萬麗麗 王轉(zhuǎn)葺 楊光圣
摘要:為了研究不同油菜(Brassica napus L.)基因型小孢子培養(yǎng)試驗(yàn)中不同濃度秋水仙堿和氟樂林加倍劑對不同基因型材料小孢子再生、加倍率以及成株結(jié)實(shí)性的影響,選取3個(gè)遺傳背景不同的F1雜交組合,利用秋水仙堿或氟樂林處理小孢子細(xì)胞以及對從小孢子直接再生的植株根系進(jìn)行秋水仙堿浸泡處理,采用流式細(xì)胞儀(FCM)檢測不同處理方式下小孢子成苗的倍性水平,并對雙單倍體植株開展結(jié)實(shí)性考察分析。結(jié)果表明,3個(gè)F1組合的小孢子細(xì)胞經(jīng)過85 mg/L秋水仙堿處理后得到的再生苗數(shù)目最多,并且所得到的雙單倍體植株的數(shù)目最多。不同濃度的氟樂林加倍劑處理試驗(yàn)顯示,10 μmol/L氟樂林處理小孢子后獲得雙單倍體相比其他濃度氟樂林處理后的數(shù)目多。3個(gè)F1組合的小孢子胚在4 ℃處理10 d后能夠顯著提高胚的一次成苗率。對3個(gè)F1組合的小孢子自然加倍和加倍劑處理后獲得的DH群體的結(jié)實(shí)性考察結(jié)果顯示,自然加倍獲得的雙單倍體植株的平均角果長、平均每角果粒數(shù)和平均千粒重與不同濃度秋水仙堿或者氟樂林處理后獲得的雙單倍體無顯著差異。
關(guān)鍵詞:油菜(Brassica napus L.);小孢子培養(yǎng);秋水仙堿;氟樂林;倍性分析;結(jié)實(shí)性
中圖分類號:S565.4 ? ? ? ? 文獻(xiàn)標(biāo)識碼:A
文章編號:0439-8114(2020)01-0032-07
DOI:10.14088/j.cnki.issn0439-8114.2020.01.007 ? ? ? ? ? 開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Abstract: To investigate the ploidy levels of microspore-derived plants and effect of colchicine and trifluralin treatment on regeneration, double haploid, and seed setting of regenerated plants in oilseed rape (Brassica napus L.), the effects of microspore culture treatment with antimitotic agents colchicine and trifluralin on the frequency of embryo formation, embryo development, plant regeneration and diploidization rate in three F1 hybrids of rapeseed cultivars were compared, and the ploidy levels of young plantlets were measured by flow-cytometry (FCM). The results indicated three F1 combinations obtained the most number of regenerated plantlets after treatment with 85 mg/L colchicine. The mean rates of DH plants from colchicine(85 mg/L) were higher than the other colchicine concentration, and maximum DH plants were derived from the trifluralin treatment(10 μmol/L). After 4 ℃ cold treatment with embryos derived from three F1 hybrid combination for 10 days, the number of embryos to plants conversion (EPC) was significantly increased. The fruity characters of DH population obtained by natural doubling and doubling agent of three F1 combinations were investigated, and the results showed that the average pod length,pod number and 1 000-grain weight of double haploid plants treated from antimitotic agents was similar to the spontaneous double haploid plants.
