劉心歌 徐巧玲 唐美蘭
(中南大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,長沙,410083)
Luré系統(tǒng)在液壓控制、蔡氏電路、航空航天等相關(guān)的動力學(xué)系統(tǒng)領(lǐng)域中有著重要的應(yīng)用,引起了國內(nèi)外學(xué)者的廣泛關(guān)注,同時(shí)對它們的研究也取得了豐富的成果.然而由于時(shí)滯的存在,導(dǎo)致Luré系統(tǒng)穩(wěn)定性降低,進(jìn)而引起相關(guān)性能下降.本文將考慮下列一類具有區(qū)間時(shí)變時(shí)滯的中立型Luré控制系統(tǒng):
(1.1)
其中x(t)∈Rn,σ(t)∈Rm分別表示系統(tǒng)的狀態(tài)和輸出向量,矩陣A,A1,B,C和H是已知實(shí)矩陣,矩陣C的譜半徑ρ(C)<1,φ(s)∈Rn表示在[-max{h2,τ},0]上的連續(xù)初始函數(shù),連續(xù)可微的時(shí)滯函數(shù)h(t),τ(t)滿足以下條件:
(1.2)
其中τ>0,τd<1,h,hd表示已知的常數(shù),非線性函數(shù)f(σ(t))=[f1(σ1(t)),f2(σ2(t)),…,fm(σm(t))]T表示反饋輸出向量,fi(σi(t))滿足有限的扇形約束條件(其中ki為正數(shù)):
或者滿足無限的開平面約束條件:
fi(σi(t))∈K[0,∞]∶={fi(σi(t))|fi(0)=0,σi(t)fi(σi(t))>0,σi(t)≠0}.
(1.4)
定義2.1([1]) 如果非線性函數(shù)f滿足條件(1.3)或條件(1.4),且區(qū)間時(shí)變時(shí)滯中立型Luré系統(tǒng)在平衡點(diǎn)x(t)=0處漸近穩(wěn)定,則稱系統(tǒng)(1.1)是絕對穩(wěn)定的.
本文利用Lyapunov-Krasovskii泛函(LKF)方法,建立含有區(qū)間時(shí)滯的中立型Luré時(shí)滯系統(tǒng)(1.1)的完全穩(wěn)定性定理.
引理2.1([2]) 設(shè)g1,g2,…,gN:Rm→R.若在Rm的開子集D上每個gi(t)>0,且滿足
其中xij:Rm→R,xji(t)=xij(t),則有
(2.1)
其中
引理2.3([4]) 設(shè)函數(shù)x:[a,b]→Rn連續(xù),則對于任意正定矩陣R∈Rn×n,有下列不等式成立:
引理2.4([4]) 設(shè)函數(shù)x(s)在區(qū)間[a,b]上連續(xù)可微,則對于任意合適維數(shù)的正定矩陣R,有下列不等式成立:
其中
引理2.5([5]) 設(shè)函數(shù)x(s)在區(qū)間[a,b]上連續(xù)可微,則對任意正定矩陣R,有下列不等式成立:
其中
為了方便分析具有區(qū)間時(shí)滯的中立型Luré控制系統(tǒng)的穩(wěn)定性,我們引入以下記號
ei=[0n×(i-1)n,In,0n×(7-i)n,0n×m,0n×n]T,i=1,…,7,
e8=[0m×7n,Im,0m×3n]T,
ei=[0n×7n,0n×m,0n×(i-9)n,In,0n×(27-i)]T,i=9,…,27,
Φ5=[e3-e2,e3+e2-2e15,e3+6e15-e2-12e21],
Φ8=[e6-e5,e5+e6-2e11,e6+6e11-e5-12e25],
Γ3=[e9-e3,e9+e3-2e16,e9+6e16-e3-12e20],
Γ8=[e1-e6,e1+e6-2e10,e1+6e10-e6-12e24],
Π51=[e16,0,2e20-e16,0,12e22-6e20+e16,0],
Π52=[0,e9-e3,0,e9-2e16+e3,0,6e16+e9-e3-12e20],
Π61=[e15,0,2e21-e15,0,12e23-6e21+e15,0],
Π62=[0,e3-e2,0,e3-2e15+e2,0,6e15+e3-e2-12e21],
Π71=[e10,0,2e24-e10,0,12e26-6e24+e10,0],
Π72=[0,e1-e6,0,e1-2e10+e6,0,6e10+e1-e6-12e24],
Π81=[e11,0,2e25-e10,0,12e27-6e25+e10,0],
Π82=[0,e6-e5,0,e6-2e11+e5,0,6e11+e6-e5-12e25],
下面定理給出區(qū)間時(shí)滯中立型系統(tǒng)(1.1)的穩(wěn)定性判據(jù).
