徐鳳華 李楠 張萌 史東萍 張?zhí)煲? 周宇
[摘要] 目的 探討胃促生長素(ghrelin)對小鼠海馬CA1區(qū)錐體神經(jīng)元突觸活動的影響。方法 用12~20周齡小鼠制備腦薄片,運用全細(xì)胞膜片鉗技術(shù)記錄ghrelin對小鼠海馬CA1區(qū)錐體神經(jīng)元突觸活動的影響。結(jié)果與僅灌流人工腦脊液(ACSF)對照組相比,200 nmol/L ghrelin灌流增加小鼠海馬CA1區(qū)錐體神經(jīng)元微小興奮性突觸后電流(mEPSCs)的幅度(t=2.141,P<0.05),而對CA1區(qū)錐體神經(jīng)元mEPSCs的頻率、錐體神經(jīng)元自發(fā)興奮性突觸后電流(sEPSCs)的幅度和頻率均無明顯影響(P>0.05)。Ghrelin不影響海馬CA1區(qū)抑制性突觸后電流的頻率和幅度(P>0.05)。結(jié)論 200 nmol/L ghrelin可以提高小鼠海馬CA1區(qū)錐體神經(jīng)元mEPSCs的幅度,而對mEPSCs的頻率無影響,提示其對興奮性突觸傳遞的調(diào)節(jié)作用可能主要是通過突觸后機制實現(xiàn)的。
[關(guān)鍵詞] 胃促生長素;膜片鉗術(shù);CA1區(qū),海馬;錐體細(xì)胞;興奮性突觸后電位;小鼠
[中圖分類號] R338.2;R329.25 ?[文獻標(biāo)志碼] A ?[文章編號] 2096-5532(2020)02-0165-04
doi:10.11712/jms.2096-5532.2020.56.068 [開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200420.1208.001.html;2020-04-21 09:09
[ABSTRACT] Objective To investigate the effect of ghrelin on the synaptic activity of pyramidal neurons in the hippocampal CA1 region of mice. ?Methods Hippocampal slices were prepared from the mice aged 12-20 weeks, and the whole-cell patch clamp technique was used to evaluate the effect of ghrelin on the synaptic activity of pyramidal neurons in the hippocampal CA1 region of mice. ?Results Compared with the control group treated with artificial cerebrospinal fluid (ACSF) hemoperfusion, the group treated with ghrelin (200 nmol/L) hemoperfusion had a significant increase in the amplitude of miniature excitatory postsy-naptic currents (mEPSCs) in pyramidal neurons in the hippocampal CA1 region (t=2.141,P<0.05), with no significant changes in the frequency of mEPSCs and the amplitude and frequency of spontaneous excitatory postsynaptic currents (P>0.05). Ghrelin did not affect the frequency and amplitude of inhibitory postsynaptic currents in the hippocampal CA1 region (P>0.05). ?Conclusion Ghrelin (200 nmol/L) can increase the amplitude of mEPSCs in pyramidal neurons in the hippocampal CA1 region and has no effect on the frequency of mEPSCs, suggesting that ghrelin may regulate excitatory synaptic transmission through post-synaptic mechanism.
