萬(wàn)云鵬
【摘 要】現(xiàn)在普遍認(rèn)為骨性關(guān)節(jié)炎(osteoarthritis,OA)的發(fā)病不是單一的因素,而是一個(gè)整體的過(guò)程,涉及所有受到影響的關(guān)節(jié)結(jié)構(gòu),最終導(dǎo)致關(guān)節(jié)軟骨的退化。其中關(guān)節(jié)軟骨的退變以及軟骨下骨的骨重塑和硬化是骨性關(guān)節(jié)炎發(fā)病最為關(guān)鍵的因素。軟骨下骨的異常重塑以及硬化會(huì)引發(fā)其自身的應(yīng)力改變,隨之影響覆蓋其表面的關(guān)節(jié)軟骨的穩(wěn)定,使其發(fā)生病變。成骨細(xì)胞在軟骨下骨的重塑以及硬化中發(fā)揮了及其重要的功能。故研究成骨細(xì)胞對(duì)于骨性關(guān)節(jié)炎具有重要的意義。
Abstract It is now widely accepted that the onset of osteoarthritis (OA) is not a single factor, but a holistic process involving all affected joint structures that ultimately lead to the degradation of articular cartilage. Degeneration of articular cartilage and bone remodeling and sclerosis of subchondral bone are the most critical factors in the pathogenesis of osteoarthritis. Abnormal remodeling of the subchondral bone and hardening cause its own stress changes, which in turn affect the stability of the articular cartilage covering its surface, causing it to develop lesions. Osteoblasts play an important role in the remodeling and hardening of subchondral bone. Therefore, the study of osteoblasts has important implications for osteoarthritis.
軟骨下骨的病變對(duì)骨性關(guān)節(jié)炎的影響
骨性關(guān)節(jié)炎是一種退行性的關(guān)節(jié)病變,通常表現(xiàn)為關(guān)節(jié)軟骨病變,非正常的軟骨下骨骨重塑以及硬化,骨贅的形成以及滑膜組織的無(wú)菌性炎癥[1]。盡管我們已經(jīng)認(rèn)識(shí)到很多因素和骨性關(guān)節(jié)炎的發(fā)生發(fā)展有明顯的聯(lián)系,比如年齡,肥胖,關(guān)節(jié)創(chuàng)傷,生物力學(xué)的改變和發(fā)育型疾病等,但骨性關(guān)節(jié)炎明確的發(fā)病機(jī)理仍舊不明[2]。以前的研究中,往往把關(guān)節(jié)軟骨的退變及損害作為研究的重點(diǎn)所在,其中對(duì)軟骨細(xì)胞的相關(guān)研究尤為重視,因?yàn)檐浌羌?xì)胞的退化以及表型的改變將會(huì)導(dǎo)致其分泌軟骨外基質(zhì)的變化,從而最終影響關(guān)節(jié)軟骨的變化[3, 4],但現(xiàn)在的研究證明骨性關(guān)節(jié)炎的發(fā)生和發(fā)展是一個(gè)整體的過(guò)程,特別是軟骨下骨的異常骨重塑和軟骨下骨的硬化,礦化的下降尤為重要[5]。更為重要的是軟骨下骨的病變會(huì)直接影響覆蓋其表面的關(guān)節(jié)軟骨,加重骨性關(guān)節(jié)炎中軟骨的退化,目前越來(lái)越多的研究開(kāi)始關(guān)注軟骨下骨,而對(duì)軟骨下骨的病變起到最主要作用的是成骨細(xì)胞的過(guò)度分化以及異常表型的表達(dá),這些因素直接導(dǎo)致軟骨下骨的骨重塑增多并且引起其硬化以及礦化能力的下降[6-8]。所以研究骨性關(guān)節(jié)炎軟骨下骨中成骨細(xì)胞的作用就顯得尤為重要。
成骨細(xì)胞在骨性關(guān)節(jié)炎中軟骨下骨的作用
從動(dòng)物骨性關(guān)節(jié)炎模型以及取自人關(guān)節(jié)置換手術(shù)中的軟骨下骨的標(biāo)本中獲得的證據(jù)表明,骨性關(guān)節(jié)炎的軟骨下骨的骨重建發(fā)生了明顯改變,骨重建是通過(guò)破骨細(xì)胞和成骨細(xì)胞的不斷的作用實(shí)現(xiàn)的。骨性關(guān)節(jié)炎關(guān)節(jié)的機(jī)械應(yīng)激力似乎與其軟骨下骨的微損傷和微骨折的增加相對(duì)應(yīng)[9-11]。而有研究認(rèn)為,骨的微損傷是由于能量吸收增強(qiáng)而保護(hù)關(guān)節(jié)軟骨[10],它還能促進(jìn)骨骼重塑。骨細(xì)胞檢測(cè)礦化骨基質(zhì)的損傷,并通過(guò)啟動(dòng)受損骨的定向破骨吸收來(lái)指導(dǎo)其修復(fù)[12]。正如之前研究的那樣,骨重建的速率會(huì)隨著疾病的不同而改變。因此,早期OA患者軟骨下骨發(fā)生骨重塑增加,并伴有血管增多,而晚期疾病的特點(diǎn)是骨量減少,無(wú)骨形成。骨重建的改變?cè)陉P(guān)節(jié)內(nèi)也有不同的空間變化,例如在膝關(guān)節(jié)的內(nèi)側(cè)和外側(cè),但也影響關(guān)節(jié)的更遠(yuǎn)處的部位[13, 14]。骨重塑改變導(dǎo)致骨結(jié)構(gòu)改變,松質(zhì)骨骨體積分?jǐn)?shù)增加,骨贅形成[13, 15]。
骨小梁數(shù)目增加,骨小梁間距減小,骨性關(guān)節(jié)炎骨硬度降低,是由于軟骨下骨中礦化的降低,這些軟骨下骨的變化會(huì)導(dǎo)致覆蓋其表面的關(guān)節(jié)軟骨的退化[16, 17]。起源于骨性關(guān)節(jié)炎軟骨下骨中的成骨細(xì)胞的表型的基因的表達(dá)較正常的成骨細(xì)胞有所改變,比如在骨性關(guān)節(jié)炎軟骨下骨中的成骨細(xì)胞所表達(dá)堿性磷酸酶,骨鈣素的水平較正常的成骨細(xì)胞均大幅度提高[6]。此外,與對(duì)照組的正常成骨細(xì)胞相比,骨性關(guān)節(jié)炎的成骨細(xì)胞礦化紊亂,礦化程度降低,COL1A1:COL1A2 的比值較正常成骨細(xì)胞升高也大幅度提高[6]。同時(shí)骨性關(guān)節(jié)炎的成骨細(xì)胞比正常的成骨細(xì)胞產(chǎn)生更多的TGFβ1,如果抑制TGFβ1,骨性關(guān)節(jié)炎成骨細(xì)胞異常分化被糾正[18]。在體外培養(yǎng)骨性關(guān)節(jié)炎中的成骨細(xì)胞時(shí),該細(xì)胞的TWIST1,TGFβ1和SMAD3 mRNA的表達(dá)失調(diào),和先前在骨性關(guān)節(jié)炎軟骨下骨中觀察到情況類(lèi)似,表明了至少一部分的骨性關(guān)節(jié)炎的病因是由于內(nèi)在成骨細(xì)胞特性的改變所致[19]。最近的一份報(bào)告證實(shí)了人和小鼠骨性關(guān)節(jié)炎軟骨下骨中TGFβ1被高濃度表達(dá),軟骨下骨中過(guò)量的TGFβ1的表達(dá)實(shí)際上誘導(dǎo)了骨性關(guān)節(jié)炎的發(fā)生[20]。
