国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于聲學(xué)算法的油底殼流固耦合模態(tài)計(jì)算問(wèn)題仿真研究

2020-05-03 13:54孫長(zhǎng)周楊良波
汽車實(shí)用技術(shù) 2020年7期

孫長(zhǎng)周 楊良波

摘 要:油底殼、油箱、膨脹水箱等在塑料應(yīng)用開發(fā)中,為了準(zhǔn)確計(jì)算其模態(tài),需要考慮液體與結(jié)構(gòu)的耦合作用。文章以圓柱形儲(chǔ)液容器為研究對(duì)象,采用聲學(xué)單元、薄膜單元對(duì)流體進(jìn)行建模,考慮了液體可壓縮性和自由液面的晃動(dòng)效應(yīng),計(jì)算得到容器的一階模態(tài),與模態(tài)試驗(yàn)結(jié)果、液體單元法和虛擬質(zhì)量法的耦合模態(tài)計(jì)算結(jié)果對(duì)比顯示,文章所采用的建模方法在計(jì)算流固耦合模態(tài)時(shí)具有更高的準(zhǔn)確性。然后,采用該建模方法探究了液體高度對(duì)該圓柱形儲(chǔ)液容器前三階模態(tài)的影響。最后,采用該建模方法計(jì)算了某款塑料油底殼在含油狀態(tài)下的一階模態(tài),并與油底殼單獨(dú)模態(tài)和虛擬質(zhì)量法的計(jì)算結(jié)果作對(duì)比,說(shuō)明了考慮液體作用及液面晃動(dòng)效應(yīng)對(duì)油底殼模態(tài)計(jì)算的重要性。

關(guān)鍵詞:塑料應(yīng)用;儲(chǔ)液容器;流固耦合模態(tài);晃動(dòng)效應(yīng);塑料油底殼

Abstract: In order to precisely calculate the modal of oil pan, fuel tank and expansion tank in the development of plastic application, the fluid-structure interaction (FSI) is necessary to be considered. The study model based on acoustic element and membrane element consider compressibility and sloshing effect of liquid. It is proved that the modeling method has a higher accuracy by comparing the result of calculation of first-order mode with modal test, fluid element method and virtual mass method. Then, the effect of fluid height to first three mode is studied. Finally, the modeling method is used for calculating the first-order mode of a plastic oil pan. The results show that it is necessary to consider liquid effect and sloshing in the modal calculation of liquid storage container by comparing with the calculation results of single structure modal and virtual mass method.

前言

隨著汽車輕量化進(jìn)程的加速,越來(lái)越多的汽車零部件都開始實(shí)現(xiàn)以塑代鋼,通過(guò)降低汽車重量,從而提高汽車的動(dòng)力性、減少燃料消耗和降低排氣污染。油底殼、油箱和膨脹水箱等作為汽車上重要的儲(chǔ)液容器,由于其體積、質(zhì)量較大,如果能實(shí)現(xiàn)塑料化,將會(huì)有效降低汽車整車重量及制造成本,并且提高汽車NVH性能等。固有模態(tài)作為汽車車身及零部件固有屬性之一,對(duì)整車的NVH性能有著至關(guān)重要的影響,因而,汽車零部件開發(fā)過(guò)程中,其模態(tài)的研究具有十分重要的意義。然而,此類汽車上的儲(chǔ)液容器由于工作過(guò)程中存在和液體的相互作用,其模態(tài)勢(shì)必會(huì)受到與之相接觸的液體的影響。研究?jī)?chǔ)液容器與其內(nèi)部液體相互作用下的流固耦合模態(tài),才能準(zhǔn)確把握其動(dòng) 態(tài)特性,正確地指導(dǎo)此類汽車零部件塑料化的開發(fā)。

目前,國(guó)內(nèi)外學(xué)者在此類儲(chǔ)液容器流固耦合問(wèn)題的研究上已有一定成果。Ozdemir[1]等采用非線性流固耦合方法研究了液體作用對(duì)錨定和非錨定油箱抗震性能的影響。鄭建華等[2]采用液體單元法進(jìn)行立式圓柱形儲(chǔ)液罐的三維液固耦合模態(tài)分析,研究了液體低頻與高頻狀態(tài)下的晃動(dòng)特性。張韶光[3]等使用NASTRAN中的虛擬質(zhì)量法和液體單元法計(jì)算比較了不考慮自由液面影響的圓柱殼的振動(dòng)。李青[4]等分別采用液體單元法和虛擬質(zhì)量法建立圓柱形儲(chǔ)液容器液固耦合模型,通過(guò)與試驗(yàn)結(jié)果對(duì)比,驗(yàn)證了這兩種仿真方法的有效性。賈善坡[5]等在采用聲學(xué)單元描述流體,對(duì)底部固定的矩形剛性儲(chǔ)液容器內(nèi)液體表面晃動(dòng)模態(tài)進(jìn)行研究,驗(yàn)證了采用聲學(xué)單元模擬自由液面晃動(dòng)狀態(tài)的準(zhǔn)確性。

