邱曉聰
摘 要:外源磷的添加能為土壤微生物提供營(yíng)養(yǎng)供給,使土壤微生物的活性增加,進(jìn)而改變土壤有機(jī)碳的礦化速率,土壤有機(jī)碳礦化作為土壤呼吸的一部分,兩者之間有著密切關(guān)系。該文綜述了磷添加對(duì)土壤有機(jī)碳礦化的研究進(jìn)展及磷添加對(duì)土壤有機(jī)碳礦化的潛在影響。
關(guān)鍵詞:外源性磷;磷添加;土壤有機(jī)碳;礦化
中圖分類(lèi)號(hào) S714文獻(xiàn)標(biāo)識(shí)碼 A文章編號(hào) 1007-7731(2020)05-0115-03
土壤有機(jī)碳庫(kù)作為陸地生態(tài)系統(tǒng)最大的碳庫(kù),其儲(chǔ)量高達(dá)1500~2000Pg。占陸地生態(tài)系統(tǒng)總碳存量的2/3,超過(guò)大氣碳庫(kù)的2倍、地上生物量碳庫(kù)的3倍,其微小的改變都將顯著影響到大氣碳的濃度[1]。土壤有機(jī)碳礦化作為土壤呼吸的一部分,是指土壤有機(jī)質(zhì)分解變成CO2的過(guò)程,兩者之間有著密切關(guān)系。它作為陸地不斷向大氣輸入CO2的主要渠道,使得土壤呼吸在全球碳循環(huán)中起著極其重要的作用。外源磷的添加能為土壤微生物提供營(yíng)養(yǎng)供給,改變土壤微生物的活性,進(jìn)而影響土壤有機(jī)碳的礦化速率[2]。外源性磷輸入對(duì)森林土壤碳吸存的影響在全球碳循環(huán)中具有十分重要的作用,因此,筆者闡述了國(guó)內(nèi)外磷添加對(duì)土壤有機(jī)碳礦化的研究進(jìn)展及磷添加對(duì)土壤有機(jī)碳礦化潛在的影響,以期為今后國(guó)內(nèi)開(kāi)展相關(guān)研究提供參考。
1 磷添加對(duì)有機(jī)碳礦化的研究進(jìn)展
外源磷的添加能為土壤微生物提供營(yíng)養(yǎng)供給,使土壤微生物的活性增加,進(jìn)而加快土壤有機(jī)碳的礦化速率[2]。在高度風(fēng)化且潮濕的熱帶地區(qū),磷更是微生物活性的最主要限制因素[3]。例如,在哥斯達(dá)黎加的熱帶森林中,磷可能對(duì)有機(jī)物的分解及土壤碳損失起到限制作用,而施磷后對(duì)土壤呼吸則具有明顯的刺激效果[4]。研究表明,如果碳源是有效的,微生物呼吸的初始呼吸速率會(huì)顯著受到磷的限制[5]。
在亞熱帶地區(qū),有人以城郊生態(tài)系統(tǒng)為例,按照城市—郊區(qū)—農(nóng)村的橫向梯度,探究氮磷提高對(duì)于土壤碳礦化的影響,發(fā)現(xiàn)磷富集有助于增加土壤碳礦化[6]。Allen and Schlesinger[7]對(duì)北卡羅來(lái)納州的火炬松進(jìn)行研究,發(fā)現(xiàn)磷添加會(huì)引起森林地面呼吸的較小增加,但是對(duì)于微生物生物量并無(wú)影響。另外,在亞熱帶濕地生態(tài)系統(tǒng),有學(xué)者在我國(guó)太湖地區(qū)進(jìn)行施磷研究,發(fā)現(xiàn)施磷后顯著增加了土壤全磷和有效磷,刺激微生物活性,同時(shí)促進(jìn)了DOC分子結(jié)構(gòu)的簡(jiǎn)單化和DOC含量的增加,形成一種較為明顯的碳損失[8]。也有學(xué)者以美國(guó)東南部濕地為例,發(fā)現(xiàn)在底物有效性供應(yīng)好的情況下,有機(jī)物的礦化會(huì)受到磷的限制,加磷后造成了CO2在短期內(nèi)的快速增加,并得到CO2速率會(huì)受養(yǎng)分有效性、碳底物質(zhì)量等多種因子驅(qū)動(dòng)的結(jié)論[9]。
在溫帶地區(qū),有人通過(guò)對(duì)北方闊葉森林的研究,發(fā)現(xiàn)磷單獨(dú)施用對(duì)天然有機(jī)碳礦化并無(wú)影響,但是當(dāng)磷和凋落物結(jié)合添加后,會(huì)持續(xù)地增加有機(jī)碳礦化速率[10]。在我國(guó)溫帶人工林地區(qū),磷添加對(duì)于真菌與細(xì)菌比產(chǎn)生了顯著地正效應(yīng)并顯著減少了異養(yǎng)呼吸;但對(duì)于自養(yǎng)呼吸則無(wú)顯著影響[11]。劉德燕等[12]研究了向濕地土壤中添加磷后土壤有機(jī)碳礦化、土壤可溶性有機(jī)碳和可溶性無(wú)機(jī)碳含量的變化,發(fā)現(xiàn)土壤有機(jī)碳的礦化速率與外源磷輸入量呈正相關(guān),土壤可溶性有機(jī)碳含量先減小后增加,而土壤可溶性無(wú)機(jī)碳含量則逐漸增加。
