鄒怡然 王海波 李俊 沈鋒
[摘要] 天冬氨酰-(天冬酰胺酰)β-羥化酶(ASPH)是α-酮戊二酸依賴性雙加氧酶,催化天冬氨酰和天冬酰胺基殘基的羥化。ASPH在肝細胞癌和肝內(nèi)膽管癌中均有表達,對二者的發(fā)生和發(fā)展有作用。本文主要對ASPH的結(jié)構(gòu)和功能及其作用機制的研究進展進行綜述。
[關(guān)鍵詞] 天冬氨酰-(天冬酰胺酰)β-羥化酶;α酮戊二酸依賴性雙加氧酶FTO;肝腫瘤;受體,Notch;綜述
[中圖分類號] R345;R735.7 ?[文獻標志碼] A ?[文章編號] 2096-5532(2020)02-0248-05
doi:10.11712/jms.2096-5532.2020.56.101 [開放科學(資源服務(wù))標識碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200521.1527.002.html;2020-05-22 08:50
[ABSTRACT] Aspartyl-(asparaginyl)-β-hydroxylase (ASPH) is a α-ketoglutarate-dependent dioxygenase and catalyzes the hydroxylation of aspartyl and asparaginyl residues. ASPH is expressed in both hepatocellular carcinoma and intrahepatic cholangiocarcinoma and has an effect on the development and progression of these two diseases. This article reviews the research advances in the structure, function, and mechanism of ASPH.
[KEY WORDS] aspartyl-(asparaginyl)-β-hydroxylase; alpha-ketoglutarate-dependent dioxygenase FTO; liver neoplasms; receptors, Notch; review
原發(fā)性肝癌是世界范圍內(nèi)最常見的癌癥之一,也是癌癥相關(guān)死亡的重要原因[1]。根據(jù)腫瘤組織來源可分為肝細胞癌(HCC)和肝內(nèi)膽管癌(ICC)[2],一般HCC占70%~85%,ICC占10%~20%[3]。天冬氨酰-(天冬酰胺酰)β-羥化酶(ASPH)是一種高度保守的雙加氧酶,在包括HCC和ICC的多種惡性腫瘤中高表達[4]。ASPH可以調(diào)控原發(fā)性肝癌的發(fā)生及發(fā)展,可能是疾病藥物及免疫治療研究的新方向。本文簡要綜述了ASPH在HCC和ICC發(fā)生發(fā)展中作用和機制的研究進展。
1 HCC與ICC的診療現(xiàn)狀
1.1 HCC的診療現(xiàn)狀
HCC是全球第五大常見的惡性腫瘤,也是與癌癥相關(guān)死亡的第二大原因[3]。HCC的發(fā)病率隨年齡升高而增高,且男性的發(fā)病率約為女性的2倍[5]。最常見的致病因素是慢性病毒性肝炎(HBV與HCV)、長期飲酒和黃曲霉毒素暴露等[6]。尤其HBV感染,全球大約有60%的HCC病人發(fā)病與之相關(guān)[7]。肝切除(LR)和肝移植(LT)是早期腫瘤病人的首選治療方法,其中LR是臨床應(yīng)用最廣泛的治療手段,符合切除標準的病人接受LR術(shù)后能取得比較滿意的治療效果[8]。但是對于沒有條件接受LR、LT或者化學栓塞治療的晚期病人,其治療方式的選擇有限。然而令人欣喜的是,索拉菲尼——一種多酪氨酸激酶抑制劑的出現(xiàn)有效延長了晚期肝癌病人的生存期[9-10]。