1 仿真方法介紹

1.1 液體單元法

假設(shè)液體為無(wú)黏(忽略阻尼粘滯作用)、可壓縮和小幅度運(yùn)動(dòng)的,固體則考慮為線彈性材料。采用Galerkin法建立位移一壓力格式的液固耦合有限元方程為[6]:

其中,us為固體單元節(jié)點(diǎn)位移向量,pf為流體單元節(jié)點(diǎn)壓力向量,Ms和Ks分別為固體的質(zhì)量矩陣和固體的剛度矩陣,Mf和Kf分別為液體的質(zhì)量矩陣和剛度矩陣,Q為液固耦合矩陣,ρf為液體密度,F(xiàn)s為固體外載荷向量。Mf是由兩部分疊加而成的,即與液體可壓縮性相關(guān)的質(zhì)量矩陣MfV和與液體自由表面晃動(dòng)效應(yīng)相關(guān)的質(zhì)量矩陣Mfs。

液體單元法通過(guò)固體和液體的交界面來(lái)建立耦合關(guān)系,需分別劃分固體和液體區(qū)域網(wǎng)格,建模過(guò)程相對(duì)繁瑣。液體單元法求解流固耦合問(wèn)題時(shí)可以考慮液體晃動(dòng)效應(yīng),計(jì)算精度較高,但求解液固耦合方程通常需要較大的計(jì)算量,當(dāng)模型復(fù)雜時(shí),求解效率較低。

1.2 虛擬質(zhì)量法

虛擬質(zhì)量法簡(jiǎn)化了流體和固體彈性結(jié)構(gòu)之間復(fù)雜的相互作用,將流體對(duì)固體的作用以固體的附加質(zhì)量形式來(lái)體現(xiàn),以更加簡(jiǎn)便的建模方式求解流固耦合問(wèn)題。

根據(jù)流體力學(xué)的運(yùn)動(dòng)學(xué)基本方程和流體無(wú)旋、不可壓縮條件下的拉普拉斯方程得到壓力向量。用Helmoholtz邊界積分法求解拉普拉斯方程得到流體邊界上的速度向量。再將流體邊界上的速度向量在結(jié)構(gòu)有限元表面進(jìn)行積分得到虛擬質(zhì)量法的附加質(zhì)量矩陣:

一般認(rèn)為儲(chǔ)液容器內(nèi)的液體是不可壓縮的,且液體晃動(dòng)不太劇烈時(shí)又可忽略自由表面波動(dòng)效應(yīng),則液體質(zhì)量矩陣 ,消去液體變量后得到如下解耦的方程:

虛擬質(zhì)量法將液固耦合組合單元方程簡(jiǎn)化為含液體附加質(zhì)量矩陣的結(jié)構(gòu)有限元方程,避免了液體單元網(wǎng)格的劃分、降低了建模復(fù)雜度,求解效率一般較高,但由于無(wú)法考慮自由液面的晃動(dòng)效應(yīng),其精確度還有待考證。

1.3 本文計(jì)算模型

1.3.1 聲學(xué)方程

將流體視為具有彈性的聲學(xué)介質(zhì)分析液體晃動(dòng)的動(dòng)力學(xué)特性,考慮可壓縮、無(wú)黏性和小擾動(dòng)、有阻尼的流體微幅運(yùn)動(dòng)平衡方程為[7]:

式中:P是流體動(dòng)壓;x是流體質(zhì)點(diǎn)的空間坐標(biāo); 是流體質(zhì)點(diǎn)的速度; 是流體質(zhì)點(diǎn)加速度;ρf是流體的密度;γ是體積曳力。

可壓縮、無(wú)黏性、線彈性、考慮體積模量的流體介質(zhì)的本構(gòu)方程為:

1.3.2 流體動(dòng)力學(xué)方程

對(duì)無(wú)黏性、可壓縮和小擾動(dòng)的流體,以壓力擾動(dòng)P為場(chǎng)變量的波動(dòng)方程:

1.3.3 有限元模型與數(shù)值方法

對(duì)流體域采用流場(chǎng)壓力P作為基本變量,構(gòu)造插值函數(shù)Nk (x,y,z),則流體域壓力分布為:

采用分塊Lanczos法[8],通過(guò)創(chuàng)建一個(gè)正交向量塊,利用每次Lanczos步中的塊的大小增加Krylov子空間的維數(shù),可以自動(dòng)計(jì)算大型矩陣的特征值,大大提高計(jì)算效率。

本文以聲學(xué)單元和薄膜單元為基礎(chǔ)建立的流固耦合模型,考慮液體可壓縮性和自由液面的晃動(dòng)效應(yīng),較精確地模擬了流體與結(jié)構(gòu)的相互作用,并且分塊Lanczos法的應(yīng)用使得模態(tài)的計(jì)算具有較高的效率。 相比虛擬質(zhì)量法和液體單元法,在建模復(fù)雜性、計(jì)算準(zhǔn)確性與求解效率上具有一定的優(yōu)勢(shì)。

2 圓柱體儲(chǔ)液容器流固耦合模態(tài)計(jì)算

本文以某圓柱體儲(chǔ)液容器為研究對(duì)象,按照以下建模方法計(jì)算其模態(tài)頻率和振型,并對(duì)比分析不同液體高度對(duì)模態(tài)頻率和振型的影響。

圓柱形儲(chǔ)液容器的幾何參數(shù)為:直徑為251mm,高度為300mm,壁厚為5mm。容器材料參數(shù)為:彈性模量為102GPa,泊松比為0.25,密度為2777kg/m3。容器內(nèi)液體高度分別為0mm、50mm、100mm、150mm、200mm、250mm、300mm。液體為常溫狀態(tài)下的水,其材料參數(shù)為:密度1000kg/m3,體積模量為2.06GPa。重力加速度取g=9.8m/s2。

假設(shè)液體是無(wú)黏性、可壓縮、無(wú)旋的理想液體,液體晃動(dòng)為小波動(dòng)。按以下方法建立流固耦合模型:流體部分采用聲學(xué)單元,頂部自由液面采用薄膜單元,在薄膜單元上添加彈簧單元以考慮重力引起的自由液面晃動(dòng)效應(yīng)。求解聲學(xué)波動(dòng)方程時(shí),網(wǎng)格單元的尺寸影響計(jì)算結(jié)果的精確度。聲學(xué)單元的網(wǎng)格尺寸需滿足Δx<λ/6時(shí),即一個(gè)波長(zhǎng)內(nèi)一般不少于6個(gè)節(jié)點(diǎn)[9]。自由液面所采用的薄膜單元賦予下表[10]中超彈性參數(shù):

2.1 模態(tài)計(jì)算結(jié)果

表2中列出了模態(tài)實(shí)驗(yàn)結(jié)果[11]、液體單元法和虛擬質(zhì)量法計(jì)算的仿真結(jié)果[4]及與試驗(yàn)結(jié)果的誤差。

圖1為三種計(jì)算方法得到的不同液體高度下的一階模態(tài)頻率結(jié)果與實(shí)驗(yàn)結(jié)果的誤差曲線。從圖中可以看出,本文所采用的建模方法計(jì)算得到的不同液體高度情況下的第一階模態(tài)頻率誤差均在1.5%以內(nèi),驗(yàn)證了本文采用的計(jì)算方法的準(zhǔn)確性。另外,與液體單元法和虛擬質(zhì)量法的計(jì)算誤差相比,本文采用的建模方法具有更高的精度。三種計(jì)算方法得到的一階模態(tài)頻率均偏小,源于仿真計(jì)算均建立在液體無(wú)粘、小波動(dòng)的假設(shè)基礎(chǔ)上,仿真與實(shí)際液體運(yùn)動(dòng)狀態(tài)會(huì)有一定偏差。

圖2為不含液體時(shí)圓柱形儲(chǔ)液容器的前三階模態(tài)振型。從振型圖可以看出,該狀態(tài)下前三階模態(tài)分別為第一階呼吸模態(tài)、第二階呼吸模態(tài)及第一階縱向模態(tài)。

圖3為液體高度為150mm時(shí)的圓柱形儲(chǔ)液容器的前三階模態(tài)振型。從振型圖可以看出,該狀態(tài)下前三階模態(tài)分別為第一階呼吸模態(tài)、第一階縱向模態(tài)及第二階呼吸模態(tài)。