Key words: rapeseed (Brassica napus L.); microspore culture; colchicine; trifluralin; ploidy analysis; seed setting characters
小孢子培養(yǎng)是將油菜單核晚期至二核早期的花粉進(jìn)行培養(yǎng),促進(jìn)細(xì)胞分裂和形成單倍體胚,進(jìn)而誘導(dǎo)發(fā)育成單倍體植株的過程。這種單倍體植株經(jīng)過加倍劑處理后,形成完全基因型純合的二倍體植株,也就是雙單倍體(Double haploid,DH)。利用游離的小孢子培養(yǎng)獲得單倍體的優(yōu)勢在于:小孢子培養(yǎng)通過胚發(fā)生途徑發(fā)育成單倍體,避免了花藥壁、花絲,藥室隔等體細(xì)胞組織再生愈傷組織的干擾,降低了因孢子體變異而引起的農(nóng)藝性狀的退化;一般植物的花藥中能夠分離出1.5萬~2.0萬個(gè)小孢子,培養(yǎng)過程具有周期短、加倍劑處理能夠達(dá)到一致性等優(yōu)點(diǎn)。小孢子培養(yǎng)技術(shù)受到育種家們的廣泛關(guān)注,截至目前,在蕓薹屬植物的6個(gè)種(Brassica napus、Brassica carinata、Brassica juncea、Brassica campestris、Brassica nigra、Brassica oleracea)中均已經(jīng)成功應(yīng)用[1]。
自從1982年德國的Lichter[2]首次報(bào)道從甘藍(lán)型油菜中成功分離得到游離的小孢子后,利用小孢子培養(yǎng)誘導(dǎo)單倍體繼而加倍獲得雙單倍體取得了顯著成就。在遺傳學(xué)和分子生物學(xué)研究中,利用小孢子培養(yǎng)建立的DH群體被用于油菜重要農(nóng)藝性狀的遺傳圖譜構(gòu)建以及重要性狀QTLs定位[3]。DH群體在定位數(shù)量性狀基因中最突出的優(yōu)點(diǎn)表現(xiàn)在兩個(gè)方面,一是DH群體中每個(gè)株系的基因型高度純合,通過種子擴(kuò)繁得到的株系可設(shè)置不同的重復(fù)小區(qū),消除環(huán)境因素造成的變異;二是由于基因型純合,排除可能存在的超顯性和低顯性效應(yīng),能夠?qū)γ總€(gè)QTL評估更加簡單和精準(zhǔn)。在育種實(shí)踐中,小孢子培養(yǎng)技術(shù)被用于新品種選育、種質(zhì)資源創(chuàng)建以及加速育種進(jìn)程。此外,利用小孢子培養(yǎng)所得胚數(shù)量多、再生能力強(qiáng)等,應(yīng)用到轉(zhuǎn)基因試驗(yàn)中能夠快速獲得純合轉(zhuǎn)基因材料。為了提高油菜小孢子培養(yǎng)獲得雙單倍體的成功率,學(xué)者們對不同基因型來源的油菜材料中調(diào)控胚發(fā)生率、胚再生能力、加倍能力等方面進(jìn)行了研究,如供體植株的生長環(huán)境、小孢子發(fā)育階段、小孢子預(yù)處理類型、誘導(dǎo)培養(yǎng)基的組成成分以及再生培養(yǎng)基成分都會(huì)影響小孢子再生[4,5]。脅迫預(yù)處理如冷脅迫和熱脅迫處理小孢子能夠影響小孢子胚再生過程[6-8]。在培養(yǎng)基中添加2,4-油菜素內(nèi)酯、硝酸銀、活性炭以及博萊霉素到培養(yǎng)基中能夠促進(jìn)小孢子胚的發(fā)生[9-11]。在油菜小孢子培養(yǎng)試驗(yàn)中,小孢子直接再生成植株而不經(jīng)歷愈傷組織脫分化的過程再生成苗,能夠極大程度加速DH系構(gòu)建進(jìn)程。