結(jié)論
骨性關(guān)節(jié)炎會(huì)導(dǎo)致軟骨下骨中成骨細(xì)胞的表型發(fā)生改變,這些成骨細(xì)胞的改變會(huì)引起軟骨下骨和其表面覆蓋的軟骨的病變,最終加重病程的發(fā)展。
參考文獻(xiàn)
Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ: Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017, 5:16044.
Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y: Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 2008, 67 Suppl 3:iii75-82.
Eyre D: Collagen of articular cartilage. Arthritis Res 2002, 4(1):30-35.
Roughley PJ: Articular cartilage and changes in arthritis: noncollagenous proteins and proteoglycans in the extracellular matrix of cartilage. Arthritis Res 2001, 3(6):342-347.
Ding M, Danielsen CC, Hvid I: The effects of bone remodeling inhibition by alendronate on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Calcif Tissue Int 2008, 82(1):77-86.
Couchourel D, Aubry I, Delalandre A, Lavigne M, Martel-Pelletier J, Pelletier JP, Lajeunesse D: Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum 2009, 60(5):1438-1450.
Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D: Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 1998, 41(5):891-899.
Massicotte F, Aubry I, Martel-Pelletier J, Pelletier JP, Fernandes J, Lajeunesse D: Abnormal insulin-like growth factor 1 signaling in human osteoarthritic subchondral bone osteoblasts. Arthritis Res Ther 2006, 8(6):R177.
Li ZC, Dai LY, Jiang LS, Qiu S: Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties. Arthritis Rheum 2012, 64(12):3955-3962.
Malekipour F, Whitton C, Oetomo D, Lee PV: Shock absorbing ability of articular cartilage and subchondral bone under impact compression. J Mech Behav Biomed Mater 2013, 26:127-135.
Fazzalari NL, Kuliwaba JS, Forwood MR: Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution. Bone 2002, 31(6):697-702.
Mori S, Burr DB: Increased intracortical remodeling following fatigue damage. Bone 1993, 14(2):103-109.
Fazzalari NL, Parkinson IH: Femoral trabecular bone of osteoarthritic and normal subjects in an age and sex matched group. Osteoarthritis Cartilage 1998, 6(6):377-382.
Kumarasinghe DD, Hopwood B, Kuliwaba JS, Atkins GJ, Fazzalari NL: An update on primary hip osteoarthritis including altered Wnt and TGF-beta associated gene expression from the bony component of the disease. Rheumatology (Oxford) 2011, 50(12):2166-2175.
Jeffery AK: Osteophytes and the osteoarthritic femoral head. J Bone Joint Surg Br 1975, 57(3):314-324.
DallAra E, Ohman C, Baleani M, Viceconti M: Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis. J Biomech 2011, 44(8):1593-1598.
Li B, Aspden RM: Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int 1997, 7(5):450-456.
Truong LH, Kuliwaba JS, Tsangari H, Fazzalari NL: Differential gene expression of bone anabolic factors and trabecular bone architectural changes in the proximal femoral shaft of primary hip osteoarthritis patients. Arthritis Res Ther 2006, 8(6):R188.
Kumarasinghe DD, Sullivan T, Kuliwaba JS, Fazzalari NL, Atkins GJ: Evidence for the dysregulated expression of TWIST1, TGFbeta1 and SMAD3 in differentiating osteoblasts from primary hip osteoarthritis patients. Osteoarthritis Cartilage 2012, 20(11):1357-1366.
Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J et al: Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013, 19(6):704-712.