[KEY WORDS] ghrelin; patch-clamp techniques; CA1 region, hippocampal; pyramidal cells; excitatory postsynaptic potentials; mice
胃促生長素(ghrelin)是胃底分泌的由28個氨基酸組成的短肽,是目前已知的唯一一種能夠刺激生長激素釋放、增強食欲、促進肥胖、增加人和嚙齒類動物胰島素抵抗的外周促食欲激素[1-4]。除在攝食、代謝和能量平衡中發(fā)揮關(guān)鍵作用外,近年來越來越多的實驗證據(jù)表明,血漿中的ghrelin可以通過血-腦脊液屏障進入中樞神經(jīng)系統(tǒng),對學(xué)習(xí)記憶、應(yīng)激反應(yīng)、焦慮抑郁、動機獎賞、睡眠等多種重要的腦功能均有復(fù)雜的調(diào)節(jié)作用[5-6]。大量的動物行為學(xué)實驗結(jié)果顯示,ghrelin對學(xué)習(xí)記憶具有促進作用,但到目前為止其作用機制尚不明確[7-13]。海馬作為大腦邊緣系統(tǒng)的重要結(jié)構(gòu),是負(fù)責(zé)學(xué)習(xí)與記憶的關(guān)鍵腦區(qū)[14]。海馬分為CA1、CA2、CA3和齒狀回(DG)等多個區(qū)域,其中CA1、CA2、CA3區(qū)的細(xì)胞主要為錐體細(xì)胞,DG區(qū)的細(xì)胞主要為顆粒細(xì)胞[15]。既往研究結(jié)果顯示,海馬不同區(qū)域在信息加工和處理過程中發(fā)揮不同的作用,CA1區(qū)主要編碼時間、空間和位置相關(guān)的記憶[14]。因此,本研究利用全細(xì)胞膜片鉗技術(shù),在離體海馬腦片上觀察了ghrelin對CA1區(qū)錐體神經(jīng)元興奮性和抑制性突觸傳遞活動的影響,以揭示ghrelin參與學(xué)習(xí)記憶調(diào)控可能的細(xì)胞機制。現(xiàn)將結(jié)果報告如下。
1 材料與方法
1.1 材料
1.1.1 實驗動物 12~20周齡、體質(zhì)量24~32 g的C57BL/6小鼠,購自上海南方模式生物科技發(fā)展有限公司。每籠4只,置于濕度(50±10)%、溫度(21±2)℃、晝夜循環(huán)光照的環(huán)境下飼養(yǎng),小鼠可自由飲水、取食。實驗前小鼠在實驗環(huán)境中適應(yīng)至少1周。
1.1.2 試劑 ①腦薄片切片液(2.5 mmol/L氯化鉀,26 mmol/L碳酸氫鈉,1 mmol/L磷酸二氫鈉,30 mmol/L D-葡萄糖,119 mmol/L的氯化膽堿,3 mmol/L丙酮酸鈉,1 mmol/L犬尿酸,1.3 mmol/L枸櫞酸鈉,1 mmol/L氯化鈣,7 mmol/L硫酸鎂,pH值7.2~7.4,滲透壓為290~310 mOsm);②腦薄片恢復(fù)液(85 mmol/L氯化鈉,25 mmol/L葡萄糖,50 mmol/L蔗糖,1.25 mmol/L磷酸二氫鈉,2.5 mmol/L氯化鉀,0.5 mmol/L氯化鈣,4 mmol/L氯化鎂,24 mmol/L碳酸氫鈉,pH值為7.2~7.4,滲透壓為290~310 mOsm);③人工腦脊液(ACSF)(120 mmol/L氯化鈉,2.5 mmol/L氯化鈣,3.5 mmol/L的氯化鉀,1.3 mmol/L硫酸鎂,1.25 mmol/L磷酸二氫鈉,26 mmol/L碳酸氫鈉,10 mmol/L葡萄糖,pH值為7.2~7.4,滲透壓為290~310 mOsm);④電極內(nèi)液(125 mmol/L的氯化銫,5 mmol/L的氯化鈉,2 mmol/L的MgATP,0.2 mmol/L EGTA,2 mmol/L的氯化鎂,0.3 mmol/L的Na3GTP,10 mmol/L的HEPES,7 mmol/L的磷酸肌酸,4 mmol/L的QX-314,用1 mol/L氫氧化銫調(diào)pH值為7.2~7.4,滲透壓為280~290 mOsm);⑤ghrelin,河鲀毒素(TTX),犬尿酸,AP-5,picrotoxin。以上所有試劑均購于Sigma和Tocris公司。
1.1.3 儀器設(shè)備 振動切片機,Sutter P-97微電極拉制儀,微操縱器,正置顯微鏡及其成像系統(tǒng),Axon 700B 膜片鉗放大器,Digidata 1440數(shù)模轉(zhuǎn)換器。
1.2 方法