通常磷是植物和微生物的生長(zhǎng)發(fā)育過(guò)程中的限制性因素[13],而磷的添加能在一定程度上緩解磷的限制[14]。然而,也有相關(guān)的施磷實(shí)驗(yàn)的結(jié)果存在爭(zhēng)議性,即分別表現(xiàn)為:刺激作用[7],抑制作用[15],或者對(duì)于土壤呼吸沒(méi)有影響[16]。施瑤等[17]在內(nèi)蒙古草原進(jìn)行氮磷添加研究,發(fā)現(xiàn)隨磷添加量增加,土壤總PLFA含量、細(xì)菌、放線(xiàn)菌、真菌數(shù)量及真菌/細(xì)菌比等指標(biāo)呈先上升后下降的趨勢(shì),并認(rèn)為適宜的磷添加對(duì)土壤微生物群落結(jié)構(gòu)會(huì)有顯著影響。劉洋[18]通過(guò)對(duì)高寒草甸有機(jī)碳的磷添加實(shí)驗(yàn)發(fā)現(xiàn):低濃度P磷添加對(duì)土壤有機(jī)碳礦化的促進(jìn)作用顯著,而高濃度P添加對(duì)土壤有機(jī)碳礦化的影響則并不顯著??梢?jiàn),磷添加對(duì)于有機(jī)碳礦化的影響會(huì)因施加量、所處地域、土壤類(lèi)型等因素的不同而表現(xiàn)出一定的差異。
2 磷添加對(duì)土壤有機(jī)碳礦化潛在的影響
微生物生物量及活性,通常被認(rèn)為是受到碳限制,但微生物對(duì)碳的利用也可能受到磷限制,或者共同限制,尤其當(dāng)活性碳成分較高時(shí)[19]。一些研究者發(fā)現(xiàn),礦質(zhì)化土壤碳組分和土壤有機(jī)碳庫(kù)強(qiáng)度可能會(huì)因磷的有效性而得到提升[20]。磷對(duì)于生物活動(dòng)的限制作用,在2種溫帶森林的礦質(zhì)土壤中已得到證實(shí),其影響結(jié)果表明,在高度風(fēng)化的土壤中,磷對(duì)于微生物的限制作用可能是普遍存在的,因?yàn)榱姿赝昏F鋁氧化物所固定[21]。
2.1 磷輸入對(duì)于土壤磷有效性 在生態(tài)系統(tǒng)中,氮磷養(yǎng)分之間通常存在著一種密切的協(xié)同效應(yīng),當(dāng)其中某個(gè)元素出現(xiàn)富集時(shí),則可能會(huì)導(dǎo)致另一個(gè)元素的限制[22]。目前,氮沉降已成為全球氣候變化的重要方面,氮輸入的增加使得土壤pH值降低,同時(shí)增加了磷素被鐵鋁氧化物固定的潛在可能性,減少磷對(duì)植物和微生物有效供應(yīng)[23],誘發(fā)磷對(duì)微生物及植物生長(zhǎng)過(guò)程的限制。但是,當(dāng)磷成為限制因素時(shí),植物及微生物又會(huì)因環(huán)境的變化而產(chǎn)生適應(yīng)性行為,它會(huì)通過(guò)其本身所具有的生理機(jī)能,進(jìn)行相應(yīng)的磷酸酶合成,以獲取它所需要的限制性養(yǎng)分[24]。有研究表明,磷酸酶合成主要受微生物組織的磷需求及環(huán)境中的磷有效性所調(diào)控,且與磷有效性呈負(fù)相關(guān)關(guān)系[25],所以在磷成為限制因素后,土壤中的磷酸酶含量往往較高。因此,本研究假設(shè):當(dāng)外源磷輸入且輸入量足以抵消原有的磷限制時(shí),土壤磷有效性會(huì)得到明顯提升,磷限制狀況將得到緩解,其磷酸酶含量亦會(huì)顯著降低。因?yàn)?,外源磷輸入提供了較為充足的無(wú)機(jī)磷來(lái)源,降低了微生物依賴(lài)有機(jī)磷礦化來(lái)作為其磷素來(lái)源[26],進(jìn)而使得微生物對(duì)磷酸酶合成的代謝投入減少[27]。
