黎璽克
摘要:為了解決邊坡工程中非線性變化給穩(wěn)定性預(yù)測(cè)造成的困難,建立了GABP神經(jīng)網(wǎng)絡(luò)計(jì)算模型預(yù)測(cè)巖質(zhì)邊坡穩(wěn)定性。采用定性評(píng)價(jià)和相互作用矩陣復(fù)核的方式,選取邊坡坡度、邊坡高度、斜坡結(jié)構(gòu)類(lèi)型、巖體強(qiáng)度、控滑結(jié)構(gòu)面傾角、巖體結(jié)構(gòu)特征、地表變形強(qiáng)度、人類(lèi)活動(dòng)強(qiáng)度8個(gè)評(píng)價(jià)因子作為BP神經(jīng)網(wǎng)絡(luò)的輸入變量;利用遺傳算法對(duì)神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值進(jìn)行優(yōu)化后訓(xùn)練巖質(zhì)邊坡穩(wěn)定性預(yù)測(cè)模型;對(duì)比分析GABP神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)效果。結(jié)果表明,優(yōu)化后的預(yù)測(cè)結(jié)果誤差絕對(duì)值小于0.15的占85%,未優(yōu)化的傳統(tǒng)神經(jīng)網(wǎng)絡(luò)僅占45%,優(yōu)化后的預(yù)測(cè)結(jié)果更加接近真實(shí)值,表明遺傳算法對(duì)傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)的優(yōu)化是有效的。研究結(jié)果對(duì)建立巖質(zhì)邊坡穩(wěn)定性預(yù)測(cè)模型具有一定的參考價(jià)值。
關(guān)鍵詞:區(qū)域地質(zhì)學(xué);遺傳算法;BP神經(jīng)神經(jīng)網(wǎng)絡(luò);巖質(zhì)邊坡;穩(wěn)定性
中圖分類(lèi)號(hào):P694文獻(xiàn)標(biāo)識(shí)碼:A
doi: 10.7535/hbgykj.2020yx03007
Abstract:
In order to resolve the difficulty of stability prediction caused by nonlinear change in slope engineering, a GABP neural network model was established to predict the stability of the rock slope. Firstly, eight evaluation factors, including slope, height, slope structure type, rock mass strength, angle of sliding control structure plane, rock mass structure characteristics, surface deformation strength and human activity intensity, were selected as input variables of BP neural network by qualitative evaluation and interaction matrix review. Secondly, the initial weights and thresholds of neural network were optimized by genetic algorithm to train the prediction model of rock slope stability. Finally, the prediction effects of GABP neural network and BP neural network were compared and analyzed. Results show that 85% of the optimized prediction error absolute values are less than 0.15, while nonoptimized errors only account for 45% of traditional neural network. The optimized prediction results are more close to the real value which indicates that the genetic algorithm is effective for the traditional BP neural network optimization.
The study can be consulted for establishing prediction models of rock slope stability.
