国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

軍事活動影響下的終端區(qū)容量評估方法研究

2020-06-27 04:35黃海清甘旭升丁黎穎孫靜娟
航空工程進(jìn)展 2020年3期
關(guān)鍵詞:航段空域遺傳算法

黃海清,甘旭升,丁黎穎,孫靜娟

(1.西京學(xué)院 理學(xué)院, 西安 710123)(2.空軍工程大學(xué) 空管領(lǐng)航學(xué)院, 西安 710051)

0 引 言

軍事活動作為制約終端區(qū)容量評估有效性的關(guān)鍵因素,準(zhǔn)確地預(yù)測終端區(qū)容量對于提高空域管理水平具有重大意義。2010年,由于軍用航空活動的限制,蘭州管制區(qū)內(nèi)有近320架次的航班受到軍事活動的影響,其中航班盤旋最長時間達(dá)到40分鐘。2014年,東南沿海的軍事演習(xí)造成了大量的航班延誤甚至取消。大量的軍用航空活動,對民航航班的飛行造成一定的影響。軍事活動已經(jīng)成為終端區(qū)容量的重要影響因素。目前國內(nèi)對于軍事活動影響下的終端區(qū)容量評估的研究很少,大多是定性的評估,定量的分析較少。軍事活動性質(zhì)比較特殊,飛行流控時間較長,且占用高度層范圍大,需要在各個活動區(qū)域內(nèi)不斷穿越高度層,或者在不同的活動區(qū)域內(nèi)相互穿越,因此對活動區(qū)域周邊的航路航線影響較大;且軍事受限區(qū)所需要考慮的因素更加多樣化,包括天氣、飛機(jī)偏航、空中風(fēng)、飛行員操縱等。因此,軍事受限區(qū)的劃設(shè)成為一個難點(diǎn)。

目前,國內(nèi)外對于空域容量的評估方法主要有四種:一是基于數(shù)學(xué)模型的評估方法;二是基于歷史數(shù)據(jù)的評估方法;三是通過計算機(jī)仿真的評估方法;四是通過管制員工作負(fù)荷評估的方法。國外,T.R.Inniss等[1]根據(jù)危險天氣的統(tǒng)計數(shù)據(jù)來估算對到達(dá)容量的影響;J.Krozel等[2]通過圓錐形空域來模擬機(jī)場終端區(qū),并給出了短期的確定性容量預(yù)測及相應(yīng)的概率分布;J.Zou等[3]應(yīng)用最大流和最小割定理來對危險天氣影響下的空域容量進(jìn)行評估;M.Janic[4]利用管制員工作負(fù)荷量來評估容量,并研究了不同的空中交通管制操作程序、間隔規(guī)則和服務(wù)規(guī)則對空域容量的影響;P.Volf[5]將扇區(qū)空域作為研究對象,通過對管制員工作負(fù)荷和管制員承受能力的研究,以管制員可承受的負(fù)荷閾值作為限制計算最大的飛行架次。國內(nèi),劉歡[6]充分考慮了軍用航空影響、天氣改變等動態(tài)因素,構(gòu)建了區(qū)域動態(tài)容量評估模型,并開發(fā)出了區(qū)域容量評估系統(tǒng);王少朋等[7]分別從理論和應(yīng)用方面研究了管制員工作負(fù)荷評估,并以此構(gòu)建了基于管制員工作負(fù)荷的區(qū)域扇區(qū)容量評估模型;楊昌其等[8]基于BP神經(jīng)網(wǎng)絡(luò)模型,建立了管制員疲勞狀態(tài)的識別方法。然而,由于軍方活動的特殊性,目前還沒有相應(yīng)的數(shù)學(xué)模型和歷史數(shù)據(jù)庫。國內(nèi)外對于空域容量的評估方法,大都不適用于軍事活動影響下空域容量評估,需要重新構(gòu)建一套適用于軍方活動影響下的評估體系。

