SiC摩擦副具有更好的抗磨損能力[44-45]。如圖8所示,相同摩擦參數(shù)下(160 mm/s和5 N),當a-CN與硅基陶瓷對磨時,摩擦系數(shù)的變化范圍為0.013~0.017;當與鐵基材料對磨時,摩擦系數(shù)的變化范圍為0.072~0.075;而選用Al2O3陶瓷作為摩擦副材料時,摩擦系數(shù)最高為0.1左右[46]。周飛等[44-47]指出,對磨材料在水中的化學性質(zhì)不僅影響a-CN薄膜的摩擦系數(shù),而且還影響薄膜的耐磨性,若摩擦副材料易于發(fā)生摩擦水合反應,生成具有保護作用的水合薄膜,a-CN薄膜的耐磨性將大大提高。此外,摩擦參數(shù)同樣會影響a-CN薄膜的水潤滑性能,從圖9可以看出,當載荷小于3.5 N時,a-CN/Si3N4摩擦副的摩擦系數(shù)在0.02左右變化,繼續(xù)增大載荷至5 N時,摩擦系數(shù)從0.018到下降到0.007[48]。吳志威等[49]指出,CrSiC薄膜與SiC小球和Al2O3小球分別對磨時,呈現(xiàn)出不同的摩擦系數(shù),CrSiC/SiC摩擦副的穩(wěn)態(tài)摩擦系數(shù)(0.24~0.31)要遠低于CrSiC/Al2O3摩擦副的穩(wěn)態(tài)摩擦系數(shù)(0.47~0.70),這是因為SiC對磨小球在水潤滑環(huán)境下能夠發(fā)生水合反應,從而提高了對磨副的摩擦性能。因此,選擇合適的對磨材料和摩擦參數(shù),對a-CN薄膜水潤滑摩擦學性能同樣重要。
圖8 a-CNx與五種對磨材料的水潤滑平均穩(wěn)態(tài)摩擦系數(shù)
圖9 載荷對a-CNx/Si3N4摩擦副平均穩(wěn)態(tài)摩擦系數(shù)的影響
1.2.2 元素B摻雜的影響
非金屬元素B的摻雜可以提高a-CN薄膜的高溫穩(wěn)定性,且保持水中優(yōu)異的減摩抗磨性能。研究表明:BCN/WC摩擦副在水中的摩擦系數(shù)約為0.09,磨損率約為1.6×10?6mm3/(N×m)[50]。周飛等[51]對比了BCN薄膜與Al2O3、SiC、Si3N4以及SUS440C球在水中相對滑動時的摩擦學特性,如表1所示,當對磨副材料為硅基陶瓷時,表現(xiàn)出較低的摩擦系數(shù)。此外,周飛等[52]進一步對比a-C、a-CN、BCN三種薄膜與SiC小球在水中對磨時的摩擦磨損特性,發(fā)現(xiàn)a-CN/SiC摩擦副的摩擦系數(shù)約為0.015,而a-C/SiC與BCN/SiC對磨副的摩擦系數(shù)分別為0.07和0.09(圖10a),且BCN/SiC摩擦副的磨損率最大,a-C/SiC 組成的對磨副,SiC小球的磨損率比a-C薄膜略高,而a-CN/SiC組成的摩擦副,a-CN薄膜的磨損率要比對磨小球SiC高7倍(圖10b)。從上述研究不難發(fā)現(xiàn),對a-CN薄膜進行元素B摻雜反而削弱了其水潤滑摩擦學 性能。
表1 BCN薄膜與Al2O3、SiC、Si3N4以及SUS440C球在水中相對滑動時的摩擦學特性
Tab.1 Tribological properties of BCN films sliding against Al2O3, SiC, Si3N4 and SUS440C balls in water
圖10 a-C/SiC、a-CNx/SiC、BCN/SiC摩擦副在水中相對滑動時的平均穩(wěn)態(tài)摩擦系數(shù)和磨損率
作為第一代保護性薄膜及其替代品,TiN、CrN及其元素摻雜改性薄膜如今開始引起水潤滑摩擦學研究學者們的關注,且其在水潤滑中表現(xiàn)出良好的減摩耐磨特性。
1.3.1 金屬氮化物薄膜水潤滑摩擦學特性