1.2.1 小鼠離體海馬腦薄片的制備 12~20周齡小鼠麻醉后用切片液經(jīng)心臟灌注并斷頭取腦,在冰水混合的切片液中用切片機沿冠狀切面進行連續(xù)切300 μm厚的海馬腦薄片。電生理記錄前先將腦薄片置于恢復(fù)液中室溫孵育至少1 h,然后隨機轉(zhuǎn)入含200 nmol/L ghrelin或?qū)φ杖軇┑哪X片恢復(fù)液中繼續(xù)孵育3 h。切片過程中持續(xù)通入含體積分?jǐn)?shù)0.95 O2和體積分?jǐn)?shù)0.05 CO2的混合氣使腦片保持健康狀態(tài)。
1.2.2 海馬腦片全細(xì)胞膜片鉗記錄 將腦片轉(zhuǎn)移至操作臺上,持續(xù)灌流通入混合氣的ACSF以維持細(xì)胞的活性。在光學(xué)顯微鏡下找到海馬CA1區(qū)神經(jīng)元胞體高度集中的錐體細(xì)胞層進行全細(xì)胞膜片鉗記錄[15-16]。在電壓鉗模式下分別記錄興奮性突觸后電流與抑制性突觸后電流,記錄過程中電壓鉗位保持在-70 mV。在ACSF中加入3 mmol/L犬尿酸以分離并記錄γ-氨基丁酸(GABA)引起的自發(fā)抑制性突觸后電流(sIPSCs),再加入1 μmol/L TTX記錄微小抑制性突觸后電流(mIPSCs);在ACSF中加入50 μmol/L的AP-5和50 μmol/L picrotoxin以分離并記錄α-氨基-3-羥基-5-甲基-4-異唑丙酸(AMPA)引起的自發(fā)興奮性突觸后電流(sEPSCs),再加入1 μmol/L TTX記錄微小興奮性突觸后電流(mEPSCs)。實驗中,僅對靜息膜電位在-55 mV以下的健康神經(jīng)元的結(jié)果進行統(tǒng)計。
1.2.3 統(tǒng)計學(xué)分析 應(yīng)用Graph Pad Prism7軟件對實驗結(jié)果進行統(tǒng)計學(xué)處理,用Mini Analysis Programm對突觸電流的幅度及頻率進行分析。所有實驗結(jié)果均以±s表示,兩組間比較采用成組t檢驗,P<0.05表示差異具有統(tǒng)計學(xué)意義。
2 結(jié) ?果
2.1 Ghrelin對小鼠海馬CA1區(qū)錐體神經(jīng)元興奮性突觸后電流的影響
在膜片鉗顯微鏡下可以清晰觀察到CA1區(qū)錐體細(xì)胞層神經(jīng)元排列整齊,胞體似錐形,朝向一致,這些神經(jīng)元動作電位處于低頻發(fā)放狀態(tài),具有明顯的放電頻率適應(yīng)現(xiàn)象,可以確認(rèn)記錄到的神經(jīng)元為錐體神經(jīng)元。膜片鉗實驗結(jié)果顯示,與溶劑對照ACSF組相比,經(jīng)200 nmol/L ghrelin孵育后,ghrelin組神經(jīng)元mEPSCs的幅度增加,差異具有統(tǒng)計學(xué)意義(t=2.141,P<0.05),而頻率沒有明顯變化(t=0.266,P>0.05);sEPSCs的幅度和頻率與對照組相比較也均無明顯改變(t=1.203、0.729,P>0.05)。表明200 nmol/L的ghrelin影響小鼠海馬CA1區(qū)錐體神經(jīng)元的興奮性突觸傳遞。見表1。
2.2 Ghrelin對小鼠海馬CA1區(qū)錐體神經(jīng)元抑制性突觸后電流的影響
膜片鉗實驗結(jié)果顯示,兩組神經(jīng)元的sIPSCs和mIPSCs的頻率和幅度均無明顯差異(t=0.605~1.338,P>0.05),表明200 nmol/L ghrelin不影響錐體神經(jīng)元的抑制性突觸后電流。見表2。
3 討 ?論
大鼠和小鼠的條件性位置回避測試實驗發(fā)現(xiàn),在海馬內(nèi)注射ghrelin可劑量依賴性地增強實驗動物的位置記憶[17-20],并且只有在訓(xùn)練前注射ghrelin這種增強作用才能被觀察到[17]。也有研究報道,海馬內(nèi)注射ghrlein可增強大鼠的物體識別記憶[18],皮下注射ghrelin或ghrelin擬似劑LY444711能夠增強小鼠的空間記憶[21]。Ghrelin受體缺失小鼠會表現(xiàn)出空間記憶障礙[22],而外源性ghrelin能夠改善ghrelin基因敲除小鼠的物體識別記憶障礙。這些研究均表明,ghrelin對海馬依賴的學(xué)習(xí)記憶有促進作用。關(guān)于ghrelin調(diào)控學(xué)習(xí)記憶細(xì)胞機制的研究發(fā)現(xiàn),ghrelin能夠增強神經(jīng)元興奮性[23],觸發(fā)海馬神經(jīng)元AMPA受體的突觸插入[24],增大興奮性突觸后電位(EPSP),增強長時程增強(LTP)的誘導(dǎo)等。然而除了神經(jīng)元固有興奮性以及LTP的變化外,突觸傳遞的可塑性變化對記憶編碼和記憶環(huán)路形成也有重要的作用[25]。