Keywords:
regional geology; genetic algorithm; BP neural network; rock slope; stability
受地形地貌的影響,中國(guó)西南地區(qū)地質(zhì)災(zāi)害發(fā)生頻率較高,災(zāi)后治理需要耗費(fèi)大量的人力和物力,災(zāi)前防治可有效減少生命財(cái)產(chǎn)的損失,因此,對(duì)邊坡穩(wěn)定性的預(yù)測(cè)研究具有重要的意義[1]。
傳統(tǒng)的研究方法通常把影響邊坡穩(wěn)定性的因子量化后獨(dú)立代入模型進(jìn)行物理分析,然而在實(shí)際邊坡工程實(shí)踐中,各變量相互作用構(gòu)成一個(gè)微觀和宏觀上連續(xù)非線性變化的復(fù)雜的巨型系統(tǒng),簡(jiǎn)化模型將影響分析結(jié)果精度。人工神經(jīng)網(wǎng)絡(luò)的出現(xiàn)很好地解決了這個(gè)問(wèn)題,通過(guò)模擬生物神經(jīng)元的結(jié)構(gòu)特征和作用機(jī)理,解決邊坡系統(tǒng)中的非線性問(wèn)題。已有學(xué)者將巖土工程學(xué)科和計(jì)算機(jī)學(xué)科相結(jié)合,尋求解決邊坡問(wèn)題的新方法[25]。馮夏庭等[6]利用BP神經(jīng)網(wǎng)絡(luò)對(duì)96個(gè)圓弧和鍥體破壞邊坡實(shí)例訓(xùn)練學(xué)習(xí),建立邊坡安全系數(shù)預(yù)測(cè)模型;李興等[7]通過(guò)神經(jīng)網(wǎng)絡(luò)算法調(diào)整模糊邏輯系統(tǒng)的參數(shù),對(duì)高速公路邊坡進(jìn)行危險(xiǎn)性評(píng)價(jià);鮮木斯艷·阿布迪克依木等[8]將MIV理論和神經(jīng)網(wǎng)絡(luò)算法結(jié)合繪制龍南縣滑坡易發(fā)區(qū)間圖;李驊錦等[9]以黑方臺(tái)95處滑坡為研究對(duì)象,運(yùn)用迭代BP神經(jīng)網(wǎng)絡(luò)算法尋求不同影響因素的內(nèi)在聯(lián)系及其與滑距的關(guān)系;馮非凡等[10]將神經(jīng)網(wǎng)絡(luò)算法應(yīng)用在滑坡敏感性評(píng)價(jià)中,為了避免BP神經(jīng)網(wǎng)絡(luò)陷入局部極小值,采用粒子群算法優(yōu)化其權(quán)值和閾值。
筆者從2018年貴州省地質(zhì)災(zāi)害排查數(shù)據(jù)中選取73處巖質(zhì)邊坡作為實(shí)驗(yàn)樣本,隨機(jī)抽取53組訓(xùn)練樣本和20組測(cè)試樣本,通過(guò)定性分析和相互作用矩陣復(fù)核的方式選取8個(gè)評(píng)價(jià)因子,采用遺傳算法(genetic algorithm,GA)對(duì)多層前饋式誤差反向傳播網(wǎng)絡(luò)算法(bakepropagation,BP)的初始權(quán)值和閾值優(yōu)化后訓(xùn)練巖質(zhì)邊坡穩(wěn)定性預(yù)測(cè)模型,用測(cè)試樣本檢驗(yàn)?zāi)P偷臏?zhǔn)確性,研究結(jié)果可為巖質(zhì)邊坡穩(wěn)定性預(yù)測(cè)提供參考價(jià)值。
1基本原理
1.1BP神經(jīng)網(wǎng)絡(luò)
BP神經(jīng)網(wǎng)絡(luò)是一種具有自學(xué)習(xí)和自適應(yīng)能力的人工神經(jīng)網(wǎng)絡(luò)模型,由輸入數(shù)據(jù)的前向傳播和誤差值的反向傳播兩部分組成。標(biāo)準(zhǔn)的神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)包含輸入層節(jié)點(diǎn)、隱含層節(jié)點(diǎn)、輸出層節(jié)點(diǎn),層與層各節(jié)點(diǎn)相互連接,同一層各節(jié)點(diǎn)互不作用。該算法將研究對(duì)象n個(gè)樣本X=(x1,x2,…,xj,…,xn)作為神經(jīng)網(wǎng)絡(luò)的輸入層節(jié)點(diǎn),期望結(jié)果Y=(y1,y2,…,yi,…,yn)作為相應(yīng)的輸出節(jié)點(diǎn),通過(guò)相應(yīng)的權(quán)值和閾值進(jìn)行計(jì)算,比較預(yù)測(cè)結(jié)果與實(shí)際結(jié)果可得到誤差值,見(jiàn)式(1),適應(yīng)度函數(shù)是衡量誤差值是否符合要求的標(biāo)準(zhǔn),對(duì)不滿足要求的計(jì)算結(jié)果網(wǎng)絡(luò)將在權(quán)向量空間運(yùn)用梯度下降法進(jìn)行誤差反向傳播,其中隱含層和輸出層每一步權(quán)值的修正量,見(jiàn)式(2),通過(guò)反復(fù)迭代,使誤差達(dá)到期望值,完成BP神經(jīng)網(wǎng)絡(luò)計(jì)算模型的建立[1112]。