國內(nèi)學(xué)者主要利用數(shù)學(xué)分析法來求解終端區(qū)容量。但該方法隨著節(jié)點(diǎn)的增多,計算的復(fù)雜度呈指數(shù)型上升,且由于算法本身的限制不適合用計算機(jī)進(jìn)行大規(guī)模的編程。

本文將軍事活動作為影響因素加入到流量決策當(dāng)中,利用最大流最小割理論[9-11]從定量的角度求解軍事活動影響下的終端區(qū)容量,在分析傳統(tǒng)算法的特點(diǎn)及缺陷的基礎(chǔ)上,用改進(jìn)的遺傳算法求解軍事活動影響下的終端區(qū)容量,并與傳統(tǒng)算法進(jìn)行比較驗(yàn)證。

1 基本概念

1.1 飛行受限區(qū)

飛行受限區(qū)就是指當(dāng)受到惡劣天氣、軍事活動或者流量控制等因素影響時,為了保障飛行安全在規(guī)定時間段內(nèi)而禁止飛越的空域。

在本文中,將受到軍事活動影響的區(qū)域作為飛行受限區(qū),民航航班在飛行過程中不得在該區(qū)域內(nèi)通過。

1.2 終端區(qū)動態(tài)容量

終端區(qū)動態(tài)容量一般指在一定空域結(jié)構(gòu)下考慮管制規(guī)則和一些相關(guān)因素(如軍事活動)的影響,且一直有航空器在終端區(qū)進(jìn)出的情況下,單位時間內(nèi)所能容納的最大航空器數(shù)量。

1.3 最大流最小割定理

在任一個網(wǎng)絡(luò)G的所有割集中,其最小的割集流量之和就等于該網(wǎng)絡(luò)最大流的流量。

目前,已經(jīng)有人將最大流最小割理論應(yīng)用在多邊形中,用兩條邊來代表源(S)和匯(T)。而在從源(S)到匯(T)的各個通路中,其通行能力由容量來決定。 而整個網(wǎng)絡(luò)中容量最小的部分就是網(wǎng)絡(luò)的最小割,也就是整個網(wǎng)絡(luò)的咽喉部分或者瓶頸,是決定該網(wǎng)絡(luò)通行能力的直接因素。多邊形最小割示意圖如圖1所示。

圖1 多邊形最小割示意圖

2 飛行受限區(qū)的劃設(shè)

2.1 飛行活動區(qū)的確定

軍用航空飛行活動往往會受到飛行員動作誤差、空中風(fēng)向的影響,不同的動作所需要的空域范圍是不同的。在確定飛行受限區(qū)時,需要確定不同科目所需要的活動范圍。本文中軍用航空飛機(jī)所需要的空域范圍是利用數(shù)學(xué)模型,并結(jié)合飛行特點(diǎn)來確定的,通過蒙特卡洛法確定實(shí)際的圓心和機(jī)動半徑,進(jìn)而求出右側(cè)邊界的位置。

2.1.1 轉(zhuǎn)彎半徑的計算

通常戰(zhàn)斗機(jī)飛行員的動作誤差服從正態(tài)分布,其分布函數(shù)為

(1)

式中:Mshould為期望動作誤差;Mlast為實(shí)際動作誤差;σp為標(biāo)準(zhǔn)差。

在飛機(jī)飛行訓(xùn)練的過程中,影響飛機(jī)機(jī)動軌跡的因素主要有機(jī)動起點(diǎn)、轉(zhuǎn)彎的坡度、轉(zhuǎn)彎的速度、風(fēng)及其導(dǎo)航設(shè)施的精度等,飛行軌跡圖如圖2所示,其中飛機(jī)的期望機(jī)動軌跡為實(shí)線所示,然而由于受到了全向風(fēng)和動作的影響,其運(yùn)動軌跡如虛線所示。

圖2 飛行軌跡圖

通過轉(zhuǎn)彎半徑的計算可知轉(zhuǎn)彎半徑與其飛行速度及坡度的關(guān)系為

(2)