同時,新的分子靶向藥物也不斷被開發(fā)和應(yīng)用:瑞戈非尼——一種口服多激酶抑制劑,作為索拉菲尼耐藥病人的二線用藥已進入臨床應(yīng)用[11];樂伐替尼——一種血管內(nèi)皮生長因子受體1~3抑制劑,成纖維細胞生長因子受體1~4抑制劑,血小板衍生生長因子受體α、轉(zhuǎn)染重排(RET)和KIT的抑制劑,在一項開放性、多中心、非劣效性、隨機試驗中顯示其生存率不低于索拉非尼[12];近期,卡博替尼經(jīng)批準用于甲狀腺癌和腎癌的血管內(nèi)皮細胞生長因子受體(VEGFR)2和RET抑制劑,在HCC的二線治療中與安慰劑相比顯示出生存收益[13]。這些新的化療藥物的出現(xiàn),改變了晚期HCC的治療策略,在一定程度上提高了晚期病人的預后。
1.2 ICC的診療現(xiàn)狀
ICC起源于肝內(nèi)膽管的上皮細胞,是第二常見的原發(fā)性肝癌[14]。在過去的30年里,ICC的發(fā)病率和與其相關(guān)的死亡率都呈現(xiàn)上升趨勢[15]。其主要危險因素包括:慢性肝炎(主要為HCV)、肝硬化、膽管炎性疾病、肝膽吸蟲、過量乙醇攝入和肥胖等[16]。ICC發(fā)病于肝內(nèi),病人最初沒有癥狀或只表現(xiàn)非特異癥狀,包括腹痛、食欲不振、體質(zhì)量下降、全身乏力和盜汗等,這種隱匿的發(fā)病特點使ICC的早期診斷困難[17]。ICC具有高度的侵襲性,手術(shù)切除是目前治療ICC的主要手段,并可提高特定病人的生存率[18]。研究普遍認為切緣無腫瘤細胞切除(R0)是手術(shù)治療的金標準,并且切緣的陽性病理結(jié)果與預后不良有著密切的聯(lián)系[19-20]。鑒于以上特點,僅30%的病人有接受手術(shù)治療的機會[21]。手術(shù)效果也難以令人滿意,術(shù)后5年的無復發(fā)生存率和總生存率僅為26.1%和33.9%[22-23]。輔助化療可以為晚期或侵襲性ICC病人提供一定的生存收益,但在臨床實踐中尚缺少有效的靶向治療藥物。近年來針對新輔助治療(NAT)的研究逐漸增多,但因?qū)ζ涫找娲嬖跔幾h并未在臨床推廣應(yīng)用。雖然支持晚期ICC病人應(yīng)用NAT的證據(jù)十分有限,但已經(jīng)有多項研究顯示病人手術(shù)前接受降期治療能夠改善預后[24-26]。
2 ASPH的結(jié)構(gòu)及功能
ASPH是分子量為8.6萬的Ⅱ型跨膜蛋白,屬于α-酮戊二酸依賴性的雙加氧酶[27-33]。其基因全長含有214 085個堿基,有33個外顯子,可編碼4種蛋白質(zhì),即ASPH、Junctin(肌漿網(wǎng)的結(jié)構(gòu)蛋白)、humbug(缺少催化結(jié)構(gòu)域)和Junctate[34-35]。ASPH催化某些蛋白質(zhì)(包括Notch1和Jagged)的表皮生長因子(EGF)樣結(jié)構(gòu)域中的天冬氨酰和天冬酰胺基殘基的羥化[34,36-38],其在一般成人體內(nèi)組織中表達非常低[39-41],但是其在促進細胞遷移和器官發(fā)育的過程中發(fā)揮一定作用,可在胚胎組織中表達[27-28]。研究人員在包括肝臟惡性腫瘤、肺癌、乳癌、結(jié)腸癌和神經(jīng)系統(tǒng)惡性腫瘤等的轉(zhuǎn)錄和翻譯水平都觀察到了ASPH的過度表達[42-43]。ASPH在HCC中過表達與病人手術(shù)后較高的復發(fā)率和較低的存活率之間存在顯著關(guān)聯(lián)[41]。盡管在ICC中也觀察到ASPH的過表達,并且提示了ASPH與ICC術(shù)后不良預后的關(guān)系[44],但ASPH在ICC中的作用機制的相關(guān)研究較少,還有待進一步深入探索。
2.1 ASPH在HCC中的作用機制