研究發(fā)現(xiàn)有一些外源因素影響著植株的再生,如赤霉素、脫落酸、組織培養(yǎng)的溫度、培養(yǎng)基的滲透壓、小孢子干燥的程度、小孢子的成熟度等都決定著再生能力[12-14]。對胚進(jìn)行預(yù)處理,如低溫、ABA以及干燥處理能夠增加一次成苗能力,將胚放置在隔著濾紙的瓊脂培養(yǎng)基上或者在高濃度卡拉膠培養(yǎng)基上能夠有效提高小孢子胚再生能力[15-21]。理想的情況下,小孢子細(xì)胞直接加倍后再生得到的植株是基因型純合的雙單倍體。目前在蕓薹屬植物中天然加倍的機(jī)理還未被揭示[22,23]。天然加倍率和種質(zhì)資源的基因型密切相關(guān),如天然加倍率高的基因型植株在加倍劑處理下未必能夠提高加倍率。而對于天然加倍率低的植株進(jìn)行外源添加加倍劑處理以提升加倍率是十分必要的[24]。加倍劑種類包括疊氮化鈉、微管抑制劑如氟樂林、甲酰氨草磷(APM)、秋水仙堿等應(yīng)用到植物的加倍試驗(yàn)中,結(jié)果顯示使用最為廣泛的化學(xué)加倍劑是秋水仙堿,它能夠有效地抑制有絲分裂時(shí)紡錘絲的形成,阻止染色體的分離,最終導(dǎo)致加倍[25,26]。本研究對3個(gè)不同遺傳背景來源的F1組合通過小孢子培養(yǎng)構(gòu)建了DH群體,比較分析了天然加倍、分別施加不同濃度的加倍劑(秋水仙堿或者氟樂林)以及對單倍體油菜0.1%秋水仙堿浸泡根系處理后的出胚率、成苗率、植物倍性,并考察了4 ℃處理3個(gè)F1組合基因型材料小孢子胚后一次成苗率以及雙單倍體植株成熟后的結(jié)實(shí)性狀,得出不同基因型材料在加倍劑以及低溫處理后的出胚、苗再生、染色體加倍、雙單倍體植株角果成熟等性狀,以期建立提高油菜小孢子培養(yǎng)加倍率和一次成苗率的實(shí)驗(yàn)技術(shù)體系。
1 ?材料與方法
1.1 ?材料
供試材料為6R×ZS11、7DH×ZS11、ZR×R11共3個(gè)油菜雜交F1組合,每個(gè)組合田間各種植50個(gè)單株。
1.2 ?方法
1.2.1 ?油菜小孢子培養(yǎng)以及加倍試驗(yàn) ?油菜小孢子培養(yǎng)試驗(yàn)程序參考Lichter[2]的方法進(jìn)行。分離得到的小孢子分別添加不同終濃度的秋水仙堿(50、85、125 mg/L)和氟樂林(5、10、15 μmol/L)。將懸浮小孢子的密度調(diào)整為104個(gè)/mL,10 mL懸浮培養(yǎng)的小孢子在直徑為90 mm的培養(yǎng)皿中32 ℃暗培養(yǎng)24 h,每個(gè)處理設(shè)置3個(gè)重復(fù)。不施加加倍劑的處理作為天然加倍試驗(yàn)。培養(yǎng)后的小孢子用新鮮的NLN培養(yǎng)基重懸置于25 ℃暗環(huán)境靜置培養(yǎng)。3周之后,觀察出現(xiàn)至少2 mm長度的魚雷型和子葉型胚后進(jìn)行計(jì)數(shù),轉(zhuǎn)移到轉(zhuǎn)速為70 r/min搖床上培養(yǎng),直到子葉胚長度為4 mm轉(zhuǎn)移到固體B5培養(yǎng)基上生長,培養(yǎng)溫度保持在22 ℃,16 h光照/8 h黑暗,光量子通量密度為300 μmol/(m2·s)。經(jīng)過4~6周培養(yǎng),再生的植株轉(zhuǎn)移到新鮮的固體B5培養(yǎng)基中直至生根。將生根的植株移栽到盛有營養(yǎng)土的穴盤中生長。對于體外加倍試驗(yàn),配制0.1%的秋水仙堿對前期小孢子培養(yǎng)試驗(yàn)中未加入秋水仙堿再生得到的植株浸根處理8 h,之后轉(zhuǎn)移至自來水中浸泡1 h,移栽到盛有營養(yǎng)土的穴盤中。