文獻報道,當TiN薄膜與金剛石在水中對磨時,球盤往復滑動的摩擦系數(shù)為0.2~0.3,而單向球盤(或盤球)圓周滑動時為0.5~0.8,然而由于摩擦氧化反應,球盤往復振動滑動下的TiN薄膜表現(xiàn)出最高的磨損體積[53]。周飛等[54]研究表明:相同摩擦參數(shù)下,CrN/Si3N4摩擦副在水中的摩擦系數(shù)低于空氣中的摩擦系數(shù),并且隨著滑動頻率和加載載荷的增大,摩擦系數(shù)從0.56降低至0.34。王遠等[55-57]在LY12CZ鋁合金表面采用微弧氧化技術制備了Al2O3陶瓷膜,并在此基礎上制備了CrN改性層。通過對比二者與Si3N4球在水中的摩擦磨損特性,發(fā)現(xiàn)相同摩擦參數(shù)下,Al2O3薄膜的摩擦系數(shù)和磨損率均高于CrN改性層的(如圖11所示),Al2O3薄膜的摩擦系數(shù)在0.72~ 0.57之間變化,磨損率在(2.3~4.47)×10-5mm3/(N×m)之間變化;CrN改性層的摩擦系數(shù)為0.58~0.36,磨損率為(1.09~3.16)×10-5mm3/(N×m)。吳志威等[49]指出,CrSiC薄膜中當Si原子數(shù)分數(shù)從2.0%增加到7.4%后,薄膜中非晶相(a-C和a-SiC等)逐漸增加,導致硬度降低到13 GPa,并且發(fā)現(xiàn)水潤滑環(huán)境下,Si原子數(shù)分數(shù)為2.1%的CrSiC/SiC對磨副表現(xiàn)出低摩擦系數(shù)(0.11),由于硅的氧化物能夠發(fā)生水合反應生成水和硅膠,從而提高涂層的摩擦學性能。
1.3.2 元素摻雜的影響
雖然金屬氮化物在水潤滑下有良好的摩擦磨損性能,但是從文獻的報道可以看出,TiN及CrN在水潤滑條件下的摩擦系數(shù)仍然處在一個中等的數(shù)值0.2~0.34[53-57]。因此,研究者希望通過潤滑元素(C或Si)的摻雜進一步降低TiN及CrN在水潤滑中的摩擦系數(shù)。目前,如表2所示,TiCN薄膜在干摩擦條件下表現(xiàn)出比TiN更優(yōu)異的摩擦磨損特性[58-61]。然而,研究其在水潤滑條件下摩擦學特性的報道很少。王謙之等[62-63]對比了TiCN在空氣及水潤滑條件下的摩擦學特性,發(fā)現(xiàn)在水潤滑條件下TiCN薄膜具有更低的摩擦系數(shù)(0.18)和磨損率(2.7×10-6mm3/(N×m));通過進一步的研究發(fā)現(xiàn)C含量與TiCN薄膜成分、結構、力學性能、水潤滑摩擦學特性之間存在緊密的聯(lián)系,指出:當TiCN薄膜中C原子數(shù)分數(shù)為2.46%時,TiCN/SiC在水中表現(xiàn)出最低的摩擦系數(shù)(0.24)和磨損率(3.3×10-6mm3/(N×m))。
同樣的,對于CrN薄膜的C元素摻雜,表3列出了CrN及CrCN干摩擦條件下的摩擦性能對比,在一定范圍內(nèi),隨著C含量的提高,CrCN薄膜的摩擦系數(shù)和磨損率逐漸降低,當C含量高于某一臨界值后,因CrCN薄膜中可能出現(xiàn)硬度較低的非晶碳膜而使其摩擦特性反而削弱[64-66]。然而,在水潤滑條件下CrCN薄膜的摩擦學性能鮮見報道。王謙之等[67]指出:當C原子數(shù)分數(shù)為15.35%、CrCN薄膜與Si3N4在水潤滑條件下對磨時,表現(xiàn)出最低的摩擦系數(shù)(0.197)。對于CrN薄膜的Si元素摻雜,Masuko等[68]指出:當滑動速度小于0.25 m/s時,CrSiN/SUS360摩擦副的摩擦系數(shù)大于CrN/SUS360摩擦副;當滑動速度大于0.25 m/s時,CrSiN/SUS360摩擦副表現(xiàn)出低于CrN/SUS360摩擦副的摩擦系數(shù)(0.07)(圖12)。Lee等[69-70]發(fā)現(xiàn)在低速水潤滑條件下,涂覆CrSiN薄膜的AISI 4340液壓缸筒呈現(xiàn)出低摩擦系數(shù)和磨損率,且摩擦系數(shù)與載荷無關;而在高轉(zhuǎn)速條件下(1600 r/min),CrSiN薄膜仍然沒有出現(xiàn)剝離或者表面裂紋,可見CrSiN薄膜可以改善液壓缸筒的性能,將可以實現(xiàn)高速情況下操作液壓水泵的可能性。最近,文獻[71]對比了不同Si/(Cr+Si)原子百分比(2.5%~18.4%)對CrSiN薄膜水潤滑性能的影響,如圖13所示,當Si/(Cr+Si)原子百分比高于5.2%時,CrSiN薄膜表現(xiàn)出低于CrN薄膜的摩擦系數(shù)和磨損率,主要是因為薄膜中的Si發(fā)生了摩擦化學反應,形成了非晶的氧化層。