1.2遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)
傳統(tǒng)的BP神經(jīng)網(wǎng)絡(luò)采用誤差函數(shù)的梯度下降法,因?yàn)閷W(xué)習(xí)率的不可知性和權(quán)值及閾值的隨機(jī)性,算法在尋找到局部最優(yōu)解時(shí)就停止計(jì)算,不利于建立正確的網(wǎng)絡(luò)模型,同時(shí),隱含層的層數(shù)和節(jié)點(diǎn)數(shù)也直接影響網(wǎng)絡(luò)模型的學(xué)習(xí)效果,層數(shù)過(guò)多,計(jì)算過(guò)程緩慢,隱含層節(jié)點(diǎn)數(shù)過(guò)多易造成網(wǎng)絡(luò)模型過(guò)度學(xué)習(xí),隱含層節(jié)點(diǎn)數(shù)過(guò)少易造成片面學(xué)習(xí),BP神經(jīng)網(wǎng)絡(luò)的局限性影響計(jì)算結(jié)果的效率和精度,筆者采用遺傳算法對(duì)其進(jìn)行優(yōu)化。
遺傳算法以“優(yōu)勝劣汰”的自然法則為基礎(chǔ),通過(guò)選擇、交叉、變異3種自然界進(jìn)化的方法,建立一種自動(dòng)搜索全局最優(yōu)解的計(jì)算模型,它可以克服BP神經(jīng)網(wǎng)絡(luò)在(-1,1)區(qū)間自動(dòng)生成初始權(quán)值和閾值的隨機(jī)性,使網(wǎng)絡(luò)模型更加準(zhǔn)確。該算法首先隨機(jī)產(chǎn)生初始種群作為第1代,采用實(shí)數(shù)編碼規(guī)則,將權(quán)值和閾值編入個(gè)體的染色體中,根據(jù)適應(yīng)度函數(shù)評(píng)判每一代個(gè)體的優(yōu)劣性,采用比例選擇法使適應(yīng)度函數(shù)低的優(yōu)秀個(gè)體更易遺傳到下一代,然后通過(guò)交叉操作,子代在遺傳父代優(yōu)良基因的基礎(chǔ)上重組得到新的個(gè)體,更加適應(yīng)環(huán)境變化。為了保證個(gè)體的多樣性,變異是進(jìn)化過(guò)程中的關(guān)鍵步驟,它不僅可以使個(gè)體趨于最優(yōu)解時(shí)加快收斂速度,也可以使算法陷入局部最優(yōu)解時(shí)跳出局部,搜索全局最優(yōu),避免算法未成熟先收斂,通常設(shè)定較小的變異概率指導(dǎo)變異操作執(zhí)行,最后判斷個(gè)體是否滿足適應(yīng)度函數(shù),若滿足條件,遺傳算法終止,將進(jìn)化后的優(yōu)秀個(gè)體即初始權(quán)值和閾值代入BP神經(jīng)網(wǎng)絡(luò)中進(jìn)行仿真訓(xùn)練,得到網(wǎng)絡(luò)模型[1314]。
2應(yīng)用實(shí)例
2.1選取評(píng)價(jià)因子
自然界中不確定因素眾多,邊坡作為一個(gè)復(fù)雜的系統(tǒng),其穩(wěn)定性受多種因素影響,本研究秉承代表性、整體性、可取性的原則,從邊坡的幾何特征、邊坡結(jié)構(gòu)特征、邊坡影響因素3個(gè)方面選取邊坡坡度(P1)、邊坡高度(P2)、斜坡結(jié)構(gòu)類(lèi)型(P3)、巖體強(qiáng)度(P4)、控滑結(jié)構(gòu)面傾角(P5)、巖體結(jié)構(gòu)特征(P6)、地表變形強(qiáng)度(P7)、人類(lèi)活動(dòng)強(qiáng)度(P8)8個(gè)影響因素作為邊坡穩(wěn)定性的評(píng)價(jià)因子。
為了驗(yàn)證評(píng)價(jià)因子選取的正確性,在定性評(píng)價(jià)的基礎(chǔ)上建立相互作用矩陣進(jìn)行復(fù)核。相互作用矩陣可考慮各個(gè)變量相互作用對(duì)整個(gè)邊坡穩(wěn)定性系統(tǒng)的影響,研究結(jié)果具有代表性。首先根據(jù)半定量專(zhuān)家取值法對(duì)相互作用矩陣進(jìn)行賦值計(jì)算,選取10位從事地質(zhì)工作的專(zhuān)業(yè)人員對(duì)該矩陣進(jìn)行評(píng)估打分,取有效數(shù)據(jù)的平均值計(jì)算,計(jì)算結(jié)果可繪制