1.2.2 ?3個(gè)不同油菜組合小孢子胚再生成苗能力分析 ?選取3個(gè)不同油菜F1組合經(jīng)過小孢子培養(yǎng)獲得的4~7 mm的胚轉(zhuǎn)移到B5固體培養(yǎng)基中,分別在4 ℃環(huán)境下冷處理5、10 d,與未進(jìn)行低溫處理的相同大小胚相比較,統(tǒng)計(jì)胚直接轉(zhuǎn)化成植株、胚形成次生胚后轉(zhuǎn)化成植株以及胚形成愈傷組織后再脫分化形成植株的數(shù)目,分析不同時(shí)間的低溫處理對一次成苗的作用。
1.2.3 ?倍性測定 ?取供試材料的新鮮嫩葉約50 mg放入1 mL裂解液的培養(yǎng)皿中,用刀片切碎、過濾、收集濾液,在離心機(jī)中1 100 r/min離心6~10 min后,倒掉上清液,向沉淀物中加入200 μL碘化丙啶(PI)染色液(50 μg/mL),置于4 ℃冰箱中黑暗處理20 min,利用流式細(xì)胞儀(FCM)對其進(jìn)行檢測。檢測試驗(yàn)中,先用普通單倍體油菜調(diào)整流式細(xì)胞儀,使得對照材料的主峰位于熒光強(qiáng)度為100附近,根據(jù)檢測圖,熒光強(qiáng)度為50、150、200附近的峰顯示的細(xì)胞核相對DNA含量分別為熒光強(qiáng)度為100的0.5、1.5、2.0倍。以已經(jīng)確定了染色體倍性的單株即位于熒光強(qiáng)度為100和200的材料作為對照,對其余供試材料進(jìn)行流式細(xì)胞儀檢測。
1.2.4 ?DH群體結(jié)實(shí)性狀的考察分析 ?植株開花以后根據(jù)雄蕊的發(fā)育特征考察植株的單倍體、二倍體、四倍體或者非整倍體或者嵌合體類型,對單株自由授粉,待植株成熟之后按照單株考察角果長度、每角粒數(shù)和千粒重等結(jié)角果性狀。
2 ?結(jié)果與分析
2.1 ?不同基因型材料在不同處理下小孢子胚發(fā)生率和成苗率分析
對種植在田間的6R×ZS11、7DH×ZS11、ZR×R11共3個(gè)不同F(xiàn)1組合基因型的材料取長度3.0~4.5 cm的花蕾,利用B5液體培養(yǎng)基抽提和收集小孢子細(xì)胞,之后對收集的小孢子分別進(jìn)行不加入加倍劑和加入不同濃度秋水仙堿(50、85、125 mg/L)、氟樂林(5、10、15 μmol/L)處理,每種方法處理200個(gè)花蕾的小孢子細(xì)胞。經(jīng)過胚狀體誘導(dǎo)出苗、植株再生等多次繼代培養(yǎng),最終獲得再生植株移栽田間。表1是3個(gè)F1組合從小孢子培養(yǎng)至出苗的全過程統(tǒng)計(jì)總結(jié)。其中,F(xiàn)1組合6R×ZS11和ZR×R11的未加倍處理的出胚數(shù)最多,組合7DH×ZS11的85 mg/L秋水仙堿處理出胚數(shù)最多。3個(gè)F1組合材料的小孢子在85 mg/L秋水仙堿處理后的胚再生成苗的比例最高。
2.2 ?3個(gè)F1組合小孢子培養(yǎng)所得再生植株的倍性測定與分析
小孢子培養(yǎng)后代群體是不同染色體倍性的混合,除了未加倍的單倍體,還有天然加倍或者加倍劑處理后產(chǎn)生的正常雙單倍體、四倍體以及非整倍體或者嵌合體。利用流式細(xì)胞儀可測定植株細(xì)胞內(nèi)核酸含量,確定被檢測單株的倍性水平等,如果所示峰值位于熒光強(qiáng)度為100左右的被測樣品為二倍體,位于熒光強(qiáng)度為50、200的分別為單倍體和四倍體,非整倍體可能是單倍體染色體的消除,所以在圖示中為熒光強(qiáng)度50的位置,而分離峰縱坐標(biāo)達(dá)到2 000(圖1)。對用流式細(xì)胞儀初步測定的50株單倍體油菜進(jìn)行0.1%秋水仙堿浸泡根系處理試驗(yàn)。接下來利用流式細(xì)胞儀對3個(gè)經(jīng)過未加倍處理、不同濃度加倍劑處理小孢子培養(yǎng)的F1組合以及秋水仙堿浸根處理后獲得的植株進(jìn)行倍性分析,結(jié)果見表2和圖2。