假設(shè)期望的飛行速度v=250 m/s(900 km/h),期望轉(zhuǎn)彎坡度γ=45°,由于受到動作誤差的影響,其服從式(1)的正態(tài)分布,因此在速度誤差和轉(zhuǎn)彎坡度誤差影響下的轉(zhuǎn)彎半徑為

(3)

其中實(shí)際速度和實(shí)際轉(zhuǎn)彎坡度服從正態(tài)分布:

(4)

2.1.2 轉(zhuǎn)彎軌跡圓心計算

將實(shí)際圓心位置定義為O1(x1,y1),期望的圓心坐標(biāo)為O(xs,ys),且在機(jī)動過程中只考慮轉(zhuǎn)彎過程中的影響,則實(shí)際圓心坐標(biāo)為

(5)

式中:θ為飛機(jī)開始盤旋時的航向角。

2.1.3 空域半徑的計算

空中飛行的航空器不可避免地會受到風(fēng)的影響,然而在進(jìn)行航跡估計的過程中是無法確定風(fēng)向的。因此,國際民航組織在航路劃設(shè)的過程中定義了一個對航空器最不利的風(fēng)向——全向風(fēng),全向風(fēng)為轉(zhuǎn)彎時垂直于飛機(jī)當(dāng)前航向向外的風(fēng)向。假設(shè)全向風(fēng)的風(fēng)速為w,則在全向風(fēng)的影響下,實(shí)時轉(zhuǎn)彎半徑可以表示為

(6)

式中:a為飛機(jī)轉(zhuǎn)過的角度數(shù)。

因而最終所需的空域范圍半徑A為

A=x1+R1

(7)

2.2 飛行受限區(qū)的劃設(shè)

航空器在實(shí)際飛行中,往往需要進(jìn)行多種科目的練習(xí)。為保證飛行安全,軍方飛行活動空域及其保護(hù)區(qū)內(nèi)均無法通過民用航班,本文將此區(qū)域定義為飛行受限區(qū),通常用二維區(qū)域來表示。

劃設(shè)飛行受限區(qū)主要是利用最小外接矩形法。利用面積較小的矩形不斷逼近軍方活動的空域,當(dāng)矩形的邊與軍方活動空域相切時,形成的矩形為受軍事活動影響的空域(如圖3所示)。此方法首先需要確定軍方活動空域在坐標(biāo)軸上的極值,即在x軸上的最大值xmax與最小值xmin,以及y軸上的最大值ymax與最小值ymin。四個點(diǎn)形成的區(qū)域?yàn)槌跏济娣e較小的空域:(xmin,ymin),(xmin,ymax),(xmax,ymin),(xmax,ymax)。將初始掃描線的角度設(shè)置為0,之后按照一定的增量dA增加,掃描線為兩組相互垂直的邊。將掃描線沿著目標(biāo)矩形的邊界移動至與活動空域相切為止。此時形成的矩形為該掃描角度下的外接矩形。根據(jù)相關(guān)法規(guī),軍方活動空域離航路航線需要保持10 km的水平間隔,因此將各掃描角度下面積最小的外接矩形增加安全間隔后定義為受軍方飛行活動影響的空域,即飛行受限區(qū)(如圖3陰影區(qū)所示)。

圖3 起始外接矩形及其掃描示意圖

利用外接矩形劃設(shè)飛行受限區(qū)的流程圖,如圖4所示。

圖4 飛行受限區(qū)劃設(shè)流程圖

3 終端區(qū)容量評估方法

軍事活動作為影響空域容量的因素之一,通過構(gòu)建終端區(qū)容量評估模型,利用最大流最小割原理可以找出受軍事活動影響下的空域容量瓶頸,并利用改進(jìn)的遺傳算法來對模型進(jìn)行求解,以確定影響下的空域容量。