表2 TiCN薄膜的干摩擦試驗結果
Tab.2 Dry friction test results of TiCN films
表3 CrCN薄膜的干摩擦試驗結果
Tab.3 Dry friction test results of CrCN films
圖12 CrN及CrSiN薄膜摩擦系數(shù)隨滑移速度的變化曲線
納米復合薄膜在水中的摩擦磨損機制主要與薄膜的成分、結構和配對材料在水中的物理化學性能密切相關。Wu等[27-29]指出:DLC:H薄膜與水發(fā)生摩擦化學反應生成CH與OH基團,OH基團主要與仲碳、叔碳結合,當C—CH鍵由于機械刺激而裂開時, C—CH鍵中的CH將從H2O中獲取一個H原子形成CH2,而C將與OH基團結合形成COH,親水性羥基在水潤滑條件下對DLC:H薄膜良好的減摩耐磨性能起著重要作用。當DLC:H薄膜與氧化鋁銷對磨時,接觸表面缺少摩擦轉(zhuǎn)化層,接觸應力過高,導致薄膜從基體剝落,從而造成早期災難性失效[7];若對磨副為淬硬馬氏體不銹鋼球,鋼球表面被很多摩擦轉(zhuǎn)移層覆蓋,起到減摩作用[9]。當Si-DLC:H薄膜與AISI440C銷在水中相對滑動時,Si-DLC:H薄膜發(fā)生摩擦化學反應,在對磨副表面生成了SiO(OH),這種表面層在減少摩擦以及對磨副材料的磨損方面起重要作用,然而Si含量的增加將使Si-DLC:H薄膜發(fā)生嚴重的化學磨損[17]。對于a-C薄膜的Ti及Cr摻雜,由于高含量的Ti使Ti/a-C薄膜中形成了TiC顆粒,而Cr/a-C薄膜中的CrC,由于水合反應形成了氧化鉻,在對磨過程中以磨粒存在,使a-C薄膜發(fā)生嚴重磨損至失效[20-21]。
CrN薄膜的摩擦磨損特性與摩擦接觸表面之間的摩擦層有關,當CrN薄膜在水中與Si3N4球相對滑動時,其磨損機制為摩擦化學磨損,摩擦副材料發(fā)生摩擦氧化反應,形成非晶的Si(OH)4和Cr2O3,或分解于水中,造成摩擦化學磨損,或轉(zhuǎn)移到樣品摩擦面形成極端光滑的接觸表面,產(chǎn)生摩擦化學磨損[54]。CrSiN薄膜在水潤滑條件下發(fā)生摩擦氧化反應,形成具有良好自潤滑特性的Si(OH)2層[70]。Kenji Yamamoto等[72]研究指出:當(Cr1?xSi)N中超過0.6時,摩擦系數(shù)約為0.01,薄膜磨損率為5×10-8mm3/(N×m)。CrSiN薄膜的磨損機制主要是摩擦化學磨損,在摩擦表面形成一層(<10 nm)無定形硅鉻氧化物或氫氧化物膜實現(xiàn)邊界潤滑,可見納米復合薄膜在水中的摩擦磨損機制與薄膜的成分、結構和配對材料的性能密切相關。不同的納米復合薄膜體系在水潤滑中的摩擦磨損機制不盡相同,包括親水性基團、薄膜轉(zhuǎn)移層、摩擦化學反應、低剪切轉(zhuǎn)化層等。Ma Fuliang等人[73]研究發(fā)現(xiàn):具有納米多層結構的CrN/AlN在磨損腐蝕試驗中,涂層的摩擦學行為能夠加速涂層的腐蝕,但該致密的納米多層結構的“孔洞密封效應”能有效阻止海水滲透,進而提高涂層的磨損腐蝕性能。
納米復合薄膜具有許多獨特的物理化學性質(zhì),尤其具有良好的摩擦學特性,因此其作為耐磨涂層而被廣泛應用于現(xiàn)代機械設備中,且如上文所述,其在水潤滑條件下優(yōu)異的減摩耐磨性能,必將為新一代水下作業(yè)機械帶來綠色環(huán)保設計新理念并得到廣泛的應用。然而納米復合薄膜作為水潤滑材料表面改性技術,一方面未來需要更多關注納米復合薄膜水潤滑理論的探討,因為目前一般認為水潤滑條件下,納米復合薄膜處于邊界潤滑狀態(tài),是否可以通過納米復合薄膜的改性使水潤滑進入流體潤滑狀態(tài),進一步提高其摩擦磨損性能;另一方面,因為水潤滑摩擦過程是一個摩擦和腐蝕相互作用的過程,未來需要關注納米復合薄膜在水潤滑中的抗腐蝕性能,從而進一步拓寬納米復合薄膜水潤滑的研究內(nèi)涵。