由圖2可知,F(xiàn)1組合6R×ZS11中有31.27%植株為雙單倍體,組合7DH×ZS11中有49.60%植株為雙單倍體,組合ZR×R11中有52.00%植株為雙單倍體。不同秋水仙堿濃度處理試驗(yàn)結(jié)果顯示,85 mg/L秋水仙堿處理小孢子后獲得的雙單倍體植株比例最高。不同濃度的氟樂林加倍劑處理試驗(yàn)顯示,10 μmol/L氟樂林處理小孢子后獲得雙單倍體比例較高。在3個(gè)不同F(xiàn)1組合基因型的小孢子培養(yǎng)試驗(yàn)中,秋水仙堿處理后獲得的雙單倍體的植株數(shù)高于氟樂林處理后的雙單倍體數(shù)目,表明秋水仙堿在油菜小孢子階段處理能夠獲得雙單倍體的能力高于氟樂林加倍劑的處理作用。此外比較了3個(gè)F1組合中50個(gè)單倍體在0.1%秋水仙堿浸根處理后的加倍率,結(jié)果顯示,F(xiàn)1組合6R×ZS11加倍率最高,為42%,組合7DH×ZS11為26%,組合ZR×R11為22%,表明不同基因型材料在浸根過程中對0.1%秋水仙堿處理的敏感性存在差異。分析3個(gè)F1組合小孢子培養(yǎng)過程中天然加倍率,統(tǒng)計(jì)分析顯示,F(xiàn)1組合6R×ZS11天然加倍獲得雙單倍體率為23.73%,組合7DH×ZS11為21.35%,組合ZR×R11為25.00%,表明這3個(gè)F1組合基因型材料在小孢子培養(yǎng)過程中天然加倍率和基因型關(guān)聯(lián)性不大,加倍率都低于秋水仙堿處理小孢子后再生成植株的加倍率,與氟樂林處理小孢子后再生植株的加倍率差異不大。總之,85 mg/L秋水仙堿處理上述3個(gè)F1雜交組合材料小孢子得到的雙單倍體比例最高,效果優(yōu)于天然加倍處理、不同濃度氟樂林處理以及浸泡單倍體油菜根系獲得雙單倍體的方法。
2.3 ?不同基因型材料小孢子培養(yǎng)的胚在低溫處理?xiàng)l件下一次成苗率分析
將3個(gè)F1組合材料經(jīng)過小孢子培養(yǎng)后成胚,選取長度為4~7 mm的胚從NLN液體培養(yǎng)基中轉(zhuǎn)移到B5固體培養(yǎng)基后,置于4 ℃分別處理5 d和10 d,之后置于25 ℃培養(yǎng)室16 h光照、8 h黑暗培養(yǎng)4周,統(tǒng)計(jì)成苗情況。結(jié)果(表3)顯示,與未經(jīng)過低溫處理的胚相比,4 ℃處理10 d后,3個(gè)F1組合的小孢子胚一次成苗率最高,并且達(dá)顯著水平;而小孢子胚形成次生胚進(jìn)一步再成苗或者分化為愈傷組織后脫分化成苗的比率顯著降低。由此可知,3個(gè)F1組合材料的小孢子胚在4 ℃處理10 d后能夠顯著提高胚的一次成苗率,降低胚分化成次生胚再形成植株的比率,極大程度上縮短了胚形成植株的生長過程。
2.4 ?不同基因型再生植株經(jīng)過染色體加倍獲得的雙單倍體的結(jié)實(shí)性考察與分析
為了確定加倍劑秋水仙堿和氟樂林在油菜小孢子培養(yǎng)獲得的雙單倍體植株是否會(huì)對結(jié)莢和油菜子粒的發(fā)育存在影響,本試驗(yàn)中對供試的3個(gè)F1組合經(jīng)自然加倍和加倍劑處理后獲得的DH群體的結(jié)實(shí)性進(jìn)行考察和比較。結(jié)果(表4)顯示,F(xiàn)1組合6R×ZS11、7DH×ZS11以及7DH×ZS11小孢子培養(yǎng)后自然加倍獲得雙單倍體植株平均角果長、平均每角果粒數(shù)和平均千粒重與不同濃度秋水仙堿以及氟樂林加倍劑處理后獲得的雙單倍體無顯著差異。秋水仙堿和氟樂林這兩類加倍劑處理這3種不同基因型材料的小孢子細(xì)胞所得到的雙單倍體以及秋水仙堿浸泡根系加倍獲得的雙單倍體能夠正常結(jié)實(shí),與天然加倍獲得的植株無顯著差異。
3 ?討論
