邱海軍 馬舒悅 崔一飛 楊冬冬 裴艷茜 劉子敬
【主持人語】自然災(zāi)害作為一種破壞性災(zāi)害事件,經(jīng)常對(duì)人類的生命財(cái)產(chǎn)和生存環(huán)境構(gòu)成嚴(yán)重威脅,制約著人類的可持續(xù)發(fā)展,因此自然災(zāi)害綜合研究的理論與方法已成為國(guó)內(nèi)外學(xué)者研究的重點(diǎn)。該欄目重點(diǎn)關(guān)注災(zāi)害研究的理論與實(shí)踐,包括山體滑坡作用、災(zāi)害型景區(qū)旅游解說、災(zāi)后恢復(fù)與救助力度、地質(zhì)災(zāi)害防治機(jī)制以及黃土磁化率對(duì)氣候事件記錄及意義研究。西北大學(xué)教授邱海軍在“重新認(rèn)識(shí)滑坡作用”一文中論述了山體滑坡重塑地形、限制山體起伏等多方面作用,進(jìn)一步深化了對(duì)山體滑坡作用的認(rèn)識(shí)。西安財(cái)經(jīng)大學(xué)副教授郝俊卿在“災(zāi)害型景區(qū)旅游解說對(duì)科普旅游體驗(yàn)的影響因素分析——以翠華山山崩國(guó)家地質(zhì)公園為例”一文中采用逐步回歸方法,構(gòu)建了旅游解說對(duì)科普旅游體驗(yàn)的影響模型,探索了國(guó)家公園的建設(shè)管理,為地質(zhì)公園科普實(shí)踐提供了有效建議。中國(guó)科學(xué)院地理科學(xué)與資源研究所陸地表層格局與模擬院重點(diǎn)實(shí)驗(yàn)室張正濤在“災(zāi)后恢復(fù)中救助力度對(duì)恢復(fù)速度支撐的過程模擬研究”一文中對(duì)災(zāi)后恢復(fù)速度的提高與災(zāi)后救助力度關(guān)系進(jìn)行了研究,通過建立間接經(jīng)濟(jì)損失動(dòng)態(tài)評(píng)估模型,評(píng)估所需救助資金及其對(duì)恢復(fù)過程的動(dòng)態(tài)影響,以期幫助各地政府科學(xué)有效地安排災(zāi)后救助預(yù)算。陜西省國(guó)土資源廳地質(zhì)環(huán)境處處長(zhǎng)王雁林在“陜西省地質(zhì)災(zāi)害重大風(fēng)險(xiǎn)問題與防控機(jī)制研究”一文中指出了陜西省地質(zhì)災(zāi)害防治現(xiàn)存的三大風(fēng)險(xiǎn)問題,進(jìn)而提出構(gòu)建陜西省地質(zhì)災(zāi)害防治新機(jī)制,推動(dòng)地質(zhì)災(zāi)害防治理論研究,提高地質(zhì)災(zāi)害防控管理水平和應(yīng)急能力。西北大學(xué)城市與環(huán)境學(xué)院徐新文在“黃土磁化率對(duì)千年-百年尺度氣候事件的記錄及其古氣候意義”一文中以黃土高原的趙家川和巴謝剖面為例,通過高密度磁化率數(shù)據(jù)分析千年-百年尺度的氣候波動(dòng),對(duì)黃土中記錄的氣候快速變化事件進(jìn)行更為深入的認(rèn)識(shí)和理解。這些工作將為自然災(zāi)害全方面研究與發(fā)展打下基礎(chǔ),并提供一定的研究思路。
【主持人】邱海軍,西北大學(xué)城市與環(huán)境學(xué)院教授,博士生導(dǎo)師。
摘要:山體滑坡是全球山區(qū)環(huán)境中最為常見和嚴(yán)重的自然災(zāi)害之一,每年都會(huì)造成大量的人員傷亡和財(cái)產(chǎn)損失。前人大量研究主要集中于滑坡災(zāi)害的動(dòng)力學(xué)過程、形成機(jī)制和風(fēng)險(xiǎn)評(píng)估、監(jiān)測(cè)預(yù)警等方面。然而,山體滑坡不僅僅是重要的自然災(zāi)害,更起到重塑地形,限制山體起伏,改變土壤的物理和生化性質(zhì),加速土壤侵蝕,擾亂植物演替,影響生態(tài)系統(tǒng)多樣性,影響人類社會(huì)等多方面作用,而這些作用對(duì)于拓深自然地理、地質(zhì)和生態(tài)過程的認(rèn)識(shí)有著重要的意義。但遺憾的是這方面的研究目前相對(duì)薄弱,沒有引起學(xué)界足夠的重視?;诖耍撐脑敿?xì)論述了山體滑坡在這方面的作用,為進(jìn)一步深化對(duì)山體滑坡作用的認(rèn)識(shí)提供了全新的研究思路與獨(dú)特見解。
關(guān)鍵詞:滑坡;自然災(zāi)害;地貌;土壤侵蝕;植物演替
中圖分類號(hào):P954;P931
DOI:10.16152/j.cnki.xdxbzr.2020-03-007
Reconsider the role of landslides