[1] 張嗣偉. 關于我國摩擦學發(fā)展方向的探討[J]. 摩擦學學報, 2001, 21(5): 321-323. ZHANG Si-wei. An approach to the developing ways of tribology in China[J]. Tribology, 2001, 21(5): 321-323.
[2] 王家序, 陳戰(zhàn), 秦大同. 以水為潤滑介質(zhì)的摩擦副關鍵問題研究[J]. 潤滑與密封, 2001(2): 34-36. WANG Jia-xu, CHEN Zhan, QIN Da-tong. Study on the key problems of water lubricated friction pair[J]. Lubrica-tion engineering, 2001(2): 34-36.
[3] 王海寶, 楊大壯, 吳光潔. 水潤滑軸承材料設計[J]. 潤滑與密封, 2002(3): 83-85. WANG Hai-bao, YANG Da-zhuang, WU Guang-jie. Ma-terial and design of water lubricated bearings[J]. Lubrica-tion engineering, 2002(3): 83-85.
[4] 王謙之. 碳/氮基薄膜結構、力學性能及水環(huán)境中摩擦與腐蝕特性研究[D]. 南京: 南京航空航天大學, 2013. WANG Qian-zhi. Microstructure, mechanical, tribological and corrosion properties of carbon/nitride-based coatings in aqueous environment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
[5] RONKAINEN H, VARJUS S, HOLMBERG K. Tribolo-gical performance of different DLC coatings in water-lub-ricated conditions[J]. Wear, 2001, 249: 267-271.
[6] RONKAINEN H, VARJUS S, HOLMBERG K. Friction and wear properties in dry, water- and oil-lubricated DLC against alumina and DLC against steel contacts[J]. Wear, 1998, 222: 120-128.
[7] STALLARD J, MERCS D, JARRATT M, et al. A study of the tribological behaviour of three carbon-based coatings tested in air, water and oil environments at high loads[J]. Surface and coatings technology, 2004, 177-178: 545-551.
[8] ZHANG J, HUANG L, YU L, et al. Synthesis and tribo-logical behaviors of diamond-like carbon ?lms by electro-deposition from solution of acetonitrile and water[J]. App-lied surface science, 2008, 254:3896-3901.