在HCC中存在ASPH過度表達的現(xiàn)象[45],且ASPH是HCC組織中表達最高的腫瘤抗原前體蛋白之一[46]。研究表明,與ASPH表達低的病人比較,ASPH表達高者腫瘤復發(fā)率高、生存率低,預后不良[41]。
ASPH刺激可導致抗原特異性CD4+T細胞的形成,采用ASPH負載的樹突狀細胞免疫可以降低HCC小鼠模型中腫瘤復發(fā)的風險[47]。在HepG2細胞中,ASPH的表達可由胰島素和胰島素樣生長因子1(IGF-1)通過ERK/MAPK和PI3K/AKT信號通路誘導,并被胰島素受體底物1(IRS-1)的過度表達激活,從而導致HepG2細胞的運動性和侵襲性增加;反之,siRNA抑制ASPH表達可降低HepG2細胞的運動性和侵襲性[42]。在轉(zhuǎn)基因小鼠的肝臟中,乙型肝炎X蛋白(HBx)+/IRS-1+雙轉(zhuǎn)基因小鼠肝細胞不典型增生增加,繼而發(fā)展為HCC,且肝臟中ASPH的mRNA表達選擇性地增加,進一步證明了ASPH的過度表達與肝細胞的惡性轉(zhuǎn)化之間存在聯(lián)系[48]。
2.2 ASPH通過Notch信號通路作用于HCC
Notch信號通路在HCC細胞系中起到重要作用,并且Notch信號通路與ASPH也存在一定的聯(lián)系。Notch信號級聯(lián)是一種高度保守的通路,具有多種功能,在胚胎發(fā)育過程中對細胞信號傳導和決定細胞命運的控制具有重要作用[49-51]。不僅于此,其在肝臟的生成、修復和代謝等方面也發(fā)揮著重要作用。哺乳動物中存在4種不同的Notch受體(Notch1~4),其應(yīng)答于5種不同的配體(Delta-like 1、3、4和Jagged1、Jagged2)[51]。研究結(jié)果顯示,在多種HCC細胞系中,Notch受體1、2、3和4以及配體Jagged1均有表達,并且Notch細胞內(nèi)結(jié)構(gòu)域(NICDs)和活化的Notch2細胞內(nèi)結(jié)構(gòu)域在部分HCC細胞系中也有顯著地表達,這一結(jié)果表明Notch信號通路存在于HCC細胞系中[52]。研究者已經(jīng)通過計算機輔助藥物設(shè)計并且開發(fā)了ASPH的小分子抑制劑MO-I-1100,通過檢測發(fā)現(xiàn)該化合物能將ASPH的活性降低80%[53-55]。使用該化合物可降低HCC細胞中下游Notch調(diào)節(jié)的HES1和HEY1基因的表達,成功抑制HCC細胞的遷移、侵襲和錨定依賴生長[52]。在動物模型中,抑制ASPH活性可通過抑制HCC的Notch信號級聯(lián)抑制原位和皮下小鼠模型體內(nèi)的HCC的生長,產(chǎn)生抗腫瘤作用 [55]。
2.3 ASPH在ICC中的作用機制
ASPH高度表達這一現(xiàn)象在膽管癌中尤為突出,其陽性率>95%[43,53]。通過對ICC病人臨床數(shù)據(jù)進行分析,發(fā)現(xiàn)ASPH的表達與腫瘤大小、浸潤性生長方式、侵襲性組織學分級和血管侵犯等變量相關(guān),并且ASPH表達的增加是預后的危險因素,提示ASPH在調(diào)節(jié)ICC細胞侵襲或轉(zhuǎn)移能力方面具有重要作用[44]。在ICC細胞系中,與高分化分型相比,ASPH在中分化或低分化腫瘤細胞中的表達更高,并通過促進細胞運動的方式促進ICC細胞的浸潤性生長[54]。但是,在人正常增殖膽管細胞和大鼠非膽管癌模型中,不存在ASPH的過表達現(xiàn)象,這表明ASPH的過度表達與膽管上皮細胞轉(zhuǎn)化為惡性腫瘤細胞有關(guān)[43]。此外,在大鼠ICC模型中,ASPH負載樹突狀細胞的免疫具有抗腫瘤作用,這些樹突狀細胞在體外對ICC細胞具有細胞毒性,抑制了肝內(nèi)腫瘤的生長和轉(zhuǎn)移,并且還與CD3+T細胞向腫瘤浸潤的增加相關(guān)[55]。這與HCC中CD4+T細胞向腫瘤浸潤的增加類似卻又有所區(qū)別。