對(duì)比圖2和圖3可以得出,儲(chǔ)液容器無(wú)論是否含有液體,其前三階模態(tài)均為為第一階呼吸模態(tài)、第二階呼吸模態(tài)及第一階縱向模態(tài),且振型相同。第一階呼吸模態(tài)表現(xiàn)為頂部邊緣兩點(diǎn)對(duì)稱式周向振動(dòng),無(wú)底部振型。第二階呼吸模態(tài)振型表現(xiàn)為頂部邊緣三點(diǎn)對(duì)稱式周向振動(dòng),同樣無(wú)底部振型。第一階縱向模態(tài)表現(xiàn)為底部中心單點(diǎn)軸向振動(dòng),無(wú)周向振型。

從圖4可以看出,當(dāng)儲(chǔ)液容器含有50mm高度的液體時(shí),其第一階縱向模態(tài)頻率相比不含液體時(shí)下降明顯,而第一、二階呼吸模態(tài)頻率變化較小,此時(shí)第二階模態(tài)由第二階呼吸模態(tài)變?yōu)榈谝浑A縱向模態(tài),并且隨著液體高度的增加仍然維持這種狀態(tài)。由此可見,容器中少量的液體即可激發(fā)底部的縱向振動(dòng),從而使得縱向模態(tài)頻率明顯下降。另外,前三階模態(tài)頻率均隨著液體高度的增加呈現(xiàn)逐漸下降趨勢(shì)。第一、二階呼吸模態(tài)在液體高度小于100mm以下時(shí)下降較為緩慢,而在液體高度大于100mm時(shí)下降較快; 第一階縱向模態(tài)頻率在液體高度小于50mm時(shí)下降迅速,而在液體高度大于50mm時(shí),下降速度逐漸變緩。因而可以得出結(jié)論:液體作用對(duì)呼吸模態(tài)頻率的影響體現(xiàn)在液體較多時(shí),而對(duì)縱向模態(tài)頻率的影響體現(xiàn)在液體較少時(shí)。

3 塑料油底殼流固耦合模態(tài)計(jì)算

油底殼作為發(fā)動(dòng)機(jī)潤(rùn)滑系統(tǒng)的重要部件,承擔(dān)著集存潤(rùn)滑油和散熱的作用。目前絕大多數(shù)發(fā)動(dòng)機(jī)油底殼仍然以金屬為材料采用沖壓或壓鑄成型。隨著汽車輕量化的發(fā)展,發(fā)動(dòng)機(jī)油底殼的塑料化將是一大趨勢(shì)。

玻纖增強(qiáng)復(fù)合材料以其低密度、耐腐蝕、隔音、隔熱、耐沖擊和高韌性的特點(diǎn),在汽車輕量化上發(fā)揮著越來(lái)越重要的作用。采用玻纖增強(qiáng)復(fù)合材料制造發(fā)動(dòng)機(jī)油底殼,不僅可以有效降低零件重量,而且提高了油底殼的NVH性能。注塑成型具有易成型復(fù)雜結(jié)構(gòu)零件的特點(diǎn),又可以使零件高度集成,減少零件裝配工序,從而進(jìn)一步降低成本[12]。

3.1 約束模態(tài)計(jì)算結(jié)果

塑料油底殼開發(fā)過(guò)程中,含油狀態(tài)下的固有頻率作為其零件試驗(yàn)大綱中重要的一項(xiàng)實(shí)驗(yàn)指標(biāo),若能采用準(zhǔn)確、高效的仿真方法獲得其模態(tài),將能明顯縮短塑料應(yīng)用開發(fā)的周期。

本文以一款塑料油底殼為研究對(duì)象,采用本文建模方法及虛擬質(zhì)量法計(jì)算了含油狀態(tài)下的油底殼一階模態(tài),并與不含油狀態(tài)下的一階模態(tài)進(jìn)行了對(duì)比。

分析模型如下圖5所示,所有安裝點(diǎn)全自由度約束。油底殼采用金發(fā)PA66+35%玻璃纖維的材料,機(jī)油材料為SAE 5W30,其密度為850kg/m3,體積模量為2490MPa。

圖5? 塑料油底殼模型

圖6為該塑料油底殼在不含油狀態(tài)下的一階模態(tài)振型以及含油狀態(tài)下采用虛擬質(zhì)量法和本文建模方法計(jì)算得到的一階模態(tài)振型。

從圖6可以看出,該塑料油底殼在不含油狀態(tài)下以及含油狀態(tài)下的一階模態(tài)均為縱向模態(tài),表現(xiàn)為底部單點(diǎn)軸向振動(dòng)。