2.2 外源磷對(duì)于土壤微生物 有研究表明,土壤磷有效性對(duì)于亞熱帶天然林中的植物及土壤微生物是一個(gè)顯著的限制因素[28],且受磷限制的森林可能是有利于土壤碳的存儲(chǔ)與積累[29]。當(dāng)磷有效性增加,微生物對(duì)碳的利用效率(MBC)會(huì)因微生物群落結(jié)構(gòu)改變而增加,表現(xiàn)為真菌生物量及真菌與細(xì)菌比值上升[30],而真菌較細(xì)菌通常具有更大的碳需求[31]。Liu等[32]在熱帶森林通過(guò)磷添加對(duì)微生物群落的研究,發(fā)現(xiàn)磷添加對(duì)微生物群落結(jié)構(gòu)產(chǎn)生了相應(yīng)的影響,刺激土壤微生物生物量增加,并顯著增加了叢枝菌根真菌的相對(duì)豐度;同時(shí)也使得土壤中輕組碳和總碳顯著減少;此外,外源磷對(duì)森林土壤碳礦化的促進(jìn)作用主要在加入的初期,且隨著添加磷濃度的增加,其促進(jìn)作用也得以加強(qiáng);在添加一段時(shí)間后,這種促進(jìn)作用逐漸減弱并且有可能轉(zhuǎn)變?yōu)橐种谱饔肹33]。因此,就磷添加對(duì)微生物影響而言,我們可以假設(shè):當(dāng)足夠的磷輸入后能顯著刺激微生物活性,使微生物群落結(jié)構(gòu)改變,真菌生物量大為增加,進(jìn)而對(duì)土壤有機(jī)碳的分解利用加快,但到后期有機(jī)碳的釋放速率可能會(huì)明顯降低。
2.3 不同森林類(lèi)型對(duì)磷輸入的響應(yīng) 此外,森林演替過(guò)程中所形成的不同森林類(lèi)型,也有可能會(huì)導(dǎo)致C、P有效性的變化[34]。在成熟林中,由于其經(jīng)歷的演替階段較長(zhǎng),常表現(xiàn)為氮飽和狀態(tài),但土壤磷卻在此期間經(jīng)生物攝取及風(fēng)化淋溶后,多成為限制因素;而在年輕林分中,由于其演替階段較短,通常被認(rèn)為是氮限制的[13]。Liu等[35]以3種熱帶演替森林為例,通過(guò)加磷實(shí)驗(yàn)發(fā)現(xiàn):磷添加對(duì)微生物成長(zhǎng)的影響,很大程度上取決于森林的土地利用歷史,其結(jié)果表現(xiàn)為在成熟林中,磷添加顯著增加了微生物生物量并且改變微生物群落結(jié)構(gòu),使土壤呼吸顯著增加;在針闊混交林,微生物生物量未對(duì)磷添加有顯著響應(yīng),但土壤呼吸和真菌-細(xì)菌比被顯著增加;在針葉林,微生物生物量和群落結(jié)構(gòu)則無(wú)影響。有人也發(fā)現(xiàn)類(lèi)似的結(jié)果:施磷會(huì)導(dǎo)致CO2通量在短期內(nèi)顯著增加,但在培養(yǎng)后期,CO2排放量對(duì)磷添加的響應(yīng)則與森林類(lèi)型存在一定的相關(guān)性[36]。因此可以假設(shè):在米櫧天然林分中,由于其碳氮元素累積時(shí)間較長(zhǎng),它對(duì)于外源磷輸入的響應(yīng)明顯,其微生物活性及碳循環(huán)在施磷后,會(huì)產(chǎn)生顯著的刺激效果;而杉木人工林,由于其演替階段較短,碳氮元素的累積時(shí)間亦較短,所以它對(duì)于外源磷輸入的響應(yīng)效果可能不及米櫧林分。
3 展望
研究外源性磷添加對(duì)土壤有機(jī)碳礦化及磷素有效性的影響具有一定的現(xiàn)實(shí)性意義。通過(guò)合理施肥措施對(duì)于土壤碳礦化影響機(jī)制的研究,一方面,可以為我們進(jìn)一步認(rèn)識(shí)該地區(qū)森林土壤碳循環(huán)提供相應(yīng)依據(jù);另一方面,也有利于該地區(qū)的地力維持和森林生態(tài)系統(tǒng)的可持續(xù)經(jīng)營(yíng)。當(dāng)前,亞熱帶地區(qū)有關(guān)研究相對(duì)較少,今后應(yīng)加強(qiáng)這方面的研究。
參考文獻(xiàn)
[1]Stockmann, U., Adams, M.A., Crawford, J.W., et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon [J]. Agriculture, Ecosystems & Environment, 2013, 164: 80-99.
[2]李霞,田光明,朱軍,等.不同磷肥用量對(duì)水稻土有機(jī)碳礦化和細(xì)菌群落多樣性的影響[J].土壤學(xué)報(bào),2014,2:1018-1023.