突觸是神經(jīng)元與效應(yīng)器之間或者兩個神經(jīng)元之間相互接觸、并借以傳遞信息的基本功能單位。興奮性神經(jīng)傳遞主要由離子型谷氨酸受體介導(dǎo),這些受體包括α-氨基-3-羥基-5-甲基-4-異嗯唑丙酸受體(AMPARs)、紅藻氨酸受體(KARs)和N-甲基-D-天冬氨酸受體(NMDARs)。AMPARs是由4種不同的亞單位組成的四聚體或五聚體復(fù)合物,是大腦中介導(dǎo)興奮性突觸活動的最主要受體亞型[26]。當(dāng)突觸前膜神經(jīng)末梢的谷氨酸被釋放后,會激活突觸后AMPARs和NMDARs,介導(dǎo)陽離子的內(nèi)流,最終導(dǎo)致內(nèi)向興奮性突觸后電流并因此引起突觸后除極。抑制性突觸傳遞主要由離子型γ-氨基丁酸A(GABA-A)受體介導(dǎo),突觸前末梢釋放的GABA與GABA-A受體結(jié)合后引起Cl-內(nèi)流,產(chǎn)生抑制性突觸后電流,造成突觸后膜超極化。本研究結(jié)果表明,200 nmol/L ghrelin增加海馬CA1區(qū)錐體神經(jīng)元興奮性突觸傳遞,對抑制性突觸傳遞沒有影響,提示興奮性和抑制性突觸傳遞之間的不平衡可能是ghrelin影響學(xué)習(xí)記憶的重要細(xì)胞機制之一。Ghrelin對突觸傳遞的影響,在視上核內(nèi)分泌大細(xì)胞中已有報道,研究顯示ghrelin可通過調(diào)控突觸前瞬時受體電位通道(TRPV)增強mEPSCs的頻率[27-28]。與之不同的是,我們對海馬CA1區(qū)錐體神經(jīng)元的研究顯示,200 nmol/L ghrelin不影響mEPSCs的頻率,但是能提高mEPSCs的幅度。一般認(rèn)為,頻率代表突觸的數(shù)目,頻率的改變是突觸前遞質(zhì)釋放的多少導(dǎo)致的,而幅度主要與突觸后膜受體的變化相關(guān)。由此我們推測,200 nmol/L ghrelin對海馬CA1區(qū)錐體神經(jīng)元興奮性突觸傳遞的調(diào)節(jié)作用可能主要是通過突觸后機制來實現(xiàn)的,可能的機制包括:受體在細(xì)胞膜上的數(shù)量增多(正向朝膜運輸?shù)乃俾侍岣呋蛘呤荏w內(nèi)化的速度下降)或者細(xì)胞合成的受體數(shù)目增加;也可能是由于受體的電導(dǎo)發(fā)生改變,流經(jīng)單個受體的離子數(shù)增多(這種改變可能受到蛋白質(zhì)修飾影響,例如磷酸化)。但具體機制還有待進一步研究。
綜上所述,ghrelin提高小鼠海馬CA1區(qū)錐體神經(jīng)元mEPSCs的幅度,而不影響mEPSCs的頻率,即ghrelin通過作用于神經(jīng)元突觸后AMPA受體促進興奮性突觸傳遞從而增強學(xué)習(xí)記憶。Ghrelin對學(xué)習(xí)記憶的調(diào)控極其復(fù)雜,因此盡管研究者們圍繞ghrelin的化學(xué)結(jié)構(gòu)、分布定位及生理功能等做了大量的研究,但迄今為止,ghrelin參與調(diào)控學(xué)習(xí)記憶的機制并不清楚。Ghrelin與學(xué)習(xí)記憶之間的相關(guān)性研究目前還處于探索階段,本實驗闡明了ghrelin提高小鼠認(rèn)知功能的部分作用機制,期望能為認(rèn)知障礙性疾病的治療提供一定的理論指導(dǎo)。
[參考文獻]
[1] KOJIMA M, HOSODA H, DATE Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach[J]. Nature, 1999,402(6762):656-660.
[2] TSCHP M, SMILEY D L, HEIMAN M L. Ghrelin induces adiposity in rodents[J]. Nature, 2000,407(686):908-913.
[3] COWLEY M A, SMITH R G, DIANO S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis[J]. Neuron, 2003,37(4):649-661.
[4] GAO Q, HORVATH T L. Neuronal control of energy homeostasis[J]. FEBS Letters, 2008,582(1):132-141.
[5] SEMINARA R S, CHARAN J, BISWAS S, et al. The neurocognitive effects of ghrelin-induced signaling on the hippocampus: a promising approach to Alzheimers disease[J]. Cureus, 2018,10(9):e3285.