(3.1)
Ξ(h(t),τ(t))∶=Ξ1(h(t),τ(t))+Ξ2+Ξ3+Ξ4(h(t),τ(t))+Ξ5+Ξ6+Ξ7<0,
(3.2)
(3.3)
其中
+[e1,F]Q6[e1,F]T-(1-τd)[e6,e7]Q6[e6,e7]T,
Ξ41(h(t))=Ψ1(h(t))-[Π52,Π62]M1[Π52,Π62]T,
Ξ44(τ(t))=Ψ2(τ(t))-[Π72,Π82]M4[Π72,Π82]T,
Ξ4(h(t),τ(t))=Ξ40+Ξ41(h(t))+Ξ42+Ξ44(τ(t)),
證明構(gòu)造如下Lyapunov-Krasovskii泛函:
(3.4)
其中
V1(t)=XT(t)PX(t),
對于任意的t≥0,我們有
(3.5)
其中
(3.6)
(3.7)
(3.8)
應(yīng)用引理2.1,由(3.7)與(3.8)可得
(3.9)
從而
(3.10)
(3.11)
應(yīng)用引理2.5中的第一個不等式可得
(3.12)
(3.13)
(3.14)
估計(jì)(3.11)中含W1和W4的二重積分,應(yīng)用引理2.4可得
(3.15)
因此
(3.16)
又
(3.17)
根據(jù)引理2.5可得
(3.18)
(3.19)
(3.20)
應(yīng)用引理2.4有
(3.21)
應(yīng)用引理2.1,結(jié)合不等式(3.1),(3.15),(3.21)可得
(3.22)
(3.23)
結(jié)合(3.16)-(3.23)可知
(3.24)
綜上可得
(3.25)
和情形一的處理方法類似,首先對V(t)求關(guān)于t的導(dǎo)函數(shù).
(3.26)
(3.27)
(3.28)
其中
(3.29)
應(yīng)用引理2.3中的不等式可得
(3.30)
(3.31)
由引理2.1和(3.1)可知,
(3.32)
從而
(3.33)
(3.34)
根據(jù)引理2.5中第一個不等式有
(3.35)
(3.36)
再應(yīng)用引理2.4可知
(3.37)
所以
(3.38)
又
(3.39)
由引理2.5中第二個不等式可得
(3.40)
(3.41)
根據(jù)引理2.2可知
(3.42)
再應(yīng)用引理2.1中的倒凸公式得
(3.43)
綜合上面(3.34)-(3.43),我們可以得到
(3.44)
從而
(3.45)
綜上可知,當(dāng)非線性擾動函數(shù)f(σ(t))滿足條件(1.4)時(shí),具有區(qū)間時(shí)變時(shí)滯的中立型Luré控制系統(tǒng)(1.1)是絕對穩(wěn)定的.
本節(jié)通過數(shù)值算例來說明我們獲得的具有區(qū)間時(shí)滯中立型Luré系統(tǒng)絕對穩(wěn)定性判斷準(zhǔn)則的可行性與優(yōu)越性.
例4.1考慮下面的Luré中立型系統(tǒng)
σ(t)=HTx(t),?t≥0,
(4.1)
其中
這個例子被廣泛應(yīng)用于中立型Luré時(shí)滯系統(tǒng)的絕對穩(wěn)定性條件分析.從表1中我們可以看出,當(dāng)τd=0.5,h1=0.5,τ=0.1時(shí),對于不同的hd,按定理3.1計(jì)算所得使系統(tǒng)絕對穩(wěn)定的可允許的最大時(shí)滯上界h2均大于文獻(xiàn)[6,7,8]的結(jié)果.
表1 可允許的最大時(shí)滯上界h2(h1=0.5,τd=0.5)