2.4 ASPH通過Notch信號通路作用于ICC
一些研究表明,Notch信號通路與ICC的發(fā)生和發(fā)展有關(guān):從機制上講,Notch信號級聯(lián)反應(yīng)的激活與ICC發(fā)生存在關(guān)聯(lián),ASPH過表達通過Notch1依賴的細胞周期蛋白D1(Cyclin D1)途徑,促進Notch活化和調(diào)控ICC進程。Notch下游靶點Cyclin D1在ICC細胞系中被Notch信號轉(zhuǎn)錄調(diào)控[56],提示它可能是調(diào)節(jié)細胞周期的重要效應(yīng)器。有研究者發(fā)現(xiàn)一種新的分子機制“ASPH-Notch-Cyclin D1”是ICC生長和進展的驅(qū)動因子,并針對性使用ASPH的小分子抑制劑,成功在體外抑制ICC細胞的增殖[57]。
3 ASPH的應(yīng)用前景
近年來,ASPH在HCC與ICC的研究中取得重要進展,如前所述,針對性開發(fā)的小分子抑制劑在細胞和動物模型中能夠有效抑制腫瘤的生長。與此同時,在其他多種惡性腫瘤的分子靶向治療研究中,ASPH也展示出一定的開發(fā)價值:ASPH小分子抑制劑MO-I-1100除了能夠抑制HCC,還在前列腺癌的研究中也展示出相似的腫瘤抑制效果[53]。在針對多形性膠質(zhì)母細胞瘤(GBM)的研究中,ASPH小分子抑制劑MO-I-1100和MO-I-1151能夠顯著降低GBM細胞的存活率和定向運動能力[58]。在乳癌中,以ASPH為靶點的人單克隆抗體(mAb)PAN-622在腫瘤細胞表面的放射性標記是一種全新的顯像方法,并且有可能用于轉(zhuǎn)移性乳癌的治療[59]。
4 結(jié)語
越來越多的研究已關(guān)注到,ASPH在原發(fā)性肝癌的發(fā)生和發(fā)展過程中發(fā)揮著重要的作用。ASPH在HCC和ICC組織中的表達較正常組織都是升高的,無論是何種組織類型來源,ASPH在腫瘤組織中的高表達都與病人的不良預后存在關(guān)聯(lián),說明圍繞ASPH機制進一步深入研究在臨床應(yīng)用上有巨大前景和重要意義。從機制上看,ASPH在Notch通路中的調(diào)控作用在兩種主要原發(fā)性肝癌中均有所體現(xiàn),且針對Notch通路的ASPH小分子抑制劑能夠在動物模型中抑制腫瘤的增殖和轉(zhuǎn)移,提示了一個新的靶向治療的研究方向和思路。
[參考文獻]
[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018,68(6):394-424.
[2] SIA D, VILLANUEVA A, FRIEDMAN S L, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis[J]. Gastroenterology, 2017,152(4):745-761.
[3] MASSARWEH N N, EL-SERAG H B. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Cancer Control, 2017,24(3):1073274817729245.
[4] HOU G, XU B, BI Y, et al. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: a brief update[J]. Bosnian journal of basic medical sciences, 2018,18(4):297.
[5] VILLANUEVA A. Hepatocellular carcinoma[J]. New England Journal of Medicine, 2019,380(15):1450-1462.