QIU Haijun1,2, MA ShuyueCUI Yifei3, YANG Dongdong PEI YanqianLIU Zijing1
Abstract: Landslides, which account for enormous casualty and property damage every year, are very widespread and dangerous natural hazard in mountainous and hilly environments around the world. Previous studies have focused most of their attention on kinetic process, formation mechanism, risk assessment, real-time monitoring and early warning, etc. However, landslides not only act as significant natural hazards but also reshape the topography, limit mountain relief, change the physical and biochemical properties of the soil, speed up soil erosion, disturb plant succession and influence ecosystem diversity, and affect human society, etc. This role of landslides is significantly important for deepening the knowledge on physical geography, geologic and ecologic process. Unfortunately, only few researches have been focused on the role of landslides. Thus, we? illustrated the role of landslides in detail and provided new insights into new thinking and special opinion to deepen the knowledge of the role of landslides in this paper.
Key words: landslides; natural hazard; geomorphology; soil erosion; plant succession
滑坡作為一種非常復(fù)雜的自然現(xiàn)象和破壞性的地質(zhì)事件, 對(duì)人類的生命財(cái)產(chǎn)和生存環(huán)境構(gòu)成嚴(yán)重威脅, 極大地制約著當(dāng)?shù)厝祟惿鐣?huì)的可持續(xù)發(fā)展[1-3]。 現(xiàn)有研究主要集中于滑坡的動(dòng)力學(xué)過程、 形成機(jī)制、 風(fēng)險(xiǎn)評(píng)估和監(jiān)測(cè)預(yù)防等方面[4-8], 卻完全忽視了滑坡在其他方面的重要作用[9], 例如重塑地貌,限制山體起伏, 改變土壤物理和生化性質(zhì), 加速土壤侵蝕, 擾亂植物演替和影響生態(tài)系統(tǒng)多樣性等。 因此, 為了更好地理解滑坡相關(guān)作用, 并在未來進(jìn)行進(jìn)一步量化研究, 有必要對(duì)滑坡這方面的作用進(jìn)行全面論述與詳細(xì)梳理, 以期拋磚引玉, 讓更多的學(xué)者加入到滑坡作用的研究中來。
1 對(duì)地形的影響
1.1 重塑地貌
山體滑坡作為地貌驅(qū)動(dòng)力,是重要的地貌過程,且在自然環(huán)境的山脈演化中發(fā)揮著重要作用[10-13]。許多現(xiàn)有地貌都曾經(jīng)被山體滑坡塑造過[8,14-15]。山體滑坡活動(dòng)直接創(chuàng)造了許多地貌,并對(duì)其他景觀要素產(chǎn)生了間接影響[16]。因此,滑坡地貌應(yīng)該在更廣泛的學(xué)科體系中有一席之地[17-18]。在最早的地貌演化模型和傳統(tǒng)方法中,滑坡在地貌過程中的作用和意義幾乎完全被忽略[17,19-20]。事實(shí)上,與緩慢塑造山區(qū)的河流和冰川相比,山體滑坡(特別是大型或巨型滑坡)可以在短短幾分鐘內(nèi)在遠(yuǎn)距離上急劇而顯著地重新分布地表物質(zhì),重塑地貌并改變山地形態(tài)[21]。例如,汶川地震引發(fā)了56 000多次滑坡,在短時(shí)間內(nèi)突然改變了該地區(qū)的地形[22](圖 1)。特別是汶川地震導(dǎo)致凈物質(zhì)虧損,即這次地震引發(fā)的塊體運(yùn)動(dòng)量大于造山帶增長(zhǎng)量[23]。因此,越來越多的證據(jù)表明,滑坡過程控制著山坡的形狀和地貌演化的速度[24-25]。