評(píng)價(jià)因子相互作用矩陣CouseEffect圖(如圖1所示)。從圖1可以看出,數(shù)據(jù)點(diǎn)集中分布在C=E的垂直線上,表明選取的8個(gè)評(píng)價(jià)因子對(duì)邊坡穩(wěn)定性的影響大,進(jìn)行邊坡穩(wěn)定性分析時(shí)應(yīng)該全部考慮這8個(gè)評(píng)價(jià)因子[15]。
2.2選取數(shù)據(jù)
從2018年貴州省地質(zhì)災(zāi)害排查數(shù)據(jù)中選取73處具有代表性的巖質(zhì)邊坡作為實(shí)驗(yàn)樣本,其中穩(wěn)定狀態(tài)為穩(wěn)定、較穩(wěn)定、基本穩(wěn)定、不穩(wěn)定的樣本數(shù)量分別為17處、18處、18處、20處,從總樣本集中隨機(jī)抽取53組訓(xùn)練樣本和20組測(cè)試樣本,輸入?yún)?shù)為前文確定的8個(gè)評(píng)價(jià)因子,由于計(jì)算模型輸入層的特殊性,需要將定性評(píng)價(jià)結(jié)果量化,在查閱大量文獻(xiàn)的基礎(chǔ)上,結(jié)合研究區(qū)域地質(zhì)環(huán)境特征,建立如表1所示評(píng)價(jià)因子量化規(guī)則。
2.3確定模型參數(shù)
根據(jù)經(jīng)驗(yàn)公式與試算法確定隱含層節(jié)點(diǎn)數(shù)為17,建立8171三層神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),其中BP神經(jīng)網(wǎng)絡(luò)的參數(shù)包括:訓(xùn)練次數(shù)為1 000次,學(xué)習(xí)速率為0.1,訓(xùn)練目標(biāo)為0.001;遺傳算法優(yōu)化的參數(shù)包括:迭代次數(shù)為50次,種群規(guī)模為25,交叉概率為0.25,變異概率為0.06。
2.4實(shí)驗(yàn)結(jié)果與分析
為了展現(xiàn)遺傳算法對(duì)BP神經(jīng)網(wǎng)絡(luò)的優(yōu)化作用,將GABP神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)網(wǎng)絡(luò)2種模型的預(yù)測(cè)結(jié)果對(duì)比,如圖2所示,可以看出遺傳算法優(yōu)化后的模型預(yù)測(cè)效果明顯優(yōu)于傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)。
繪制2種模型預(yù)測(cè)結(jié)果與期望結(jié)果的誤差曲線,如圖3和圖4所示。從圖中可知,BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果誤差較大,最大誤差為0.279 9,優(yōu)化后的算法誤差較小,最大誤差為0.181 3。從表4可以看出,20個(gè)測(cè)試樣本在傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)的結(jié)果中,誤差絕對(duì)值小于0.15的占45%,而遺傳算法優(yōu)化后的預(yù)測(cè)結(jié)果絕對(duì)值小于015的占85%,明顯高于優(yōu)化前的算法,所以GABP神經(jīng)網(wǎng)絡(luò)對(duì)BP神經(jīng)網(wǎng)絡(luò)的優(yōu)化是成功的。
3結(jié)語(yǔ)
1)傳統(tǒng)的BP神經(jīng)網(wǎng)絡(luò)因其初始權(quán)值和閾值的隨機(jī)性以及自身算法的局限性,計(jì)算結(jié)果易陷入局部最優(yōu)解,模型泛化能力不強(qiáng),遺傳算法具有“優(yōu)勝劣汰”的算法特點(diǎn),可以優(yōu)化初始權(quán)值和閾值,兩者結(jié)合可以充分發(fā)揮算法優(yōu)勢(shì),提高模型的準(zhǔn)確性。
2)以貴州省73處典型巖質(zhì)邊坡作為實(shí)驗(yàn)對(duì)象,選取53組樣本作為訓(xùn)練集,20組樣本作為測(cè)試集,對(duì)比BP神經(jīng)網(wǎng)絡(luò)和GABP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)結(jié)果,發(fā)現(xiàn)遺傳算法優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)效果更佳,誤差絕對(duì)值小于0.15的樣本數(shù)達(dá)到85%,明顯高于相同條件下傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)的樣本數(shù)(45%)。實(shí)驗(yàn)結(jié)果表明遺傳算法對(duì)BP神經(jīng)網(wǎng)絡(luò)的優(yōu)化是有效的。