[6] BUDNY A, KOZOWSKI P, KAMISKA M, et al. Epidemiology and risk factors of hepatocellular carcinoma[J]. Pol Merkur Lekarski, 2017,43(255):133-139.
[7] AKINYEMIJU T, ABERA S, AHMED M, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and National level Results from the global burden of disease study 2015[J]. JAMA Oncology, 2017,3(12):1683-1691.
[8] KULIK L, EL-SERAG H B. Epidemiology and management of hepatocellular carcinoma[J]. Gastroenterology, 2019,156(2):477-491. e1.
[9] LLOVET J M, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. New England Journal of Medicine, 2008,359(4):378-390.
[10] CHENG A L, KANG Y K, CHEN Z D, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase Ⅲ randomised, double-blind, placebo-controlled trial[J]. The Lancet Oncology, 2009,10(1):25-34.
[11] BRUIX J, QIN S K, MERLE P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on so-rafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. The Lancet, 2017,389(164):56-66.
[12] KUDO M, FINN R S, QIN S K, et al. Lenvatinib versus so-rafenib in first-line treatment of patients with unresectable he-patocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. The Lancet, 2018,391(1126):1163-1173.
[13] ABOU-ALFA G K, MEYER T, CHENG A L, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma[J]. New England Journal of Medicine, 2018,379(1):54-63.
[14] ALJIFFRY M, ABDULELAH A, WALSH M, et al. Evidence-based approach to cholangiocarcinoma:a systematic review of the current literature[J]. Journal of the American College of Surgeons, 2009,208(1):134-147.
[15] KHAN S A, EMADOSSADATY S, LADEP N G, et al. Ri-sing trends in cholangiocarcinoma:is the ICD classification system misleading us[J]? Journal of Hepatology, 2012,56(4):848-854.
[16] PETRICK J L, YANG B, ALTEKRUSE S F, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-Medicare[J]. PLoS One, 2017,12(10):e0186643.
[17] LAZARIDIS K N, GORES G J. Cholangiocarcinoma[J]. Gastroenterology, 2005,128(6):1655-1667.
[18] BRIDGEWATER J, GALLE P R, KHAN S A, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma[J]. Journal of Hepatology, 2014,60(6):1268-1289.
[19] SPOLVERATO G, YAKOOB M Y, KIM Y, et al. The impact of surgical margin status on long-term outcome after resection for intrahepatic cholangiocarcinoma[J]. Annals of Surgical Oncology, 2015,22(12):4020-4028.
[20] YEH C N, HSIEH F J, CHIANG K C, et al. Clinical effect of a positive surgical margin after hepatectomy on survival of patients with intrahepatic cholangiocarcinoma[J]. Drug Design, Development and Therapy, 2015,9:163-174.
[21] MOEINI A, SIA D, BARDEESY N, et al. Molecular pathogenesis and targeted therapies of intrahepatic cholangiocarcinoma[J]. Clinical Cancer Research, 2016,22(2):291-300.
[22] CHAN K M, TSAI C Y, YEH C N, et al. Characterization of ? intrahepatic cholangiocarcinoma after curative resection:outcome,prognostic factor,and recurrence[J]. BMC Gastroente-rology, 2018,18(1):180.
[23] DE JONG M C, NATHAN H, SOTIROPOULOS G C, et al. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2011,29(23):3140-3145.
[24] LE ROY B, GELLI M, PITTAU G, et al. Neoadjuvant che-motherapy for initially unresectable intrahepatic cholangiocarcinoma[J]. British Journal of Surgery, 2018,105(7):839-847.
[25] KIM Y I, PARK J W, KIM B H, et al. Outcomes of concurrent chemoradiotherapy versus chemotherapy alone for advanced-stage unresectable intrahepatic cholangiocarcinoma[J]. Radiation Oncology, 2013,8(1):292.