3.1 ?小孢子胚發(fā)生能力的影響因素
油菜小孢子培養(yǎng)試驗(yàn)中胚發(fā)生能力受到很多因素影響。供體植株的生長環(huán)境是決定小孢子是否能夠通過孢子體發(fā)育階段的重要因素,供體植株的基因型決定了小孢子是否具備胚細(xì)胞發(fā)生能力。前人研究在19個(gè)不同基因型的甘藍(lán)中有15個(gè)基因型材料每100個(gè)花蕾的成胚能力為0~3 000不等[1]。在本試驗(yàn)中不同基因型的小孢子胚發(fā)生能力存在差異。F1組合6R×ZS11、ZR×R11在85 mg/L秋水仙堿處理所得到的出胚數(shù)最高,隨著秋水仙堿處理濃度進(jìn)一步提高,出胚率下降。在加倍劑氟樂林處理下發(fā)現(xiàn),隨著氟樂林濃度的增加,出胚率降低。在F1組合7DH×ZS11處理后可見,在85 mg/L秋水仙堿以及低濃度氟樂林(5 μmol/L)處理下的出胚數(shù)目高于未加倍處理小孢子細(xì)胞的出胚數(shù)目。對小孢子的脅迫處理如低溫和高溫,能夠使得小孢子從配子體發(fā)育途徑向孢子體發(fā)育途徑轉(zhuǎn)變,提高小孢子形成胚的能力。對抽提的小孢子細(xì)胞進(jìn)行32 ℃黑暗處理24 h能夠有效提高小孢子發(fā)育成胚的能力,可能是熱激能夠影響染色體微管的分布導(dǎo)致小孢子的對稱性分裂,從而阻止了小孢子細(xì)胞向配子體發(fā)育途徑,直接進(jìn)行雄性單性生殖階段。不同基因型對熱處理的反應(yīng)存在差異,單一因素的脅迫處理并不能適用于所有基因型材料,需要根據(jù)不同基因型對熱脅迫溫度以及時(shí)間的敏感性來進(jìn)一步優(yōu)化處理方式。
3.2 ?不同類型以及濃度的加倍劑對小孢子胚再生的影響
有效的染色體加倍是創(chuàng)建大量DH系的關(guān)鍵,本試驗(yàn)3個(gè)F1組合的天然加倍率均低于50%,表明3個(gè)組合在小孢子培養(yǎng)過程中只有少數(shù)的細(xì)胞在細(xì)胞分裂的早期進(jìn)行了細(xì)胞核融合途徑(C途徑),相比前人研究中發(fā)現(xiàn)甘藍(lán)型油菜天然加倍率高達(dá)70%的結(jié)果有著較大的差距[25],這可能是不同基因調(diào)控網(wǎng)絡(luò)途徑?jīng)Q定不同遺傳來源材料的細(xì)胞核融合過程,最終決定了加倍率。前人研究認(rèn)為對油菜小孢子進(jìn)行不同濃度加倍劑處理能夠影響小孢子胚的發(fā)生途徑。加倍劑黃草消和氟樂林施加后會(huì)延遲胚的發(fā)育,進(jìn)一步影響胚的直接再生以及成苗過程[26]。不同加倍劑如秋水仙堿以及氟樂林在小孢子培養(yǎng)時(shí)期的加入對小孢子生長產(chǎn)生不同程度的脅迫,這類脅迫能夠阻止小孢子向配子體發(fā)育階段進(jìn)行,轉(zhuǎn)而獲得胚性再生能力。在培養(yǎng)過程中由于抽提和純化小孢子細(xì)胞會(huì)誘導(dǎo)小孢子的活性氧反應(yīng)(ROS),高濃度的ROS會(huì)促進(jìn)小孢子進(jìn)行細(xì)胞程序性死亡(PCD)過程,在加倍劑處理后及時(shí)更新小孢子細(xì)胞培養(yǎng)基能夠清除ROS反應(yīng)后的代謝物,保證小孢子的活力,有效降低小孢子細(xì)胞的死亡率。
3.3 ?低溫處理小孢子胚對一次成苗的作用
前人研究得出在水稻、玉米、小麥和大麥等作物中低溫預(yù)處理小孢子能夠提高小孢子雄性單性生殖的能力[27]。此外冷處理能夠提高小孢子胚再生能力,促使子葉胚的正常生長。通過冷處理胚能夠增加胚萌發(fā)率高達(dá)90%,促進(jìn)58.46%的油菜生長[28]。本試驗(yàn)通過對4~7 mm小孢子胚進(jìn)行冷處理10 d能夠顯著提高小孢子胚再生成植株的能力。這可能是由于冷處理降低了小孢子再生反應(yīng)中超氧化物酶活力,極大地加速了呼吸速率和熱量產(chǎn)生,從而減少了次生代謝物質(zhì)的產(chǎn)生,最終避免了細(xì)胞的脫分化。