[6] WU C S, BONGMBA O N, LEE J H, et al. Ghrelin receptor in agouti-related peptide neurones regulates metabolic adaptation to calorie restriction[J]. Journal of Neuroendocrinology, 2019,31(7):e12763.
[7] COLLDN G, TSCHP M H, MLLER T D. Therapeutic potential of targeting the ghrelin pathway[J]. International Journal of Molecular Sciences, 2017,18(4):798.
[8] SPITZNAGEL M B, BENITEZ A, UPDEGRAFF J, et al. Serum ghrelin is inversely associated with cognitive function in a sample of non-demented elderly[J]. Psychiatry and Clinical Neurosciences, 2010,64(6):608-611.
[9] BELLAR D, GLICKMAN E L, LAWRENCE W J, et al. Se-rum ghrelin is associated with verbal learning and adiposity in a sample of healthy, fit older adults[J]. Bio Med Research International, 2013, 2013(4):202757.
[10] KUNATH N, MLLER N J, TONON M, et al. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans[J]. Neuro Image, 2016,142:465-473.
[11] KOJIMA M, KANGAWA K. Ghrelin: structure and function[J]. Physiological Reviews, 2005,85(2):495-522.
[12] CARLINI V P, MONZN M E, VARAS M M, et al. Ghrelin increases anxiety-like behavior and memory retention in rats[J]. Biochemical and Biophysical Research Communications, 2002,299(5):739-743.
[13] VALERIA P C, GHERSI M, SCHITH H B, et al. Ghrelin and memory: differential effects on acquisition and retrieval[J]. Peptides, 2010,31(6):1190-1193.
[14] OLIVA A, FERNNDEZ-RUIZ A, BUZSKI G, et al. Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions[J]. Hippocampus, 2016,26(12):1593-1607.
[15] ZHOU Y, WON J, KARLSSON M G, et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala[J]. Nature Neuroscience, 2009,12(11):1438-1443.
[16] ZHOU Y, TAKAHASHI E, LI W, et al. Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning[J]. Journal of Neuroscience, 2007,27(50):13843-13853.
[17] VALERIA P C, MARIELA F P, ESTELA S, et al. Ghrelin induced memory facilitation implicates nitric oxide synthase activation and decrease in the threshold to promote LTP in hip-pocampal dentate gyrus[J]. Physiology & Behavior, 2010,101(1):117-123.
[18] CARLINI V P, VARAS M M, CRAGNOLINI A B, et al. Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin[J]. Biochemical and Biophysical Research Communications, 2004,313(3):635-641.
[19] CARLINI V P, MARTINI A C, SCHITH H B, et al. Decreased memory for novel object recognition in chronically food-restricted mice is reversed by acute ghrelin administration[J]. Neuroscience, 2008,153(4):929-934.
[20] CARVAJAL P, CARLINI V P, SCHITH H B, et al. Central ghrelin increases anxiety in the Open Field test and impairs retention memory in a passive avoidance task in neonatal chicks[J]. Neurobiology of Learning and Memory, 2009,91(4):402-407.
[21] DIANO S, FARR S A, BENOIT S C, et al. Ghrelin controls hippocampal spine synapse density and memory performance[J]. Nature Neuroscience, 2006,9(3):381-388.
[22] DAVIS J F, DERRICK L C, DEBORAH J C, et al. Signaling through the ghrelin receptor modulates hippocampal function and meal anticipation in mice[J]. Physiology & Behavior, 2011,103(1):39-43.
[23] ROHLFS R V, MURPHY E, SONG Y S, et al. The influence of relatives on the efficiency and error rate of familial searching[J]. PLoS One, 2013,8(8):e70495.
[24] RIBEIRO L F, CATARINO T, SANTOS S D, et al. Ghrelin triggers the synaptic incorporation of AMPA receptors in the hippocampus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(1):E149-E158.
[25] CITRI A, MALENKA R C. Synaptic plasticity: multiple forms, functions, and mechanisms[J]. Neuropsychopharmacology, 2008,33(1):18-41.
[26] WISDEN W, SEEBURG P H. Mammalian ionotropic glutamate receptors[J]. Current Opinion in Neurobiology, 1993,3(3):291-298.
[27] YOKOYAMA T, SAITO T, OHBUCHI T, et al. Ghrelin potentiates miniature excitatory postsynaptic currents in supraoptic magnocellular neurones[J]. Journal of Neuroendocrinology, 2009,21(11):910-920.
[28] ALLEN W E, CHEN M Z, PICHAMOORTHY N, et al. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics[J]. Science (New York, N.Y.), 2019,364(6437):253.
(本文編輯 馬偉平)