[26] LUNSFORD K E, JAVLE M, HEYNE K, et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series[J]. The lancet Gastroenterology & Hepatology, 2018,3(5):337-348.
[27] GRONKE R S, VANDUSEN W J, GARSKY V M, et al. Aspartyl beta-hydroxylase:in vitro hydroxylation of a synthetic peptide based on the structure of the first growth factor-like domain of human factor Ⅸ[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989,86(10):3609-3613.
[28] STENFLO J, HOLME E, LINDSTEDT S, et al. Hydroxy-lation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2-oxoglutarate-dependent dioxygenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989,86(2):444-447.
[29] SHIMIZU K, CHIBA S, KUMANO K, et al. Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods[J]. Journal of Biological Chemistry, 1999,274(46):32961-32969.
[30] ZIMRIN A B, PEPPER M S, MCMAHON G A, et al. An antisense oligonucleotide to the notch ligand jagged enhances fibroblast growth factor-induced angiogenesis in vitro[J]. Journal of Biological Chemistry, 1996,271(51):32499-32502.
[31] MCGINNIS K, KU G M, VANDUSEN W J, et al. Site-directed mutagenesis of residues in a conserved region of bovine aspartyl (asparaginyl) beta-hydroxylase: evidence that histidine 675 has a role in binding Fe2+[J]. Biochemistry, 1996,35(13):3957-3962.
[32] WANDS J R, LAVAISSIERE L, MORADPOUR D, et al. Immunological approach to hepatocellular carcinoma[J]. Journal of Viral Hepatitis, 1997,4:60-74.
[33] HO S P, SCULLY M S, KRAUTHAUSER C M, et al. Antisense oligonucleotides selectively regulate aspartyl beta-hydroxylase and its truncated protein isoform in vitro but distribute poorly into A549 tumors in vivo[J]. Journal of Pharmacology and Experimental Therapeutics, 2002,302(2):795-803.
[34] DINCHUK J E, HENDERSON N L, BURN T C, et al. As-partyl beta-hydroxylase (Asph) and an evolutionarily conserved isoform of Asph missing the catalytic domain share exons with junctin[J]. Journal of Biological Chemistry, 2000,275(50):39543-39554.
[35] TREVES S, FERIOTTO G, MOCCAGATTA L, et al. Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarco (endo) plasmic reti-culum membrane[J]. Journal of Biological Chemistry, 2000,275(50):39555-39568.
[36] MONKOVIC D D, VANDUSEN W J, PETROSKI C J, et al. Invertebrate aspartyl/asparaginyl beta-hydroxylase: potential modification of endogenous epidermal growth factor-like mo-dules[J]. Biochemical and Biophysical Research Communications, 1992,189(1):233-241.
[37] DINCHUK J E, FOCHT R J, KELLEY J A, et al. Absence of post-translational aspartyl beta-hydroxylation of epidermal growth factor domains in mice leads to developmental defects and an increased incidence of intestinal neoplasia[J]. Journal of Biological Chemistry, 2002,277(15):12970-12977.
[38] CANTARINI M C, DE LA MONTE S M, PANG M Y, et al. Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms[J]. Hepatology (Baltimore, Md.), 2006,44(2):446-457.
[39] PATEL N, KHAN A O, MANSOUR A, et al. Mutations in ASPH cause facial dysmorphism, lens dislocation, anterior-segment abnormalities, and spontaneous filtering blebs, or Traboulsi syndrome[J]. American Journal of Human Gene-tics, 2014,94(5):755-759.
[40] WANG Zhiwei, LI Yiwei, KONG Dejuan, et al. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness[J]. Current Drug Targets, 2010,11(6):745-751.
[41] WANG Kui, LIU Jian, YAN Zhenlin, et al. Overexpression of aspartyl-(asparaginyl)-beta-hydroxylase in hepatocellular carcinoma is associated with worse surgical outcome[J]. Hepatology (Baltimore, Md.), 2010,52(1):164-173.