參考文獻(xiàn):
[1] FERRIE A M R,CASWELL K L. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production[J].Plant cell tissue & organ culture,2011,104(3):301-309.
[2] LICHTER R. Induction of haploid plants from isolated pollen of Brassica napus L.[J].Zeitschrift für pflanzenphysiologie,1982, 105(5):427-434.
[3] PINK D,BAILY L,MCCLEMENT S,et al. Double haploids,markers and QTL analysis invegetable Brassicas[J].Euphytica,2008,164(2):509-514.
[4] FERRIE A. Microspore culture of Brassica species[A].MALUSZYNS
KI M,KASHA K J,F(xiàn)ORSTER B P,et al. Doubled haploid production in crop plants[M].New York:Springer science business media,LLC,2003.205-215.
[5] FERRIE A M R,M LLERS C. Haploids and doubled haploids in Brassica spp. for genetic and genomic research[J].Plant cell tissue organ culture,2011,104(3):375-386.
[6] SATO S,KATOH N,IWAI S,et al. Effect of low temperature pretreatment of buds or inflorescence on isolated microspore culture in Brassica rapa(syn B. campestris)[J].Breeding science,2002,52(1):23-26.
[7] GU H H,ZHOU W J,HAGBERG P. High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp. Chinensis[J].Euphytica,2003,134(3):239-245.
[8] WANG T T,LI H X,ZHANG J H,et al. Initiation and development ofmicrospore embryogenesis in recalcitrant perple flowering stalk (Brassica campestris ssp. Chinesis var. purpurea Hort.)[J].Sci Hort,2009,121(4):419-424.
[9] FERRIE A M R,DIRPAUL J,KRISHNA P,et al. Effects of brassinosteroids on microspore embryogenesis in Brassica species[J].In Vitro Cell Dev Biol,2005,41(6):742-745.