從長(zhǎng)遠(yuǎn)來看,滑坡堆積對(duì)河流形態(tài)有重要影響[9],泥石流經(jīng)常填滿或侵蝕河道[26],山體滑坡經(jīng)常切斷河流并形成滑坡壩湖,可能會(huì)持續(xù)數(shù)千年[27]。一些主要的滑坡壩已成為旅游景點(diǎn),還會(huì)影響山谷形態(tài)演變[27]。位于中國(guó)陜西省的秦嶺翠華山崩塌堰塞湖于公元前780年形成[28],這座由崩塌形成的堰塞壩顯著地影響著當(dāng)?shù)氐暮恿骱蜕降氐孛?,現(xiàn)已成為著名的風(fēng)景名勝區(qū)(圖2A)。形成于2010年的巴基斯坦阿塔巴德滑坡堰塞湖現(xiàn)已成為著名的旅游景點(diǎn)(圖2B)。
1.2 限制山體起伏
山體滑坡在山體隆升和侵蝕的長(zhǎng)期動(dòng)態(tài)平衡過程中起著重要作用[2,23,29-30]。山地地形可以反映山體隆升與侵蝕的相互作用[30]。盡管構(gòu)造力變化,但是山體起伏總體上是受到限制的[31-32]。山體滑坡會(huì)使現(xiàn)有的山地斜坡變得平緩且穩(wěn)定[9]。山脈的高度會(huì)隨著隆升速率的增加而上升,但只會(huì)上升到一定的峰頂高度[30-31]。這一觀點(diǎn)意味著,地形發(fā)育存在閾值坡度和起伏度,大面積滑坡使斜坡降低到閾值角度,從而進(jìn)一步限制了急劇隆升地區(qū)的山脈高度[31]。比如在喜馬拉雅山脈東部的納姆切巴瓦所觀察到的[31],高滑坡率限制了相鄰山坡的坡度,從而調(diào)節(jié)了山脈高度。利用卡爾曼二維極限平衡邊坡穩(wěn)定模型,可以廣泛地測(cè)量邊坡的最大高度。Montgomery和Brandon[33]也認(rèn)為山地隆升不可能無限增長(zhǎng),并且發(fā)現(xiàn)大部分的大型滑坡都發(fā)生在隆升極限附近。
2 土壤物理性質(zhì)變化及后續(xù)侵蝕加速
首先,山體滑坡可以改變土壤的物理性質(zhì)[34-35]?;露逊e區(qū)水平剖面和垂直剖面的粒度分布有所不同[36-37]。而且,Cheng等[34]發(fā)現(xiàn)滑坡堆積區(qū)土壤樣品的飽和含水量、田間持水量和總孔隙度均低于其他地區(qū)。研究表明,隨著時(shí)間的推移,土壤的物理性質(zhì)將越來越接近原狀土。此外,相比于原狀土,滑坡區(qū)具有較高的黏土組分,土壤團(tuán)聚體和抗水性多樣性[38-39]。
其次,土壤侵蝕是劇烈和漸進(jìn)過程的結(jié)合,山體滑坡是所有景觀環(huán)境中最嚴(yán)重的土壤侵蝕過程[1,40-41],然而,滑坡引起的土壤侵蝕很難用一般的土壤流失方程(USLE)來表示。事實(shí)上,幾乎所有的土壤流失方程都關(guān)注土壤侵蝕的漸進(jìn)過程。眾所周知,大型滑坡可在很短的時(shí)間內(nèi)導(dǎo)致大量土壤沉積,如果該區(qū)域僅在漸進(jìn)的土壤環(huán)境下侵蝕,則該過程可能需要數(shù)十年或數(shù)百年。
第三,滑坡沉積物將在原始滑坡發(fā)生后的幾年內(nèi)通過降雨被重新搬運(yùn),這通常會(huì)導(dǎo)致災(zāi)難性的泥石流[42]。滑坡沉積物質(zhì)在土壤孔隙形成的滲流通道中具有可變性,并且由于降雨入滲速度快,土體強(qiáng)度降低,因此極易形成泥石流[43-44]。據(jù)估算,在2008年汶川地震期間形成的滑坡堆積物引起的泥石流活動(dòng)將持續(xù)20年左右,然后隨著時(shí)間的推移,邊坡將趨于穩(wěn)定,泥石流的發(fā)生頻率將呈下降趨勢(shì)[8]。
最后,滑坡后植被斑塊被裸地斑塊所取代。由于滑坡后的植被恢復(fù)期較長(zhǎng),沒有植被保護(hù)的松散滑坡沉積物將導(dǎo)致土壤侵蝕加?。?8,43,45]。地震誘發(fā)滑坡的年平均侵蝕深度是地震前土壤侵蝕深度的2.26倍[46]。如圖4所示,滑坡的土壤侵蝕比原狀土更嚴(yán)重,并且山體滑坡在溝壑形成中起著重要作用。一些研究人員發(fā)現(xiàn)龍門山地震區(qū)剝蝕呈雙曲線衰減趨勢(shì),預(yù)計(jì)81年后恢復(fù)到震前速率[47]。因此,對(duì)滑坡區(qū)進(jìn)行長(zhǎng)期的土壤侵蝕監(jiān)測(cè)至關(guān)重要[46]。