表3列出了相應(yīng)一階模態(tài)頻率值及相對(duì)不含油狀態(tài)的頻率變化率。

從表4可以看出,考慮機(jī)油作用的油底殼一階模態(tài)頻率相比不含機(jī)油狀態(tài)的一階模態(tài)頻率明顯要小,可見,機(jī)油的作用使得油底殼一階模態(tài)頻率明顯下降。因此,在計(jì)算類似油底殼的儲(chǔ)液容器的模態(tài)頻率時(shí),必須考慮液體的作用,否則,模態(tài)頻率值會(huì)明顯偏大。另外,虛擬質(zhì)量法的結(jié)果要比本文建模方法偏大,這是由于虛擬質(zhì)量法只考慮了液體的質(zhì)量效應(yīng),未考慮自由液面的晃動(dòng)作用,因而在計(jì)算油底殼模態(tài)時(shí)采用虛擬質(zhì)量法會(huì)存在一定誤差。

4 結(jié)論

(1)以聲學(xué)單元和薄膜單元為基礎(chǔ)建立液體晃動(dòng)模型,計(jì)算某圓柱形儲(chǔ)液容器的一階流固耦合模態(tài)。通過(guò)與實(shí)驗(yàn)結(jié)果對(duì)比,驗(yàn)證了該建模方法的準(zhǔn)確性;同時(shí)也表現(xiàn)出了比液體單元法和虛擬質(zhì)量法更高的計(jì)算準(zhǔn)確性。

(2)采用該建模方法計(jì)算了不同液體高度下的儲(chǔ)液容器前三階模態(tài),得到了液體高度對(duì)儲(chǔ)液容器模態(tài)頻率和振型的影響規(guī)律。

(3)采用該建模方法計(jì)算了某油底殼的一階模態(tài),同時(shí)與油底殼單獨(dú)模態(tài)、虛擬質(zhì)量法計(jì)算結(jié)果作對(duì)比,說(shuō)明不考慮液體作用和液面晃動(dòng)效應(yīng)會(huì)對(duì)油底殼模態(tài)計(jì)算產(chǎn)生較大誤差。

參考文獻(xiàn)

[1] Ozdemir Z,Souli M,F(xiàn)ahjan Y M. Application of nonlinear fluid- structure interaction methods to seismic analysis of anchored and unanchored tanks [J]. Engineering structures,2010,32(2):409-423.

[2] 鄭建華,李金光,唐輝永.立式圓柱形儲(chǔ)液罐的三維液固耦合模態(tài)分析[J].化工設(shè)計(jì),2012,22(1):25-27.

[3] 張韶光,楊登峰,王德禹.部分充液圓柱殼的振動(dòng)分析[J].中國(guó)海洋平臺(tái),2004,19(3):10-13.

[4] 李青,韓增堯,馬興瑞.航天器貯箱液固耦合振動(dòng)特性的仿真與試驗(yàn)研究[J].宇航學(xué)報(bào),2014,35(11):1233-1237.

[5] 賈善坡,趙友清,許成祥.儲(chǔ)液容器內(nèi)液體晃動(dòng)問(wèn)題的動(dòng)力學(xué)建模與模擬[J].鄭州大學(xué)學(xué)報(bào)(工學(xué)版),2013,34(3):76-80.

[6] 王勖成.有限單元法[M].北京:清華大學(xué)出版社,2003.

[7] HKS.ABAQUS/Standard version 6.5 user s manual [M].Rhode Island,USA:Hibbit,Karlsson and Sorensen Inc.2002.

[8] GRIMES R G,LEWIS J G,SIMON H D.A Shifted block lanczos algorithm for solving sparse symmetric generalized eigen problems [J].SIAM Journal on Matrix Analysis and Applications,1994(15): 228-272.

[9] 廖振鵬,工程波動(dòng)理論導(dǎo)論[M].北京:科學(xué)出版社,2002.

[10] 劉萬(wàn)里,王戡.橡膠懸置靜動(dòng)態(tài)特性仿真與試驗(yàn)研究[J].機(jī)械研究與應(yīng)用,2014,27(1):99-101.

[11] 李俊寶.中國(guó)古代文物龍洗引發(fā)的力學(xué)問(wèn)題實(shí)驗(yàn)研究[D].北京:北京大學(xué),2000.

[12] 張玉麗,焦曉龍,邱煒,謝鵬程.汽車發(fā)動(dòng)機(jī)油底殼的模態(tài)分析與結(jié)構(gòu)優(yōu)化[J].塑料工業(yè),2018,46(10):136-139.