[10] PREM D,GUPTA K,GAUTAM S,et al. Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea[J].Plant cell tissue and organ culture,2008,93(3):269-282.
[11] ZENG X,WEN J,WAN Z,et al. Effects of bleomycin on microspore embryogenesis in Brassica napus and detection of somaclonal variation using AFLP molecular marker[J].Plant cell tissue and organ culture,2010,101(1):23-29.
[12] WEI Z. Effects of colchicine with heat shock and cold induction on plant regeneration from microspore-derived embryos in Brassica napus[J].Acta agronomica sinica,2002,28(3):369-373.
[13] ZHANG G Q,ZHANG D Q,TANG G X,et al. Plant development from microspore-derived embryos in oilseed rape as affected by chilling,desiccation and cotyledon excision[J].Biologia plantarum,2006,50(2):180-186.
[14] HUANG B,BIRD S,KEMBLE R,et al. Plant regeneration from microspore-derived embryos of Brassica napus:Effect of embryo age,culture temperature,osmotic pressure,and abscisis acid[J].In Vitro Cell Dev Biol,1991,27P(1):28-31.
[15] KOTT L,BEVERSDORF W D. Enhanced plant regeneration from microspore-derived embryos of Brassica napus by chilling,partial dessication and age selection[J].Plant cell tissue and organ culture,1990,3:187-192.
[16] ORR W,JOHNSONFLANAGAN A M,KELLER W A,et al. Induction of freezing tolerance in microspore-derived embryos of winter Brassica napus[J].Plant cell reports,1990,8(10):579-581.
[17] WAKUI K,TAKAHATA Y,KAIZUMA N. Effect of abscisic acid and high osmoticum concentration on theinduction of desiccation tolerance in microspore-derived embryos of Chinese cabbage(Brassica campestris L.)[J].Japanese journal of breeding,1994,44(1):29-34.
[18] XU L,NAJEEB U,TANG G X,et al. Haploid and doubled haploid technology[J].Advances in botanical research,2007, 45(7):181-216.
[19] TAKAHATA Y,KELLER W A. High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L.[J].Plant science,1991,74(2):235-242.
[20] TAKAHASHI Y,YOKOI S,TAKAHATA Y. Effects of genotypes and culture conditions on microspore embryogenesis and plant regeneration in several subspecies of Brassica rapa L.[J].Plant biotechnology reports,2012,6(4):297-304.
[21] BHATIA R,DEY S S,SOOD S,et al. Optimizing protocol for efficient microspore embryogenesis and doubled haploid development in different maturity groups of cauliflower (B. oleracea var. botrytis L.) in India[J].Euphytica,2016,212(3):439-454.
[22] KASHA K J. Chromosome doubling and recovery of doubled haploid plants[A].DON PALMER C E,KELLER W A,KASHA K J. Haploids in crop improvement II[M].Berlin:Springer,2005.123-152.
[23] KASHA K J,HU T C,ORO R,et al. Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores[J].J. Exp Bot,2001,52(359):1227-1238.
[24] DA SILVA DIAS J C. Effect of incubation temperature regimes and culture medium on broccoli microspore culture embryogenesis[J].Euphytica,2011,119(3):389-394.
[25] KL?魱MA M,VYVADILOV?魣,KUCERA V. Chromosome doubling effects of selected antimitotic agents in Brassica napus microspores culture[J].Czech journal of genetics and plant breeding,2008,44(1):30-36.
[26] WEBER S,?譈NKER F,F(xiàn)RIEDT W. Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry[J].Plant breeding,2005,124(5):511-513.
[27] UR I,DUBAS E,GOLEMIEC E,et al. Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale(x Triticosecale Wittm.)[J].Plant cell reports,2009,28(8):1279-1287.
[28] ZHANG G Q,HE Y,TANG G X,et al. Genetic analyses of agronomic and seed quality traits of doubled haploid population in Brassica napus through microspore culture[J].Euphytica,2006,149(1-2):169-177.