3 土壤生物和化學(xué)性質(zhì)的變化
山體滑坡通過暴露母質(zhì)或去除有機(jī)質(zhì)層來改變土壤性質(zhì)[48]。與鄰近地區(qū)的土壤相比,滑坡區(qū)域土壤的物理、化學(xué)和生物性質(zhì)更加多樣化[38,49-50]。
其次,土壤生物化學(xué)性質(zhì)將隨著土壤的發(fā)展而變化[38,51]。由于重力的作用,營(yíng)養(yǎng)豐富的土壤通常會(huì)向下移動(dòng)[45,52]。有機(jī)質(zhì)含量作為最重要的特征之一,可以反映滑坡的土壤形成過程[38]。Van Eynde等[53]發(fā)現(xiàn)土壤有機(jī)碳隨著滑坡年齡增加而顯著增加,并在大約60年后達(dá)到相應(yīng)的原狀土水平。Wilcke等人[50]比較了淺層碎屑土的有機(jī)層與鄰近原狀土的有機(jī)層,發(fā)現(xiàn)土壤有機(jī)層的平均質(zhì)量按滑坡后緣<中部<腳<參考土的順序增加。但是,Schrumpf等人[49]提出滑坡過程會(huì)將營(yíng)養(yǎng)物質(zhì)帶到酸性和營(yíng)養(yǎng)貧瘠的土壤表面,從而提高土壤肥力。此外,Zarin和Johnson(1995)[54]發(fā)現(xiàn)隨著滑坡年齡的增加,土壤中營(yíng)養(yǎng)含量將在大約55年后達(dá)到滑坡前水平。
4 滑坡對(duì)植物的影響
滑坡被認(rèn)為是天然植被的非生物干擾和植物演替的重要驅(qū)動(dòng)力[55-59]。雖然山體滑坡破壞了群落結(jié)構(gòu)和生態(tài)系統(tǒng)功能,但它們打破了優(yōu)勢(shì)物種的統(tǒng)治并為其他物種提供了機(jī)會(huì)[60-61]。在發(fā)生山體滑坡后,草本植物構(gòu)建了與周圍地區(qū)不同的生態(tài)系統(tǒng)[45,62]。在自然植物演替過程中,許多植物侵入山體滑坡,植被覆蓋率提高,達(dá)到47%左右[46]。山體滑坡后植物物種多樣性再次迅速恢復(fù),并在接下來的幾年中趨于相對(duì)穩(wěn)定[55,57,63]。植物量和邊坡穩(wěn)定性隨時(shí)間的變化如圖5所示。
其次,山體滑坡在水生和陸生生物多樣性中發(fā)揮著重要作用,然而這方面的作用長(zhǎng)期以來一直被忽視或低估[48,64-65]。滑坡的時(shí)空差異性可以顯著影響世界各地生態(tài)系統(tǒng)的多樣性和功能性[21]。滑坡形成后,滑坡生態(tài)系統(tǒng)將被重組[21]。山體滑坡可能會(huì)促進(jìn)一些植物物種生長(zhǎng)并阻礙其他物種的生長(zhǎng),并進(jìn)一步改變其動(dòng)物生態(tài)系統(tǒng)[11]。一般來說,在熱帶森林中滑坡可能促進(jìn)并保持較高的植物物種多樣性[45,66]?;逻吘壍闹参锉仍诨轮行母S富[52,67]?;麦w堆積區(qū)具有相對(duì)高的有機(jī)物含量,植物生長(zhǎng)速率快[45,50]。具有早期演替特征的樹木可以持續(xù)存活超過70年[68]。此外,物種豐富度和植物豐富度將顯示出非線性過程和可預(yù)測(cè)的軌跡[68-71]。
5 與人類社會(huì)的互動(dòng)
毫無疑問,山體滑坡是地質(zhì)歷史上的自然和普遍現(xiàn)象,即使我們無法觀察到它們[11]。由于人類歷史上的偏見,我們認(rèn)為山體滑坡是例外和異常[11]。特別是人類及其建筑物、工程設(shè)施、公共服務(wù)設(shè)施和基礎(chǔ)設(shè)施區(qū)域作為承載體廣泛暴露于滑坡的風(fēng)險(xiǎn)之中[72-74]。山區(qū)和丘陵區(qū)的許多城市和鄉(xiāng)鎮(zhèn)因?yàn)槠教雇恋鼐o缺而建立在滑坡的堆積區(qū)上[75],如圖4所示,山區(qū)的村莊建在山體滑坡的堆積區(qū),因此,我們必須學(xué)會(huì)與山體滑坡及其風(fēng)險(xiǎn)和平共處[76-77]。此外,我們應(yīng)該注意到山體滑坡并不總是給人類帶來負(fù)面影響,有時(shí),滑坡形成后一年或兩年內(nèi),山體滑坡將變?yōu)檗r(nóng)田和其他土地利用類型(圖6)。
參考文獻(xiàn):
[1]GUZZETTI F, REICHENBACH P, CARDINALI M, et al. Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology,2005,72(1):272-299.