[9] YAMAMOTO K, MATSUKADO K. Effect of hydroge-nated DLC coating hardness on the tribological properties under water lubrication[J]. Tribology international, 2006, 39: 1609-1614.
[10] SUZUKI M, OHANA T, TANAKA A. Tribological pro-perties of DLC films with different hydrogen contents in water environment[J]. Diamond and related materials, 2004, 13: 2216-2220.
[11] STATUTI R P C C, RADI P A, SANTOS L V, et al. A tribological study of the hybrid lubrication of DLC films with oil and water[J]. Wear, 2009, 267: 1208-1213.
[12] ZHANG T F, XIE D, HUANG N, et al. The effect of hyd-rogen on the tribological behavior of diamond like carbon (DLC) coatings sliding against Al2O3in water environ-ment[J]. Surface and coatings technology, 2017, 320: 619- 623.
[13] ANDERSSON J, ERCK R A, ERDEMIR A. Friction of diamond-like carbon films in different atmospheres[J]. Wear, 2003, 254: 1070-1075.
[14] ANDERSSON J, ERCK R A, ERDEMIR A. Frictional behavior of diamond-like carbon films in vacuum and under varying water vapor pressure[J]. Surface and coatings tec-hnology, 2003, 163-164: 535-540.
[15] SUZUKI M, TANAKA A, OHANA T, et al. Frictional behavior of DLC film s in a water environment[J]. Dia-mond and related materials, 2004, 13: 1464-1468.
[16] TANAKA A, SUZUKI M, OHANA T. Friction and wear of various DLC films in water and air environments[J]. Tribology letters, 2004, 17: 917-924.
[17] WU X, SUZUKI M, OHANA T, et al. Characteristics and tribological properties in water of Si-DLC coatings[J]. Diamond and related materials, 2008, 17: 7-12.
[18] VILA M, CARRAPICHANO J M, GOMES J R, et al. Ultra-high performance of DLC-coated Si3N4rings for mechanical seals[J]. Wear, 2008, 265: 940-944.
[19] ZHAO F, LI H X, JI L, et al. Super low friction behavior of Si-doped hydrogenated amorphous carbon film in water environment[J]. Surface and coatings technology, 2009, 203: 981-985.
[20] WANG Q Z, ZHOU F, Zhou Z F, et al. Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication[J]. Diamond and related materials, 2012, 25: 163-175.
[21] WANG Q Z, ZHOU F, DING X D, et al. Structure and water-lubricated tribological properties of Cr/a-C coatings with different Cr contents[J]. Tribology international, 2013, 67: 104-115.
[22] WANG Q Z, ZHOU F, DING X D, et al.Influences of ceramic mating balls on the tribological properties of Cr/a-C coatings with low chromium content in water lubrication[J]. Wear, 2013, 303: 354-360.
[23] OHANA T, SUZUKI M, NAKAMURA T, et al. Friction behaviour of Si-DLC/DLC multi layer films on steel substrate in water environment[J]. Diamond and related materials, 2005, 14: 1089-1093.
[24] PARK S J, LEE K, AHN S, et al. Instability of diamond- like carbon (DLC) films during sliding in aqueous enviro-nment[J]. Diamond and related materials, 2008, 17: 247- 251.
[25] WANG L, NIE X, LUKITSCH M J, et al. Effect of tribo-logical media on tribological properties of multilayer Cr(N)/ C(DLC) coatings[J]. Surface and coatings technology, 2006, 201: 4341-4347.
[26] LI A, CHEN Q C, WU G Z, et al. Probing the lubrication mechanism of multilayered Si-DLC coatings in water and air environments[J]. Diamond and related materials, 2020, 105: 107772
[27] WU X, OHANA T, TANAKA A, et al. Tribochemical investigation of DLC coating in water using stable isotopic tracers[J]. Applied surface science, 2008, 254: 3397-3402.
[28] WU X, OHANA T, TANAKA A, et al. Tribochemical investigation of DLC coating tested against steel in water using a stable isotopic tracer[J]. Diamond and related materials, 2007, 16: 1760-1764.
[29] WU X, OHANA T, TANAKA A, et al. Tribochemical reaction of Si-DLC coating in water studied by stable isotopic tracer[J]. Diamond and related materials, 2008, 17: 147-153.