3.1 模型構(gòu)建

3.1.1 假定條件

本文將終端區(qū)看作是一個網(wǎng)絡(luò),其中的飛行受限區(qū)看作網(wǎng)絡(luò)中的多邊形區(qū)域(不能流過的區(qū)域),則利用最大流最小割理論就可以求取該終端區(qū)內(nèi)的動態(tài)容量。在此模型中,假定:

(1) 航空器進(jìn)離場均使用同一條跑道;

(2) 進(jìn)離場航線中,每條航段的距離均已給定;

(3) 航空器在任一條航段上均以平均速度飛行;

(4) 在每條航段上只能單向飛行,且飛行方向已經(jīng)給定;

(5) 對流天氣的影響區(qū)域?yàn)橹虚g航段;

(6) 在終端區(qū)沒有等待區(qū),所有航空器均是即到即走。

在這些假設(shè)成立前提下,終端區(qū)的容量就是指在單位時間內(nèi)經(jīng)過終端區(qū)入口點(diǎn)的最大航班量。

3.1.2 弧容量求解

為了計算終端區(qū)的動態(tài)容量,需要計算每段弧上所能容納航班的最大數(shù),即該航段的容量。具體公式為

(8)

(9)

(10)

(11)

換算因子Kij為

(12)

對于換算因子Kij的計算,本文可根據(jù)高度和溫度求出,也可以通過查詢換算因數(shù)表就可以得知;如果給定的高度或者溫度沒有列出,可用內(nèi)插法求其值。利用以上公式,就可以計算得出航段的容量,即網(wǎng)絡(luò)圖中的弧容量Cij(t)。

3.1.3 評估模型構(gòu)建

在計算出終端區(qū)網(wǎng)絡(luò)示意圖中每條弧的弧容量后,將劃設(shè)的飛行受限區(qū)標(biāo)記在網(wǎng)絡(luò)圖中,并以此構(gòu)建在天氣影響下的終端區(qū)容量的動態(tài)評估模型。

將所需要的變量用以下符號表示:Bij(t)為t時刻下,航段Aij上的航班數(shù);Iij(t)為(t,t+1)時段內(nèi),流入該航段Aij的航班數(shù);Oij(t)為(t,t+1)時段內(nèi),流出該航段Aij的航班數(shù);fij(t)為(t,t+1)時段內(nèi),該航段Aij凈流出量,即流量。Iij(t),Oij(t),fij(t)三者之間的關(guān)系為

fij(t)=Oij(t)-Iij(t)

(13)

本文用S表示該網(wǎng)絡(luò)的源,用T表示該網(wǎng)絡(luò)的匯,那么航段Aij在時段(t,t+1)內(nèi)的凈輸出量為

(14)

而此規(guī)劃模型中的約束條件如下:

(1) 航段Aij上的容量約束:0≤fij(t) ≤Cij(t);

(2) 非負(fù)整數(shù)約束:Bij(t)≥0,fij(t)≥0。

在軍方活動過程中,航班不得經(jīng)過劃定的飛行受限區(qū)。為了在該模型中將軍方活動的影響納入其中,假定如果某航段在飛行受限區(qū)內(nèi),那么該航段暫時不允許航空器通過。本文將軍事活動作為一個變量因子ζij(t)。

當(dāng)ζij(t)=0時,說明該航段受到了軍事活動影響;

當(dāng)ζij(t)=1時,說明該航段不受軍事活動影響。

本文將計算得到的網(wǎng)絡(luò)最大流maxv(f)對時間t進(jìn)行求導(dǎo)得到最終的進(jìn)場容量:

(15)

在計算出終端區(qū)的進(jìn)場容量之后,還需要求出終端區(qū)的離場容量Cdep。同理,將跑道的離場端作為起點(diǎn),終端區(qū)的出口點(diǎn)作為終點(diǎn)建立終端區(qū)離場網(wǎng)絡(luò)示意圖,之后參考進(jìn)場容量的計算方法就可以得到離場容量Cdep。

通過式(15),就可以計算出該終端區(qū)的動態(tài)容量C:

C=Capp+Cdep

(16)

3.2 模型求解方法

求出終端區(qū)容量的關(guān)鍵是確定該網(wǎng)絡(luò)的最大流。根據(jù)最大流最小割定理,可以利用改進(jìn)的遺傳算法進(jìn)行求解。

3.2.1 傳統(tǒng)算法的分析比較

求解網(wǎng)絡(luò)最大流最小割問題其實(shí)是一類組合優(yōu)化問題。目前比較常見的方法有Ford-Fulkerson標(biāo)號算法[11]、預(yù)流推進(jìn)類算法[12]等。Ford-Fulkerson是利用標(biāo)號的方式來找尋增廣鏈路。通過不斷增加增值鏈上的流量到無增廣鏈為止。其算法的復(fù)雜度為O(nm2),由于受算法的限制,此算法不適用于大規(guī)模的編程。而預(yù)流推進(jìn)算法則是在標(biāo)號法的基礎(chǔ)上提出的改進(jìn)算法,其復(fù)雜度為O(n2m)。可以看出,傳統(tǒng)方法隨著節(jié)點(diǎn)數(shù)目的增加,計算的復(fù)雜度會呈指數(shù)上升。為避免該問題,本文根據(jù)最大流最小割定理,結(jié)合遺傳原理,設(shè)計了求解最大流最小割問題的遺傳算法。

3.2.2 改進(jìn)遺傳算法的設(shè)計求解

3.2.2.1 編碼與解碼方式

初始群體:隨機(jī)生成N個可行解作為初始群體。對于每個個體,進(jìn)入點(diǎn)必須為1,終點(diǎn)必須為0,其余點(diǎn)為隨機(jī)生成的二進(jìn)制代碼0或者1。

3.2.2.2 適應(yīng)度函數(shù)

由于在求解終端區(qū)動態(tài)容量的過程中,需要找出網(wǎng)絡(luò)是最小割集容量。因此,將每個割集的容量作為適應(yīng)度,即:

(17)

3.2.2.3 選擇算子

在群體中,每個個體都按照一定的概率進(jìn)行交叉與變異,個體越接近最優(yōu)解越容易被選擇。在動態(tài)容量求解的過程中,適應(yīng)度值越小,越接近最優(yōu)解。而遺傳算法求解中則是適應(yīng)度值越大越容易被選擇,因此,在計算適應(yīng)度以后需要對其進(jìn)行歸一化處理。

將群體中適應(yīng)度的最大值記為cmax,最小值為cmin。為結(jié)合實(shí)際情況,將個體的適應(yīng)度函數(shù)更改為

(18)

3.2.2.4 交叉算子

(19)

如:(101001)?(110001)=(111001)。

3.2.2.5 變異操作

假定變異概率為Pm,對于每個新個體中的頂點(diǎn)(非進(jìn)入點(diǎn)或者終點(diǎn)),隨機(jī)生成一個0~1之間的數(shù)字r,若r

3.2.2.6 算法步驟

Step1: 初始化種群,隨機(jī)生成N個可行解。

Step2: 分別計算每個可行解的適應(yīng)度值,并作歸一化處理,選擇其中適應(yīng)度值最佳的個體遺傳到下一代個體中。

Step3: 選擇相應(yīng)的父本和母本,根據(jù)概率Pc的大小進(jìn)行交叉操作,產(chǎn)生對應(yīng)的個體。

Step4: 對產(chǎn)生的新個體進(jìn)行變異操作,并作為下一代種群。

Step5: 重復(fù)Step3~Step4,直至下一代種群個體為N。

4 算例仿真

本文以某機(jī)場終端區(qū)為例,計算該機(jī)場某一時段的離場容量。假設(shè)軍方當(dāng)天的訓(xùn)練科目為盤旋機(jī)動和8字機(jī)動。采用蒙特卡羅法選取符合速度、坡度的概率密度函數(shù)分布的隨機(jī)數(shù),進(jìn)行n=1 000 000次的軍用航空飛行仿真,仿真計算的參數(shù)如表1所示。最終位置偏差結(jié)果如圖5~圖6所示,為方便顯示截取了前10 000次的仿真數(shù)據(jù)。