[2]PETLEY D. Global patterns of loss of life from landslides[J]. Geology,2012,40(10):927-930.
[3]HUNGR O, LEROUEIL S, PICARELLI L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194.
[4]IVERSON R M. Landslide triggering by rain infiltration[J].Water Resources Research,2000,36(7):1897-1910.
[5]HUANG R Q. Mechanisms of large-scale landslides in China[J]. Bulletin of Engineering Geology and the Environment,2012,71(1):161-170.
[6]SASSA K, TSUCHIYA S, FUKUOKA H, et al. Landslides:Review of achievements in the second 5-year period (2009—2013)[J].Landslides,2015,12(2):213-223.
[7]邱海軍,曹明明,劉聞,等. 基于三種不同模型的區(qū)域滑坡災(zāi)害敏感性評(píng)價(jià)及結(jié)果檢驗(yàn)研究[J].地理科學(xué), 2014, 34(1): 110-115.
QIU H J, CAO M M, LIU W, et al. The susceptibility assessment of landslide and its calibration of the models based on three different models[J].Scienta Geographica Sinica, 2014, 34(1):110-115.
[8]邱海軍,崔鵬,王彥民,等. 基于關(guān)聯(lián)維數(shù)的黃土滑坡空間分布結(jié)構(gòu)及其成因分析[J].巖石力學(xué)與工程學(xué)報(bào),2015,34(3):546-555.
QIU H J, CUI P, WANG Y M, et al. Spatial distribution structure of loess landslides and cause analysis based on correlated fractal dimension[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(3):546-555.
[9]SCHUSTER R L, HIGHLAND L M. Overview of the effects of mass wasting on the natural environment[J].Environmental and Engineering Geoscience,2007,13(1):25-44.
[10]KORUP O, DENSMORE A L, SCHLUNEGGER F. The role of landslides in mountain range evolution[J]. Geomorphology, 2010, 120(1): 77-90.
[11]DE BLASIO F V.A short Intoroduction to the Physics of Granular Media[M]∥Introduction to the physics of landslides. Springer, Dordrecht,2011:131-158.
[12]SHRODER J F, OWEN L A, SEONG Y B, et al. The role of mass movements on landscape evolution in the central Karakoram:Discussion and speculation[J]. Quaternary International, 2011, 236(1/2): 34-47.
[13]邱海軍,崔鵬,胡勝,等. 陜北黃土高原不同地貌類型區(qū)黃土滑坡頻率分布[J].地球科學(xué),2016,41(2):343-350.
QIU H J, CUI P, HU S, et al. Size-frequency distribution of landslides in different landforms on the loess plateau of northern Shaanxi[J].Earth Science,2016,41(2):343-350.
[14]HOVIUS N, STARK C P, ALLEN P A. Sediment flux from a mountain belt derived by landslide mapping[J].Geology, 1997, 25(3): 231-234.
[15]SIDLE R C, OCHIAI H. Landslides:Processes, Prediction, and Land Use[M].Washington,D.C.:American Geophysical Union,2006.
[16]CENDRERO A, DRAMIS F. The contribution of landslides to landscape evolution in Europe[J]. Geomorphology, 1996, 15(3/4): 191-211.
[17]CROZIER M J. Landslide geomorphology: An argument for recognition, with examples from New Zealand[J]. Geomorphology, 2010, 120(1/2): 3-15.
[18]邱海軍,曹明明,王雁林,等. 黃土丘陵區(qū)地質(zhì)災(zāi)害規(guī)模參數(shù)冪律相依性研究[J].地理科學(xué),2015,35(1):107-113.
QIU H J,CAO M M,WANG Y L,et al.Power law correlations of geohazards in loess hilly region[J].Scientia Geographica Sinica, 2015, 35(1):107-113.