[30] UCHIDATE M, LIU H, YAMAMOTO K, et al. Effects of hard water on tribological properties of DLC rubbed against stainless steel and brass[J]. Wear, 2013, 308: 79-85.
[31] UCHIDATE M, LIU H, IWABUCHI A, et al. Effects of water environment on tribological properties of DLC rubbed against brass[J]. Wear, 2009, 267: 1589-1594.
[32] UCHIDATE M, LIU H, IWABUCHI A, et al. Effects of water environment on tribological properties of DLC rubbed against stainless steel[J]. Wear, 2007, 263: 1335-1340.
[33] STRMCNIK E, MAJDIC F, KALIN M. Water-lubricated behaviour of AISI 440C stainless steel and a DLC coating for an orbital hydraulic motor application[J]. Tribology international, 2019, 131: 128-136.
[34] POLYANA A R, ANGELA V, LUCAS M, et al. Triboco-rrosion and corrosion behavior of stainless steel coated with DLC ?lms in ethanol with di?erent concentrations of water[J]. Ceramics international, 2019, 45: 9686-9693.
[35] OHANA T, SUZUKI M, NAKAMURA T, et al. Tribolo-gical properties of DLC films deposited on steel substrate with various surface roughness[J]. Diamond and related materials, 2004, 13: 2211-2215.
[36] OHANA T, SUZUKI M, NAKAMURA T, et al. Roughness effect of mating ball on friction of diamond-like carbon film and friction mechanism in water and air environment[J]. Diamond and related materials, 2008, 17: 860-863.
[37] TOKORO M, AIYAMA Y, MASUKO M, et al. Improve-ment of tribological characteristics under water lubrica-tion of DLC-coatings by surface polishing[J]. Wear, 2009, 267: 2167-2172.
[38] WANG L P, WANG Y X, WANG Y F, et al. Tribological performances of non-hydrogenated amorphous carbon coupling with different coating counterparts in ambient air and water[J]. Wear, 2013, 300: 20-28.
[39] WU X Y, OHANA T, NAKAMURA T, et al. Hardness effect of stainless steel substrates on tribological properties of water-lubricated DLC films against AISI 440C ball[J]. Wear, 2010, 268: 329-334.
[40] SHAN L, WANG Y, ZHANG Y, et al. Tribocorrosion behaviors of PVD CrN coated stainless steel in seawater[J]. Wear, 2016, 362-363: 97-104.
[41] OU Y X, WANG H Q, LIAO B, et al. Tribological behaviors in air and seawater of CrN/TiN superlattice coatings irradiated by high-intensity pulsed ion beam[J]. Ceramics international, 2019, 45(18): 24405-24412.
[42] Fu Y Q, ZHOU F, WANG Q Z, et al. Electrochemical and tribocorrosion performances of CrMoSiCN coating on Ti-6Al-4V titanium alloy in artificial seawater[J]. Corrosion science, 2020 165: 108385.
[43] LIU A Y, COHEN M L. Prediction of new low compressi-bility solids[J]. Science, 1989, 245: 841-842.
[44] ZHOU F, ADACHI K, KATO K. Sliding friction and wear property of a-C and a-CNcoatings against SiC ball in water[J]. Thin solid films, 2006, 514:231-239.
[45] ZHOU F, KATO K, ADACHI K. Friction and wear properties of CN/SiC in water lubrication[J]. Tribology letters, 2005, 18: 153-163.
[46] ZHOU F, ADACHI K, K KATO K. Friction and wear properties of a-CNcoatings sliding against ceramic and steel ball in water[J]. Diamond and related materials, 2005, 14: 1711-1720.
[47] 周飛, 戴振東, 加藤康司. 碳基薄膜水潤滑性能的研究進展[J]. 潤滑與密封, 2006(7): 185-189. ZHOU Fei, DAI Zhen-dong, Kato K. Progress in water lubrication of carbon-based coatings[J]. Lubrication engi-neering, 2006(7): 185-189.
[48] ZHOU F, WANG X L, KATO K, et al. Friction and wear property of a-CNcoatings sliding against Si3N4balls in water[J]. Wear, 2007, 263: 1253-1258.