[3]Gnankambary, Z., Ilstedt, U., Nyberg, G., et al. Nitrogen and phosphorus limitation of soil microbial respiration in two tropical agroforestry parklands in the south-Sudanese zone of Burkina Faso: the effects of tree canopy and fertilization [J]. Soil Biology and Biochemistry, 2008, 40: 350-359.
[4]Cleveland, C.C., Townsend, A.R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere [J]. Proceedings of the National Academy of Sciences, 2006, 103: 10316-10321.
[5]Ilstedt, U., Singh, S. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost [J]. Soil Biology and Biochemistry ,2005, 37: 1407-1410.
[6]Chen, F.S., Yavitt, J., Hu, X.F. Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient, Nanchang, China[J]. Applied Soil Ecology ,2014, 75: 181-188.
[7]Allen, A, Schlesinger, W. Nutrient limitations to soil microbial biomass and activity in loblolly pine forests[J]. Soil Biology and Biochemistry ,2004, 36: 581-589.
[8]Liu, M., Zhang, Z., He, Q., et al. Exogenous phosphorus inputs alter complexity of soil-dissolved organic carbon in agricultural riparian wetlands[J]. Chemosphere, 2014, 95: 572-580.
[9]Pisani, O., Scinto, L.J., Munyon, J.W., et al. The respiration of flocculent detrital organic matter (floc) is driven by phosphorus limitation and substrate quality in a subtropical wetland[J]. Geoderma, 2015, 241: 272-278.
[10]Fisk, M., Santangelo, S., Minick, K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J]. Soil Biology and Biochemistry, 2015, 81: 212-218.
[11]Zeng, W., Wang, W. Combination of nitrogen and phosphorus fertilization enhance ecosystem carbon sequestration in a nitrogen-limited temperate plantation of Northern China[J]. Forest Ecology and Management, 2015, 341: 59-66.
[12]劉德燕,宋長(zhǎng)春.磷輸入對(duì)濕地土壤有機(jī)碳礦化及可溶性碳組分的影響[J].中國(guó)環(huán)境科學(xué),2008,28:769-774.
[13]Vitousek, P.M., Porder, S., Houlton, B.Z., et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions[J]. Ecological applications, 2010, 20: 5-15.