[19]DAVIS W M. The geographical cycle[J]. Geographical Journal, 1899, 14(5):481-504.
[20]PENCK W. Morphological Analysis of Landforms[J].Soil Science,1954,77(1):80.
[21]RESTREPO C, WALKER L R, SHIELS A B, et al. Landsliding and its multiscale influence on mountainscapes[J]. BioScience, 2009, 59(8): 685-698.
[22]FAN X M, JUANG C? H, WASOWSKI J, et al. What we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges[J]. Engineering Geology 2018, 241:25-32.
[23]PARKER R N, DENSMORE A L, ROSSER N J, et al. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth[J]. Nature Geoscience, 2011, 4(7): 449-452.
[24]SELBY M J. Dominant geomorphic events in landform evolution[J]. Bulletin International Association of Engineering Geology, 1974, 9(1):85-89.
[25]邱海軍,曹明明,劉聞,等. 區(qū)域滑坡空間分布的變維分形特征研究[J].現(xiàn)代地質(zhì), 2014, 28(2): 443-448.
QIU H J, CAO M M, LIU W, et al. Research on variable dimension fractal characteristics of spatial distribution of landslides[J].Geoscience, 2014, 28(2):443-448.
[26]GEERTSEMA M, HIGHLAND L, VAUGEOUIS L. Environmental impact of landslides[J]. Landslides-Disaster Risk Reduction 2009:589-607.
[27]COSTA J E, SCHUSTER R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin, 1988, 100(7):1054-1068.
[28]WEIDINGER J T, WANG J X, MA N D. The earthquake-triggered rock avalanche of Cui Hua, Qin Ling Mountains, P R of China: The benefits of a lake-damming prehistoric natural disaster[J]. Quaternary International, 2002, 93:207-214.
[29]鄭書彥. 滑坡侵蝕及其動(dòng)力學(xué)機(jī)制與定量評(píng)價(jià)研究[D].楊凌:西北農(nóng)林科技大學(xué), 2002.
[30]SCHMIDT K M, MONTGOMERY D R. Limits to relief[J]. Science, 1995, 270(5236): 617.
[31]ROERING J. Tectonic geomorphology: landslides limit mountain relief[J]. Nature Geoscience, 2012, 5(7):446-447.
[32]王冬梅. 基于3S技術(shù)的武都區(qū)生態(tài)環(huán)境變化及驅(qū)動(dòng)力分析[D].蘭州:蘭州大學(xué), 2013.
[33]MONTGOMERY D R, BRANDON M T. Topographic controls on erosion rates in tectonically active mountain ranges[J]. Earth Planet,2002, 201(3/4):481-489.
[34]CHENG S, YANG G, YU H, et al. Impacts of Wenchuan Earthquake-induced landslides on soil physical properties and tree growth[J].Ecological Indicators, 2012, 15(1):263-270.
[35]鄒錫云,許強(qiáng),趙寬耀,等. 長(zhǎng)期浸水作用下重塑黃土滲透特性變化規(guī)律分析[J].水利水電技術(shù),2019,50(10):1-13.
ZOU X Y, XU Q, ZHAO K Y, et al. Analysis on changing law of permeability of remolded loess under long-term soaking[J].Water Resources and Hydropower Engineering,2019,50(10):1-13.
[36]SAVAGE S B, LUN C K K. Particle size segregation in inclined chute flow of dry cohesionless granular solids[J]. Journal of Fluid Mechanics, 1988, 189:311-335.
[37]郭帥,胡勝,馬舒悅,等. 基于高分辨地形的秦嶺山地滑坡特征參數(shù)提取分析[J].西北大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 49(3): 456-462.
GUO S, HU S, MA S Y, et al. Extraction and analysis of characteristic parameters of QinlingMountains landslide based on high-resolution topography[J].Journal of Northwest University ( Natural Science Edition),2019,49(3):456-462.
[38]BOSKA E, LASOTA J, ZWYDAK M, et al. Restoration of forest soil and vegetation 15 years after landslides in a lower zone of mountains in temperate climates[J]. Ecological Engineering, 2016, 97:503-515.
[39]張一希,許強(qiáng),彭大雷,等. 深圳“12·20”滑坡土體滲透性模擬試驗(yàn)研究[J].水文地質(zhì)工程地質(zhì),2017,44(5):131-136,149.
ZHANG Y X, XU Q, PENG D L, et al. An experimental study of the permeability of the catastrophic landslide at the Shenzhen Landfill[J].Hydrogeology & Engineering Geology, 2017,44(5):131-136,149.
[40]KEEFER D K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions[J]. Geomorphology and Natural Hazards, 1994: 265-284.