[49] WU Z Z, ZHOU F, Chen K, et al. Microstructure, me-chanical and tribological properties of CrSiC coatings sli-ding against SiC and Al2O3balls in water[J]. Applied sur-face science, 2016, 368: 129-139.
[50] CARETTIA I, ALBELLA J M, JIMENEZ I. Friction and wear of amorphous BC4N coatings under different atmos-pheres[J]. Diamond and related materials, 2007, 16: 1445- 1449.
[51] ZHOU F, ADACHI K, K KATO K. Friction and wear behavior of BCN coatings sliding against ceramic and steel balls in various environments[J]. Wear, 2006, 261: 301-310.
[52] ZHOU F, ADACHI K, K KATO K. Comparisons of tribological properties of a-C, a-CNand BCN coatings sliding against SiC balls in water[J]. Surface and coatings technology, 2006, 200: 4471-4478.
[53] WU P Q, DREES D, STALS L, et al. Comparison of wear and corrosion wear of TiN coatings under uni- and bidire-ctional sliding[J]. Surface and coatings technology, 1999, 113: 251-258.
[54] ZHOU F, CHEN K M, WANG M L, et al. Friction and wear properties of CrN coatings sliding against Si3N4balls in water and air[J]. Wear, 2008, 265: 1029-1037.
[55] 王遠. 鋁合金表面微弧氧化陶瓷膜及改性層的摩擦學性能研究[D]. 南京: 南京航空航天大學, 2007. WANG Yuan. Research on tribological properties of alu-mina ceramic coating by micro-arc oxidation (MAO) and modified coating on aluminum alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
[56] 王遠, 王美玲, 周飛, 等. 不同環(huán)境條件下鋁合金微弧氧化陶瓷膜的摩擦磨損性能[J]. 中國有色金屬學報, 2007, 17(8): 1266-1272. WANG Yuan, WANG Mei-ling, ZHOU Fei, et al. Tribolo-gical properties of ceramic coating prepared by micro-arc oxidation for aluminum alloys in various environments[J]. The Chinese journal of nonferrous metals, 2007, 17(8): 1266-1272.
[57] ZHOU F, WANG Y, DING H Y, et al. Friction characte-ristic of micro-arc oxidative Al2O3coatings sliding against Si3N4balls in various environments[J]. Surface and coa-tings technology, 2008, 202: 3808-3814.
[58] POLCAR T, KUBART T, NOVAK R, et al. Comparison of tribological behaviour of TiN, TiCN and CrN at elevated temperatures[J]. Surface and coatings technology, 2005, 193: 192-199.
[59] GURUVENKET S, LI D, KLEMBERG-SAPIEHA J E, et al. Mechanical and tribological properties of duplex trea-ted TiN, nc-TiN/a-SiNand nc-TiCN/a-SiCN coatings de-posited on 410 low alloy stainless steel[J]. Surface and coatings technology, 2009, 203: 2905-2911.
[60] CHENG Y H, BROWNE T, HECKERMAN B, et al. In-fluence of the C content on the mechanical and tribolo-gical properties of the TiCN coatings deposited by LAFAD technique[J]. Surface and coatings technology, 2011, 205: 4024-4029.
[61] ZHANG G J, LI B, JIANG B L, et al. Microstructure and tribological properties of TiN, TiC and Ti(C,N) thin films prepared by closed-field unbalanced magnetron sputtering ion plating[J]. Applied surface science, 2009, 255: 8788- 8793.
[62] WANG Q Z, ZHOU F, CHEN K M, et al. Friction and wear properties of TiCN coatings sliding against SiC and steel balls in air and water[J]. Thin solid films, 2011, 519: 4830-4841.
[63] WANG Q Z, ZHOU F, ZHOU Z F, et al. Influence of carbon content on the microstructure and tribological pro-perties of TiN(C) coatings in water lubrication[J]. Surface and coatings technology, 2012, 206: 3777-3787.
[64] CHOI E Y, KANG M C, KWON D H, et al. Comparative studies on microstructure and mechanical properties of CrN, CrCN and CrMoN coatings[J].journal of materials processing technology, 2007, 187-188: 566-570.