表1 仿真相關(guān)參數(shù)

圖5 實(shí)際圓心橫坐標(biāo)位置圖

圖6 實(shí)際半徑圖

通過實(shí)例仿真發(fā)現(xiàn),軍用航空飛機(jī)在作盤旋機(jī)動時,圓心最大的偏離距離在橫坐標(biāo)上的投影為4.732 m,實(shí)際飛行過程中半徑最大為6 384.36 m,因此當(dāng)飛行在作盤旋機(jī)動時,可以將其活動范圍劃定為半徑為7 km的圓形區(qū)域。

對于8字機(jī)動,本文假設(shè)飛機(jī)在做完轉(zhuǎn)彎機(jī)動后,平飛時間為8 min,在考慮全向風(fēng)的情況下,通過對其動作的1 000 000次仿真,尋求其右邊界距離坐標(biāo)原點(diǎn)的最大距離,結(jié)合飛行半徑的變化情況確定最終的空域范圍。通過對1 000 000次的數(shù)據(jù)分析,其邊界最遠(yuǎn)距離為15.832 km,最大半徑為6.432 km,因此空域范圍為13 km×23 km的距形區(qū)域。飛行動作示意圖如圖7所示,前10 000次最右側(cè)的邊界偏差示意圖如圖8所示。

圖7 動作示意圖

圖8 右側(cè)邊界距離圖

利用最小外接距形法,將軍事活動的影響區(qū)域標(biāo)記為飛行受限區(qū),并將其影響范圍標(biāo)記在離場圖上,該機(jī)場的離場的結(jié)束點(diǎn)為N1、N2、N3、N4;離場的開始點(diǎn)為N19;其余航路點(diǎn)均作為中間節(jié)點(diǎn),建立受軍事活動影響的離場網(wǎng)絡(luò)示意圖,如圖9所示。

圖9 軍事活動影響下的網(wǎng)絡(luò)圖

假設(shè)該終端區(qū)上的機(jī)型比例大致為:重型機(jī)22.89%(其進(jìn)近速度280 km/h);中型機(jī)76.89%(其進(jìn)近速度為250 km/h);輕型機(jī)0.22%(其進(jìn)近速度為215 km/h)。

根據(jù)示意圖本文可看到航段集合為

A={A197,A711,A1110,A109,A98,A93,A83,A1918,A1814,A1413,A1312,A128,A181,A1817,A1716,A1715,A154,A144,A76,A65,A52}

而各航段的長度(km)依次為

L={13,54,24,10,22,17,15,11,14,28,23,39,64,20,31,7,47,68,19,38,62}

相應(yīng)的限制飛行高度(km)為

H={1.3,1.5,1.2,1.2,0.9,0.8,1.1,1.3,0.7,2.7,1.7,1.4,1.5,1.8,1.6,1.2,4.5,3.5,1.3,1.7,2.1}

根據(jù)溫度以及各航段的高度查詢換算因數(shù)表或利用內(nèi)插法計算,本文可以得到速度的換算因子

K={1.087 6,1.104 6,1.072 3,1.081 6,1.041 7,1.032 6,1.051 2,1.032 9,1.103 6,0.987 6,1.172 4,1.083 2,1.095 2,1.114 6,1.091 2,1.071 6,1.291 7,1.224 5,1.071 8,1.097 2,1.132 5}

將上述各參數(shù)代入式(8)~式(12)中,求出每個航段的靜態(tài)容量。之后,利用改進(jìn)的遺傳算法來求解網(wǎng)絡(luò)的最大流最小割容量。假定初始種群個體數(shù)為N=10,迭代代數(shù)為40,進(jìn)行100次重復(fù)試驗(yàn),實(shí)驗(yàn)結(jié)果如圖10所示。