[41]OUIMET W B, WHIPPLE K X, ROYDEN L H, et al. The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China)[J]. Geological Society of America Bulletin, 2007, 119(11/12):1462-1476.
[42]CUI Y F, ZHOU X J, GUO C X. Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall[J]. Journal of Mountain Science, 2017, 14(3):417-431.
[43]CUI P, LIN Y M, CHEN C. Destruction of vegetation due to geo-h(huán)azards and its environmental impacts in the Wenchuan earthquake areas[J]. Ecological Engineering, 2012, 44:61-69.
[44]HUANG R Q, FAN X M. The landslide story[J]. Nature Geoscience, 2013, 6(5):325-326.
[45]GUARIGUATA M R. Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico[J]. Journal of Ecology,1990,78(3):814-832.
[46]LIN W T, LIN C Y, CHOU W C. Assessment of vegetation recovery and soil erosion at landslides caused by a catastrophic earthquake:A case study in Central Taiwan[J]. Ecological Engineering, 2006, 28(1):79-89.
[47]CHEN N S, LI J , LIU L H, et al. Post-earthquake denudation and its impacts on ancient civilizations in the Chengdu Longmenshan region, China[J]. Geomorphology, 2018, 309:51-59.
[48]GEERTSEMA M, POJAR J J. Influence of landslides on biophysical diversity:A perspective from British Columbia[J]. Geomorphology, 2007, 89(1/2):55-69.
[49]SCHRUMPF M, GUGGENBERGER G, SCHUBERT C, et al. Tropical montane rain forest soils: Development and nutrients status along an altitudinal gradient in the south Ecuadorian Andes[J].Erde, 2001,132(1):43-59.
[50]WILCKE W, VALLADAREZ H, STOYAN R, et al. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador[J].Catena,2003,53(1):79-95.
[51]鄧曉紅, 鐘方雷, 劉玉卿, 等. 基于生態(tài)足跡和主體功能分區(qū)的縣域?yàn)?zāi)后重建政策研究——以2011年東鄉(xiāng)“3.2”特大滑坡災(zāi)害為例[J].冰川凍土, 2012, 34(5):1257-1264.
DENG X H, ZHONG F L, LIU Y Q, et al. Study on post-disaster reconstruction policy based on ecological footprint and major function region regionalization-acase study in Dongxiang landslide hazard area 2010[J].Journal of Glaciology and Geocryology, 2012, 34(5):1257-1264.
[52]WALKER L R, ZARIN D J, FETCHER N, et al. Ecosystem development and plant succession on landslides in the Caribbean[J].Biotropica, 1996, 28(4):566-576.
[53]VAN EYNDE E, DONDEYNE S, ISABIRYE M, et al. Impact of landslides on soil characteristics: Implications for estimating their age[J]. Catena, 2017, 157:173-179.
[54]ZARIN D J, JOHNSON A H. Base saturation, nutrient cation, and organic matter increases during early pedogenesis on landslide scars in the Luquillo Experimental Forest, Puerto Rico[J]. Geoderma, 1995, 65(3):317-330.
[55]RICHTER M. To what extent do natural disturbances contribute to Andean plant diversity? A theoretical outline from the wettest and driest parts of the tropical Andes[J]. Advances in Geosciences, 2009, 22:95-105.
[56]GONZALEZ A, MICKOVSKI S B. Shallow landslides as drivers for slope ecosystem evolution and biophysical diversity[J]. Landslides, 2017, 14(5):1699-1714.
[57]LI B, ZENG T, RAN J H, et al. Characteristics of the early secondary succession after landslides in a broad-leaved deciduous forest in the south Minshan Mountains[J]. Forest Ecology and Management, 2017, 405:238-245.
[58]杜悅悅,彭建,趙士權(quán),等. 西南山地滑坡災(zāi)害生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)——以大理白族自治州為例[J].地理學(xué)報(bào),2016,71(9):1544-1561.
DU Y Y, PENG J, ZHAO S Q, et al. Ecological risk assessment of landslide disasters in mountainous areas of Southwest China: A case study in Dali Bai Autonomous Prefecture[J].Acta Geographica Sinica,2016,71(9):1544-1561.
[59]李凱,孫悅迪,江寶驊,等. 基于像元二分法的白龍江流域植被覆蓋度與滑坡時(shí)空格局分析[J].蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,50(3):376-382.
LI K, SUN Y D, JIANG B H et al.Analysis on spatial-temporal patterns of the vegetation coverage and landslides in Bailongjiang River Basin based on the Dimidiate Pixel Model[J].Journal of Lanzhou University(Natural Sciences),2014,50(3):376-382.