[42] DE LA MONTE S M, TAMAKI S, CANTARINI M C, et al. Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness[J]. Journal of Hepatology, 2006,44(5):971-983.
[43] INCE N, DE LA MONTE S M, WANDS J R. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation[J]. Cancer Research, 2000,60(5):1261-1266.
[44] MAEDA T, TAGUCHI K, AISHIMA S, et al. Clinicopathological correlates of aspartyl (asparaginyl) beta-hydroxylase over-expression in cholangiocarcinoma[J]. Cancer Detection and Prevention, 2004,28(5):313-318.
[45] LAVAISSIERE L, JIA S, NISHIYAMA M, et al. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma[J]. Journal of Clinical Investigation, 1996,98(6):1313-1323.
[46] AREF A M, HOA N T, GE L, et al. HCA519/TPX2: a potential T-cell tumor-associated antigen for human hepatocellular carcinoma[J]. Onco Targets and therapy, 2014,7:1061.
[47] SHIMODA M, TOMIMARU Y, CHARPENTIER K P, et al. Tumor progression-related transmembrane protein aspartate-beta-hydroxylase is a target for immunotherapy of hepatocellular carcinoma[J]. Journal of Hepatology, 2012,56(5):1129-1135.
[48] LONGATO L, DE LA MONTE S, KUZUSHITA N, et al. Overexpression of insulin receptor substrate-1 and hepatitis Bx genes causes premalignant alterations in the liver[J]. Hepato-logy, 2009,49(6):1935-1943.
[49] MIELE L, OSBORNE B. Arbiter of differentiation and death: Notch signaling meets apoptosis[J]. Journal of Cellular Phy-siology, 1999,181(3):393-409.
[50] MIELE L, MIAO H, NICKOLOFF B J. NOTCH signaling as a novel cancer therapeutic target[J]. Current Cancer Drug Targets, 2006,6(4):313-323.
[51] MIELE L. Notch signaling[J]. Clinical Cancer Research, 2006,12(4):1074-1079.
[52] AIHARA A, HUANG C K, OLSEN M J, et al. A cell-surface beta-hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma[J]. Hepatology, 2014,60(4):1302-1313.
[53] DONG X, LIN Q, AIHARA A, et al. Aspartate β-hydroxylase expression promotes a malignant pancreatic cellular phenotype[J]. Oncotarget, 2015,6(2):1231-1248.
[54] MAEDA T, SEPE P, LAHOUSSE S, et al. Antisense oligodeoxynucleotides directed against aspartyl(asparaginyl)β-hydroxylase suppress migration of cholangiocarcinoma cells[J]. Journal of Hepatology, 2003,38(5):615-622.
[55] NODA T, SHIMODA M, ORTIZ V, et al. Immunization with aspartate-beta-hydroxylase-loaded dendritic cells produces antitumor effects in a rat model of intrahepatic cholangiocarcinoma[J]. Hepatology, 2012,55(1):86-97.
[56] SUGIMACHI K, AISHIMA S, TAGUCHI K, et al. The role of overexpression and gene amplification of cyclin D1 in intrahepatic cholangiocarcinoma[J]. Journal of Hepatology, 2001,35(1):74-79.
[57] HUANG C K, IWAGAMI Y, AIHARA A, et al. Anti-tumor effects of second generation beta-hydroxylase inhibitors on cholangiocarcinoma development and progression[J]. PLoS One, 2016,11(3):e0150336.
[58] STURLA L M, TONG M, HEBDA N, et al. Aspartate-β-hydroxylase (ASPH): a potential therapeutic target in human malignant gliomas[J]. Heliyon, 2016,2(12):e00203.
[59] REVSKAYA E, JIANG Z, MORGENSTERN A, et al. A radiolabeled fully human antibody to human aspartyl (asparaginyl) β-hydroxylase is a promising agent for imaging and therapy of metastatic breast cancer[J]. Cancer Biotherapy and Radiopharmaceuticals, 2017,32(2):57-65.
(本文編輯 于國藝)