劉彩鳳
摘要:主要研究三維Cahn-Hilliard 方程的Cauchy問題。首先,利用傅里葉變換求出其相對應(yīng)線性方程的形式解并證明形式解的光滑性;然后,構(gòu)造壓縮映射,應(yīng)用 Banach不動點定理證明其局部適定性;最后,通過連續(xù)性準(zhǔn)則得到其在無任何小初值假設(shè)條件下的整體適定性。
關(guān)鍵詞:Cahn-Hilliard 方程;傅里葉變換;Banach 不動點定理;連續(xù)性準(zhǔn)則
中圖分類號:O175.29
DOI:10.16152/j.cnki.xdxbzr.2020-06-009
Global well-posedness of the 3D Cahn-Hilliard equation
LIU Caifeng
(School of Mathematics, Northwest University, Xi′an? 710127, China)
Abstract: In this paper,? the Cauchy problem of the three-dimensional Cahn-Hilliard equations has been studied. Firstly, the formal solution of the corresponding linear system is obtained by the Fourier transform method, and the smoothness of the formal solution is proved. Then, the local well-posedness is proved by constructing? the compression map and applying the Banach fixed point theorem.? Finally, the global well-posedness is demonstrated via the continuation criterion without assumption of small initial data in Sobolev spaces.
Key words: Cahn-Hilliard equation; Fourier transform; Banach fixed point theorem; continuation criterion
參考文獻(xiàn):
[1] CAHN J W,HILLIARD J E.Free energy of a nonuniform system.I. interfacial free energy[J].The Journal of Chemical Physics, 1958, 28(2): 258-267.
[2] COHEN D S, MURRAY J D. A generalized diffusion model for growth and dispersal in a population[J].J Math Biology, 1981, 12(2): 237-249.
[3] HAZEWINKEL M, KAASHOEK J F,LEYNSE B. Pattern Formation for a One Dimensional Evolution Equation Based on Thom′s River Basin Model[M].Disequilibrium and self-Organisation.Dordrecht:Springer Netherlands,1986,30:23-46.
[4] TAYLER A B.Mathematical Models in Applied Mechanics [M]. Oxford: Clarendon, 1986.
[5] ELLIOTT C M, ZHENG S M.On the Cahn-Hilliard equation[J]. Archive for Rational Mechanics and Analysis 1986, 96(4): 339-357.
[6] RACKE R, ZHENG S M. The Cahn-Hilliard equation with dynamic boundary conditions[J]. Advances in Differential Equations, 2003, 8(1): 8-83.
[7] PRSS J, RACKE R, ZHENG S M. Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions[J]. Annali Di Matematica Pura Ed Applicata, 2006, 185(4): 627-648.
[8] ZHENG S M, MILANI A. Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2004, 57(5/6): 843-877.
[9] CAFFARELLI? L A, MULER N E.An L∞ bound for solutions of the Cahn-Hilliard equation[J]. Archive for Rational Mechanics and Analysis, 1995, 133(2): 129-144.
[10]BRICMONT J, KUPIAINEN A, TASKINEN J.Stability of Cahn-Hilliard fronts[J]. Comm Pure Appl Math,1999, 52(7): 839-871.
[11]LIU S Q, WANG F, ZHAO H J.Global existence and asymptotics of solutions of the Cahn-Hilliard equation[J]. Journal of Differential Equations, 2007, 238(2): 426-469.
[12]DLOTKO T, SUN C Y. Dynamics of the modified viscous Cahn-Hilliard equation in Rn[J]. Topological Methods in Nonlinear Analysis, 2010, 35(2): 277-294.
[13]CHOLEWA J W,RODRIGUEZ-BERNAL A. On the Cahn-Hilliard equation in H1(RN)[J]. J Differential Equations, 2012, 253(12): 3678-3726.
[14]朱長江, 鄧引斌. 偏微分方程教程[M]. 北京:科學(xué)出版社, 2005.
[15]李開泰,馬逸塵,王立周.廣義函數(shù)和Sobolev空間[M].西安:西安交通大學(xué)出版社, 2008.
[16]SIMON J. Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure [J]. Siam J Math Anal, 1990, 21(5):1093-1117.
[17]KLAINERMAN S, MAJDA A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1981,34(4):481-524.
[18]LEONARDI S, MLEK J, NECAS J, et al. On axially symmetric flows in R3[J]. Z Anal Anwendungen, 1999, 18 (3):639-649.
[19]CHERRIER P, MILANI A.Linear and Quasi-linear Evolution Equations in Hilbert Spaces[M].Rhode lsland:American Mathematical Society, 2012.
[20]EVANS L C. Weak Convergence Methods for Nonlinear Partial Differential Equations[M]. Loyola University of Chicago: Conference Board of the Mathematical Sciences, 1988: 9-10.
[21]TARTAR L. An Introduction to Sobolev Spaces and Interpolation Spaces[M].Berlin,Heidelberg,New York:Springer,2007:10-11.
[22]LVAREZ-CAUDEVILLA P, GALAKTIONOV V A. Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches[J]. Nonlinear Analysis:Theory,Methods & Applications, 2015, 121: 19-35.
(編 輯 張 歡)