3)在今后的研究中,可進(jìn)一步擴(kuò)大樣本集,提高模型對(duì)樣本的學(xué)習(xí)效果,訓(xùn)練更加完善的巖質(zhì)邊坡穩(wěn)定性預(yù)測(cè)模型。
參考文獻(xiàn)/References:
[1]黃潤(rùn)秋,向喜瓊,巨能攀.我國(guó)區(qū)域地質(zhì)災(zāi)害評(píng)價(jià)的現(xiàn)狀及問(wèn)題[J].地質(zhì)通報(bào),2004,23(11):10781082.
HUANG Runqiu, XIANG Xiqiong, JU Nengpan. Assessment of Chinas regional geohazards: Present situation and problems[J]. Geological Bulletin of China, 2004,23(11):10781082.
[2]任慶國(guó),苗蘭弟.支持向量機(jī)模型在斷層破碎帶圍巖變形預(yù)測(cè)中的應(yīng)用[J].河北工業(yè)科技,2017,34(3):194201.
REN Qingguo, MIAO Landi. Application of support vector machine model in fracture zone surrounding rock deformation prediction[J]. Hebei Journal of Industrial Science and Technology, 2017,34(3):194201.
[3]翟會(huì)君,翟亞鋒,朱濤,等.基于回歸ELM神經(jīng)網(wǎng)絡(luò)模型的滑坡變形及失穩(wěn)預(yù)測(cè)模型[J].河北工業(yè)科技,2017,34(6): 440447.
ZHAI Huijun, ZHAI Yafeng, ZHU Tao, et al. Prediction model of landslide deformation and instability based on regressionELM neural network model[J]. Hebei Journal of Industrial Science and Technology, 2017,34(6): 440447.
[4]樊玉敬, 錢(qián)龍, 劉碩,等. 雷達(dá)崗滑坡形成機(jī)理及穩(wěn)定性分析[J]. 河北工業(yè)科技, 2013,30(2):6365.
FAN Yujing, QIAN Long, LIU Shuo, et al. Formation mechanism and stability of Leidagang landslide[J]. Hebei Journal of Industrial Science and Technology, 2013,30(2):6365.
[5]史笑凡,楊春風(fēng),王可意.基于支持向量機(jī)和改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的路基邊坡穩(wěn)定性研究[J].公路交通科技,2019,36(1): 3137.
SHI Xiaofan, YANG Chunfeng, WANG Keyi. Study on stability of roadbed slope based on SVM and improved BP neural network[J].Journal of Highway and Transportation Research and Development, 2019,36(1): 3137.
[6]馮夏庭,王泳嘉,盧世宗.邊坡穩(wěn)定性的神經(jīng)網(wǎng)絡(luò)估計(jì)[J].工程地質(zhì)學(xué)報(bào),1995,3(4):5461.
FENG Xiating, WANG Yongjia, LU Shizong. Neural network estimation of slope stability[J]. Journal of Engineering Geology, 1995,3(4):5461.