[14]Wang, Q., Wang, S., He, T., et al. Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils[J]. Soil Biology and Biochemistry, 2014, 71: 13-20.
[15]Raiesi, F., Ghollarata, M. Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil [J]. Pedobiologia, 2006, 50: 413-425.
[16]Minick, K.J., Fisk, M.C., Groffman, P.M. Calcium and phosphorus interact to reduce mid-growing season net nitrogen mineralization potential in organic horizons in a northern hardwood forest[J]. Soil Biology and Biochemistry, 2011, 43: 271-279.
[17]施瑤,王忠強(qiáng),張心昱,等.氮磷添加對(duì)內(nèi)蒙古溫帶典型草原土壤微生物群落結(jié)構(gòu)的影響[J].生態(tài)學(xué)報(bào),2014,34:4943-4949.
[18]劉洋.氮磷添加對(duì)青藏高原亞高寒草甸土壤有機(jī)碳的影響[D].蘭州:蘭州大學(xué),2014.
[19]Paul, E. Soil microbiology, ecology and biochemistry in perspective[J]. Soil Microbiology Ecology and Biochemistry, third ed Academic Press, San Diego, CA, 2007: 3-24.
[20]Mack, M.C., Schuur, E.A., Bret-Harte, M.S., et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization[J]. Nature, 2004, 431: 440-443.
[21]Gallardo, A., Schlesinger, W.H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest[J]. Soil Biology and Biochemistry, 1994, 26: 1409-1415.
[22]Elser, J.J., Bracken, M.E., Cleland, E.E., et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology letters, 2007, 10: 1135-1142.
[23]Fiorentino, I., Fahey, T.J., Groffman, P.M., et al. Initial responses of phosphorus biogeochemistry to calcium addition in a northern hardwood forest ecosystem[J]. Canadian Journal of Forest Research, 2003, 33: 1864-1873.
[24]Naples, B.K., Fisk, M.C. Belowground insights into nutrient limitation in northern hardwood forests[J]. Biogeochemistry, 2010, 97: 109-121.
[25]Sinsabaugh, R.L., Follstad, Shah, J.J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 313-343.
[26]Wang, Q., Wang, S., Liu, Y. Responses to N and P fertilization in a young Eucalyptus dunnii plantation: Microbial properties, enzyme activities and dissolved organic matter[J]. Applied Soil Ecology, 2008, 40: 484-490.
[27]Allison, S.D., Weintraub, M.N., Gartner, T.B. et al. Evolutionary-economic principles regulators of soil enzyme production and ecosystem function[J]. Soil Enzymology, Ed, 2011: 229-243.
[28]Huang, W., Liu, J., Wang, Y.P., et al. Increasing phosphorus limitation along three successional forests in southern China[J]. Plant and soil, 2013, 364(1-2): 181-191
[29]Zhou, G., Liu, S., Li, Z., et al. Old-growth forests can accumulate carbon in soils [J]. Science, 2006, 314: 1417-1417.
[30]Sinsabaugh, R.L., Manzoni, S., Moorhead, D.L. et al. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling[J]. Ecology letters, 2013, 16: 930-939.
[31]Keiblinger, K.M., Hall, E.K., Wanek, W., et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency[J]. FEMS Microbiology Ecology, 2010, 73: 430-440.
[32]Liu, L., Zhang, T., Gilliam, F.S., et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest[J]. PloS one, 2013, 8: e61188.
[33]吳回軍,歐陽(yáng)學(xué)軍.磷添加對(duì)南亞熱帶森林土壤有機(jī)碳氮礦化影響的培養(yǎng)實(shí)驗(yàn)研究[J].廣東林業(yè)科技,2008:6-14.
[34]DeForest, J.L., Smemo, K.A., Burke, D.J., et al. Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests[J]. Biogeochemistry, 2012, 109: 189-202.
[35]Liu, L., Gundersen, P., Zhang, T., et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China[J]. Soil Biology and Biochemistry, 2012, 44: 31-38.
[36]Ouyang, X., Guoyi, Z., Huang, Z., et al. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China[J]. Journal of Environmental Sciences, 2008, 20: 1082-1089.
(責(zé)編:張 麗)