圖10 實(shí)驗(yàn)結(jié)果圖

利用改進(jìn)遺傳算法可以求得在有軍事活動影響的情況下,該網(wǎng)絡(luò)的最大流最小割容量Cdep=14.5架次。利用文獻(xiàn)[12]中的最大流最小割算法對問題進(jìn)行求解,得出的結(jié)果仍為Cdep=14.5架次。從圖10可以看出:在100次實(shí)驗(yàn)中僅有2次實(shí)驗(yàn)結(jié)果出現(xiàn)誤差,其他情況下均能夠得出正確結(jié)論。

而利用改進(jìn)遺傳算法與傳統(tǒng)算法在運(yùn)行時間上的對比情況如圖11所示。

圖11 運(yùn)行時間對比圖

從圖11可以看出:相較于傳統(tǒng)最大流最小割算法,利用改進(jìn)的遺傳算法不僅能較為準(zhǔn)確地預(yù)測終端區(qū)容量,而且所需要的計算時間少于傳統(tǒng)算法,效率更高。利用傳統(tǒng)的數(shù)學(xué)分析法,主要利用固定方法求解數(shù)值,算法的復(fù)雜度會隨著節(jié)點(diǎn)的增多呈指數(shù)型增加;改進(jìn)算法主要利用智能算法搜索尋優(yōu)的能力,算法的運(yùn)算效率主要和種群規(guī)模有關(guān),而與節(jié)點(diǎn)數(shù)量關(guān)系不大,因此利用改進(jìn)的遺傳算法求解終端區(qū)容量可以有效避免由于節(jié)點(diǎn)增多而引起的復(fù)雜度增長的局限性。終端區(qū)容量會由于軍事活動的影響而變化,及時地計算出終端區(qū)動態(tài)容量能夠使終端區(qū)運(yùn)行更加高效合理。

5 結(jié) 論

(1) 本文提供了一種飛行受限區(qū)的劃設(shè)方法。通過構(gòu)建相應(yīng)的運(yùn)動模型,利用蒙特卡羅法從定量的角度確定飛機(jī)的運(yùn)動范圍,進(jìn)而利用外接矩形法來確定最終的飛行受限區(qū),為之后對軍事活動的研究提供了一種思路。

(2) 借鑒傳統(tǒng)算法中最大流最小割原理,利用改進(jìn)遺傳算法進(jìn)行求解,避免了傳統(tǒng)算法隨著節(jié)點(diǎn)增多計算復(fù)雜度呈指數(shù)上升的局限性,在保證準(zhǔn)確性的同時,提高運(yùn)算的效率。

(3) 在下一步的研究中,需要在保證有效性的同時,盡可能改進(jìn)運(yùn)算方法來進(jìn)一步提高運(yùn)算的效率。

猜你喜歡
航段空域遺傳算法
基于改進(jìn)遺傳算法的航空集裝箱裝載優(yōu)化
基于改進(jìn)遺傳算法的航空集裝箱裝載問題研究
基于知識輔助和OOOI報文的飛機(jī)航段識別系統(tǒng)
我國全空域防空體系精彩亮相珠海航展
基于遺傳算法的高精度事故重建與損傷分析
臺首次公布美空軍活動
空中交通管理中的空域規(guī)劃探討
物流配送車輛路徑的免疫遺傳算法探討
蒙阴县| 咸丰县| 台北县| 集安市| 鸡西市| 积石山| 新龙县| 稷山县| 秭归县| 吉木萨尔县| 大方县| 灵寿县| 扬中市| 上高县| 南充市| 昭苏县| 泸西县| 德钦县| 临洮县| 香港| 泽州县| 金华市| 涟水县| 崇文区| 合作市| 大英县| 酒泉市| 德庆县| 勃利县| 文山县| 靖宇县| 麻江县| 左权县| 临泉县| 尼玛县| 隆尧县| 巩义市| 新龙县| 永州市| 大渡口区| 宝鸡市|