[7]李興,張鵬.基于模糊神經(jīng)網(wǎng)絡(luò)的高速公路邊坡危險(xiǎn)性評(píng)價(jià)與防護(hù)策略[J].公路工程,2018,43(5):305309.
LI Xing, ZHANG Peng. Risk assessment and protection strategy of expressway slope based on fuzzy neural network[J].Highway Engineering, 2018,43(5):305309.
[8]鮮木斯艷·阿布迪克依木,何書(shū).基于MIVBP神經(jīng)網(wǎng)絡(luò)的滑坡易發(fā)性空間預(yù)測(cè)[J].人民長(zhǎng)江,2019,50(11):140144.
ABUDIKEYINU XMSY, HE Shu. Spatial prediction on landslide vulnerability based on MIVBP neural network[J]. Yangtze River, 2019,50(11):140144.
[9]李驊錦,許強(qiáng),何雨森,等.甘肅黑方臺(tái)滑坡滑距參數(shù)的BP神經(jīng)網(wǎng)絡(luò)模型[J].水文地質(zhì)工程地質(zhì),2016,43(4):141146.
LI Huajin, XU Qiang, HE Yusen, et al. BP neural network model for analyzing the impact factors of the travel distance of the Heifangtai landslide in Gansu[J].Hydrogeology and Engineering Geology, 2016,43(4):141146.
[10]馮非凡,武雪玲,牛瑞卿,等.粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的滑坡敏感性評(píng)價(jià)[J].測(cè)繪科學(xué),2017,42(10):170175.
FENG Feifan, WU Xueling, NIU Ruiqing, et al. Landslide susceptibility assessment based on PSOBP neural network[J]. Science of Surveying and Mapping, 2017,42(10):170175.
[11]李燦,周海清,宋強(qiáng)輝.基于BP神經(jīng)網(wǎng)絡(luò)的客土噴播邊坡侵蝕模數(shù)預(yù)測(cè)模型研究[J].粉煤灰綜合利用,2019(3):812.
LI Can, ZHOU Haiqing, SONG Qianghui. Rsesarch on prediction model of erosion modulus of guest soil spraying slope based on BP neural network[J]. Fly Ash Comprehensive Utilization, 2019(3):812.
[12]閔江濤,楊杰,馬晨原.基于改進(jìn)GABP網(wǎng)絡(luò)算法的邊坡力學(xué)參數(shù)反演分析[J].水電能源科學(xué),2019,37(11):152155.
MIN Jiangtao, YANG Jie, MA Chenyuan. Back analysis of slope mechanics parameters based on improved GABP network algorithm[J].Water Resources and Power, 2019,37(11):152155.
[13]臧焜巖,李梅紅.基于GABP模型的露天礦邊坡穩(wěn)定性預(yù)測(cè)[J].中國(guó)礦業(yè),2019,28(6):144148.
ZANG Kunyan, LI Meihong. Slope stability prediction of openpit mine based on GABP model[J]. China Mining Magazine, 2019,28(6):144148.
[14]戴妙林,屈佳樂(lè),劉曉青,等.基于GABP算法的巖質(zhì)邊坡穩(wěn)定性和加固效應(yīng)預(yù)測(cè)模型及其應(yīng)用研究[J].水利水電技術(shù),2018,49(5):165171.
DAI Miaolin, QU Jiale, LIU Xiaoqing,et al. Study on GABP hybrid algorithmbased prediction model and its application to rock slope stability and reinforcement effect[J]. Water Resources and Hydropower Engineering, 2018,49(5):165171.
[15]趙建軍,賀宇航,黃潤(rùn)秋,等.基于因子分析法的邊坡穩(wěn)定性評(píng)價(jià)指標(biāo)權(quán)重[J].西南交通大學(xué)學(xué)報(bào),2015,50(2):325330.
ZHAO Jianjun, HE Yuhang, HUANG Runqiu, et al. Weights of slope stability evaluation indexes based on factor analysis method[J]. Journal of Southwest Jiaotong University, 2015,50(2):325330.