[65] WARCHOLINSKI B, GILEWICZ A, KUKLINSKI Z, et al. Hard CrCN/CrN multilayer coatings for tribological applications[J]. Surface and coatings technology, 2010, 204: 2289-2293.
[66] HU P F, JIANG B L. Study on tribological property of CrCN coating based on magnetron sputtering plating tec-hnique[J]. Vacuum, 2011, 85: 994-998.
[67] WANG Q Z, ZHOU F, DING X D, et al. Microstructure and water-lubricated friction and wear properties of CrN(C)coatings with different carbon contents[J]. Applied surface science, 2013, 268: 579-587.
[68] MASUKO M, SUZUKI A, SAGAE Y, et al. Friction characteristics of inorganic or organic thin coatings on solid surfaces under water lubrication[j]. Tribology international, 2006, 39: 1601-1608.
[69] LEE S, HONG Y. Effect of CrSiN thin film coating on the improvement of the low-speed torque efficiency of a hy-draulic piston pump[J]. Surface and coatings technology, 2007, 202: 1129-1134.
[70] KIM G, KIM B, LEE S. High-speed wear behaviors of CrSiN coatings for the industrial applications of water hy-draulics[J]. Surface and coatings technology, 2005, 200: 1814-1818.
[71] GENG Z R, WANG H X, WANG C B, et al. Effect of Si content on the tribological properties of CrSiN films in air and water environments[J]. Tribology international, 2014, 79: 140-150.
[72] YAMAMOTO K, OMOTO S. The effect of Si content and substrate bias on structural and tribological properties of (Cr,Si)N coatings under water lubrication[J]. Tribology and interface engineering series, 2005, 48: 401-407.
[73] MA F, LI J, ZENG Z, et al. Structural, mechanical and tribocorrosion behavior in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates[J]. App-lied surface science, 2018 428: 404-414.
Progress in Tribological Properties of Nano-composite Films in Water Lubrication
,,,
(National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
The tribological properties of diamond-like carbon (DLC, a-C), amorphous carbon nitride (a-CN), transition metallic nitride (TiN, CrN) and correspondingly modified nano-composite films under water lubrication are reviewed. The influence of microstructure, architecture, element doping, counterparts and friction parameters on the tribology and wear mechanisms of nano-composite films under water lubrication are analyzed and elucidated spontaneously. It is clear that nano-composite films present excellent tribological properties under water lubrication, which are closely related to the composition, architecture, mechanical properties and the physic-chemical properties of tribo-materials. In general, as compared with transition metallic nitride films, DLC and a-CNexhibit lower friction coefficients and wear rates under water lubrication due to the formation of transfer layer and hydrated lubricating layer. Secondly, nano-composite films exhibit low specific wear rate due to the protection of hydrated layer when mating materials are hydrated easily. Finally, moderate load and velocity are also key factors to optimize tribology under water lubrication if the film is not peeling and failure. The study provides some references for the application of film in water lubrication equipment and the future of nano-composite films under water lubrication is proposed synthetically.
nano-composite films; nitride films; water lubrication; hydrated reaction; friction; wear
2020-04-28;
2020-05-11
ZHOU Fei (1969—), Male, Doctor, Professor, Research focus: tribology of nanocomposite films in water. E-mail: fzhou@nuaa.edu.cn
周飛, 王謙之, 付永強, 等. 納米復合薄膜水潤滑摩擦學性能的研究進展[J]. 表面技術, 2020, 49(6): 34-44.
TH117
A
1001-3660(2020)06-0034-11
10.16490/j.cnki.issn.1001-3660.2020.06.004
2020-04-28;
2020-05-11
國家自然科學基金項目(51775271,51705245);直升機傳動技術重點實驗室自主課題資助項目(HTL-A-19G04)
Fund:Supported by National Natural Science Foundation of China (51775271, 51705245) and National Key Laboratory Project of Helicopter Transmission Technology (HTL-A-19G04)
周飛(1969—),男,博士,教授,主要研究方向為納米復合薄膜水潤滑摩擦學。郵箱:fzhou@nuaa.edu.cn
ZHOU Fei, WANG Qian-zhi, FU Yong-qiang, et al. Progress in tribological properties of nano-composite films in water lubrication[J]. Surface technology, 2020, 49(6): 34-44.