[60]WANG X Z, XU W, OOUYANG Z Y, et al. Impact of Wenchuan Earthquake on giant panda habitat in Dujiangyan region[J].Acta Ecologica Sinica, 2008, 28(12):5856-5861.
[61]JOHNSTONE J F, HOLLINGSWORTH T N, CHAPIN F S, et al. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest[J].Global Change Biology, 2010,16(4):1281-1295.
[62]SAKAI A, OHSAWA M. Vegetation pattern and microtopography on a landslide scar of Mt Kiyosumi, central Japan[J].Ecological Research,1993,8(1):47-56.
[63]MUENCHOW J, BRENNING A, RICHTER M. Geomorphic process rates of landslides along a humidity gradient in the tropical Andes[J]. Geomorphology, 2012, 139:271-284.
[64]邱海軍,曹明明,劉聞,等. 區(qū)域地質(zhì)災(zāi)害的空間點(diǎn)格局分析研究——以寧強(qiáng)縣為例[J].干旱區(qū)資源與環(huán)境,2014,28(3):107-111.
QIU H J, CAO M M, LIU W, et al. Research on the spatial point pattern of geo-h(huán)azard:A case of Ningqiang county[J].Journal of Arid Land Resources and Environment,2014,28(3):107-111.
[65]SASSA K, CANUTI P. Landslides-disaster risk reduction[M].Berlin:Springer Berlin Heidelberg,2009.
[66]GARWOOD N C, JANOS D P, BROKAW N. Earthquake-caused landslides:A major disturbance to tropical forests[J].Science,1979,205(4410):997- 999.
[67]VELZQUEZ E, GMEZ-SAL A. Environmental control of early succession in a landslide on a dry tropical ecosystem (casita volcano, Nicaragua)[J]. Biotropica,2007,39(5):601-609.
[68]MARK A F, DICKINSON K J M. Forest succession on landslides in the fiord ecological region, southwestern New Zealand[J]. New Zealand Journal of Ecology, 1989, 27(3):369-390.
[69]LUNDGREN L. Studies of soil and vegetation development on fresh landslide scars in the Mgeta Valley, western Ulugru Mountains, Tanzania[J]. Geografiska Annaler Series A: Physical Geography, 1978, 60(3/4):91-127.
[70]DALE V H, CAMPBELL D R, ADAMS W M, et al. Plant succession on the Mount St. Helens debris avalanche deposit[M]∥Ecological Responses to the 1980 Eruption of Mount St.Helens.New York:Springer New York,2005:59-73.
[71]劉傳正. 深圳紅坳棄土場(chǎng)滑坡災(zāi)難成因分析[J].中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào),2016,27(1):1-5.
LIU C Z. Genetic mechanism of landslide tragedy happened in Hong′ao dumping place in Shenzhen, China[J].The Chinese Journal of Geological Hazard and Control,2016,27(1):1-5.
[72]GUZZETTI F. Landslide fatalities and the evaluation of landslide risk in Italy[J]. Engineering Geology, 2000, 58(2):89-107.
[73]DAI F C, LEE C F, NGAI Y Y. Landslide risk assessment and management:An overview[J].Engineering Geology,2002,64(1):65-87.
[74]REMONDO J, BONACHEA J, CENDRERO A. Quantitative landslide risk assessment and mapping on the basis of recent occurrences[J]. Geomorphology, 2008, 94(3/4):496-507.
[75]NADIM F, KJEKSTAD O, PEDUZZI P, et al. Global landslide and avalanche hotspots[J]. Landslides, 2006, 3(2):159-173.
[76]GLADE T, ANDERSON M G, CROZIER M J. Landslide Hazard and Risk[M]. Chichester, West Sussex, England:John Wiley and Sons Ltd,2005.
[77]向喜瓊. 區(qū)域滑坡地質(zhì)災(zāi)害危險(xiǎn)性評(píng)價(jià)與風(fēng)險(xiǎn)管理[D].成都:成都理工大學(xué), 2005.
(編 輯 李 波,邵 煜)
收稿日期:2019-12-05
基金項(xiàng)目:第二次青藏高原綜合科學(xué)考察研究項(xiàng)目(2019QZKK0903);國(guó)家重點(diǎn)研發(fā)計(jì)劃政府間國(guó)際創(chuàng)新合作專項(xiàng)(2018YFE0100100);國(guó)家自然科學(xué)基金項(xiàng)目(41771539)
作者簡(jiǎn)介:邱海軍,男,陜西神木人,博士,教授,博士生導(dǎo)師,從事山地災(zāi)害研究。